
Robust Constructive Induction

Bernhard Pfahringer

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

E-mail: bernhard@ai.univie.ac.at

Category: Paper

Area: Machine Learning

Keywords: Minimum Description Length, Constructive Induction, Noise.

Abstract

We describe how CiPF 2.0, a propositional constructive learner, can

cope with both noise and representation mismatch in training examples

simultaneously. CiPF 2.0 abilities stem from coupling the robust selective

learner C4.5 (and its production rule generator) with a sophisticated con-

structive induction component. An important new general constructive

operator incorporated into CiPF 2.0 is the simpli�ed Kramer operator

abstracting combinations of two attributes into a single new boolean at-

tribute. The so-called Minimum Description Length (MDL) principle acts

as a powerful control heuristic guiding search in the representation space

through the abundance of opportunities for constructively adding new at-

tributes. Claims are con�rmed empirically by experiments in two arti�cial

domains.

1 Introduction

When learning concept descriptions from preclassi�ed examples, simple concept

learners typically make strong assumptions about the way these examples are

represented. For e�ectively learning a concept its examples must populate one

or a few regions of the hypothesis space expressible in the description language.

For example, decision trees encode axis-parallel nested hyper-rectangles. Two

di�erent problems may cause irregular distributions of learning examples in the

original representation space: noise and/or an inadequate description language.

As a remedy for the latter problem constructive induction has been intro-

duced, e.g. in [Dietterich & Michalski 81] and [Mehra et al. 89]. The basic idea

is to somehow transform the original representation space into a space where the

learning examples exhibit (more) regularities. Usually this is done by introducing

new attributes and forgetting old ones. So constructive induction is searching for

an adequate representation language for the learning task at hand.

Just like when learning from noisy examples, constructive induction must be

controlled properly. Otherwise its application may yield too complex, convoluted

induced concept descriptions which may be hard to understand and may per-

form poorly at predicting concept membership of unclassi�ed examples. This

phenomenon can be called over�tting the representation language in analogy to

�tting the noise. The presence of both noise and an inadequate language obvi-

ously increases the possibilities for over�tting even further.

In [Pfahringer 94] we reported on our constructive learner CiPF and its rel-

ative success in noise-free domains due to rigid control applying the Minimum

Description Length principle. This paper will concentrate on how the improve-

ments found in the newest version CiPF 2.0 allow for robust constructive in-

duction handling both noise and inadequate language. The main improvements

over CiPF 1.0 are incorporating as the basic induction module a well-known so-

phisticated decision tree learner, namely C4.5 [Quinlan 93]; and including a new

general operator for constructive induction, a simpli�ed, more e�cient version of

the operator described in [Kramer 93].

Section 2 briey describes a generic architecture for constructive induction and

discusses CiPF 2.0 in these terms. In section 3 we will focus on how the prob-

lem of controlling search for useful changes of representation is solved in CiPF

2.0 by means of the powerful Minimum Description Length (MDL) Principle

[Rissanen 78]. Section 4 describes the simpli�ed Kramer operator. Experiments

in two arti�cial domains - the Monk's Problems [Thrun et al. 91] and illegal king-

rook-king chess positions [Fuernkranz 93] - are summarized in section 5. Section

6 draws conclusions, relates to various other approaches of constructive induction

and talks about further research directions we are pursuing within CiPF.

1

2 A Generic Architecture and an Introduction

to CiPF

This section will briey describe a generic architecture for constructive induction

and use this architecture to introduce CiPF. We will also discuss some important

design rationales of CiPF.

Most implemented constructive induction systems can be described in terms

of three di�erent modules working together:

� A CI module: Given examples and attribute descriptions and possibly al-

ready some descriptions/hypotheses, this module constructs new attributes

according to some methodology. Output of this module are new attribute

descriptions and the augmented and transformed learning examples.

� A Selective Learner: Any (classical) propositional learning algorithm can

be used to induce rules from the transformed learning data. Output of this

module is a set of rules forming a hypothesis that compresses and explains

the learning data.

� An Evaluator: This current hypothesis must be evaluated in some way

to decide whether it is of good enough quality to serve as a �nal result,

or if it should be input into another cycle of induction. It might also be

the case that no good hypothesis is found, but computation nonetheless

terminates due to exhausted resources like maximal number of cycles or

heuristically/statistically based doubt about the possibility of �nding any

better hypothesis.

Actual systems not only di�er in their choices for the di�erent parameters

(e.g. which methods they select for doing CI or what algorithm lies at the heart

of their respective learner), they may even omit modules and/or pathways at all;

for instance, some systems do not run in cycles, but perform sequential one-shot

learning only.

The main goal in building CiPF is designing a practical system for construc-

tive induction that minimizes the number of user-settable parameters. So we

try to identify principled choices or automated ways of choosing good values for

necessary decisions where other systems rely on user-speci�ed parameter values.

This was one reason for choosing the Minimum Description Length Principle as

an evaluator. This will be described in more detail in the next section.

CiPF borrows heavily from existing systems in that we have tried to collect

useful features of known machine learning systems. We try to combine these in a

synergetic fashion in CiPF. CiPF is a true instance of the generic architecture

for constructive induction described above in that it realizes all the boxes and

pathways. CiPF's components will be detailed in the following.

2

2.1 Constructive Induction in CiPF (the CI Module)

Just like the multi-strategy system AQ17-MCI [Bloedorn et al. 93], CiPF takes

an operator-based approach to constructive induction. It supplies a (still growing)

list of generally useful CI operators plus an interface allowing for user-supplied

special operators. For instance, these operators might encode possibly relevant

background knowledge. We have currently implemented the following generally

useful CI operators in CiPF 2.0:

� Compare attributes of the same type: is attribute A1 Equal to/Di�erent

from attribute A2.

� Conjoin possible values of nominal attributes occuring in good rules into a

subset of useful values for the respective attribute.

� Conjoin two attributes occuring in a good rule [Matheus & Rendell 89].

We use the simpli�ed Kramer operator for this task as will be described in

Section 4.

� For the set of positive examples covered by a good rule: compute subsets

for the respective base-level attributes, so that these subsets exactly cover

these positive examples.

� Drop attributes not used by any of the good rules.

1

Recursive application of these operators may yield complex new attributes.

2.2 CiPF's Selective Learner

CiPF 1.0 used a

simple propositional FOIL-like learner [Quinlan & Cameron-Jones 93], i.e. an

original implementation of a simpli�ed FOIL dealing with propositional horn

clauses only. We preferred direct induction of rules over induction of decision

trees mostly for two important reasons:

� Unknown values can be dealt with pragmatically: never incorporate tests

for unknown in a rule.

� Induction focuses on one class at a time. At least in relational learning this

approach seems to be superior to decision trees [Watanabe & Rendell 91]

and we suspect that the same might be true for propositional learning.

1

One might argue whether dropping an attribute really is a constructive induction operator

or not. Anyway it being a very useful operator we have chosen to include it in the above

list. Furthermore the terminology used in [Bloedorn et al. 93] de�nes the set of constructive

induction operators as the union of constructors and destructors.

3

Due to pitfalls regarding CiPF 1.0's disabilities handling noiseCiPF 2.0 now

incorporates C4.5 [Quinlan 93] as its selective learner, a sophisticated decision

tree algorithm well able to deal with noise. Fortunately C4.5 also includes a rule-

generator transforming decision trees into sets of production rules. These rules are

then processed and analyzed by CiPF 2.0's module for constructive induction.

We use default settings for C4.5 in all experiments, so CiPF's selective learner

essentially still is a parameter-less module, thus ful�lling one of our design criteria.

Regarding the above-mentioned preference for production rules, reason a) is still

true when using the output of C4.5rules and reason b) is achieved by arti�cially

turning an N-class learning task into N 2-class learning tasks.

3 Using MDL to Control Constructive Induc-

tion (the Evaluator Module)

CiPF takes a rather eager approach to constructive induction: at every step

all possible new attributes are added. This over-abundance in the representa-

tion space may quickly results in unwieldy, overly complex induced rule sets

or attributes when learning without appropriate control. Such rule sets ca be

di�cult to comprehend for the user and may yield mediocre results when clas-

sifying unseen examples. In analogy to noise �tting [Angluin & Laird 87] this

phenomenon can be called language �tting. Typical examples of such behaviour

are published in the section on AQ17-HCI in the Monk report [Thrun et al. 91],

which describes three arti�cial learning problems for evaluating and comparing

di�erent algorithms. We have made similar experiences with early versions of

CiPF lacking sophisticated control.

To prevent CiPF from language or noise �tting we have devised the following

simple, yet e�ective control regime:

� Every time the CI module is called, it is allowed to construct a more or less

unlimited number of new attributes.

� These attributes will be input to the next learning step. There they will

compete with each other for being used in induced rules.

� Only the �ttest attributes will be allowed to survive.

So how are the �ttest attributes determined in CiPF? We pragmatically

equate these with the set of attributes being used by good rules. Right now

good rules is pragmatically de�ned as just the rule-set returned by C4.5rules

as C4.5's rule generator does a good job of generalizing/pruning both single rules

and complete rule-sets constructed out a decision tree. So one basic step in CiPF

consists of the following actions:

4

� Express the training examples in terms of the currently active attributes,

not distinguishing between base-level or constructed attributes).

� Call C4.5 on this training set, and call C4.5rules to generate production

rules out of the decision tree.

� Analyze the set of production rules to a) determine surviving old attributes

and b) constructing new attributes via some CI-operator.

How does overall control work, how many such basic steps are taken? CiPF at

the moment just iterates as long as new attributes are introduced. It keeps track

of dropped attributes and never introduces an attribute twice, so this criterion

leads to termination in between a few and a few dozen cycles, depending on both

the amount of noise and the mismatch of the representation language.

Now we can answer the question of which rule set will be chosen as the �nal

result of induction. Instead of using some ad-hoc measures of accuracy and

quality or some user-supplied evaluation functions we have identi�ed the so-called

Minimum Description Length Principle [Rissanen 78, Quinlan & Rivest 89] as a

very well-performing evaluator when it comes to choosing the one best rule-set

from all the induced rule-sets.

In a nutshell, MDL is a concept from information theory that takes into

account both a theory's simplicity and a theory's predictive accuracy simultane-

ously. MDL is disarmingly simple: concept membership of each training example

is to be communicated from a sender to a receiver. Both know all examples and

all attributes used to describe the examples. Now what is being transmitted is a

theory (set of rules) describing the concept and, if necessary, explicitly all positive

examples not covered by the theory (the false-negative examples) and all negative

examples erroneously covered by the theory (the false-positive examples). Now

the cost of a transmission is equivalent to the number of bits needed to encode a

theory plus its exceptions in a sensible scheme. The MDL Principle states that

the best theory derivable from the training data will be the one requiring the

minimum number of bits.

So for any set of rules generated by the selective learner a cost can be com-

puted. The rule-set with minimumcost is supposed to be (and in the experiments

reported below most often really is) the best theory for the training data. The

precise formula used to apply the MDL Principle in CiPF is the same one as

used by C4.5 [Quinlan 93] for simplifying rule sets:

Cost = TheoryCost+ log

2

C

FP

!!

+ log

2

NC

FN

!!

In this formula TheoryCost is an estimate for the number of bits needed

to encode the theory. C is the total number of training examples covered by

the theory, FP is the number of false-positive examples, NC is the total number

5

of training examples not covered by the theory, and FN is the number of false-

negative examples. So the second and the third term of the formula estimate the

number of bits needed to encode all false-positive and all false-negative examples

respectively. In summary this formula approximates the total cost in number

of bits for transmitting a theory and its exceptions. As in C4.5 the actual

implementation uses a weighted sum of both the theory and the exception cost.

These weights have been hard-wired into CiPF after some initial experiments

and are set to one and three for theory and exceptions respectively.

It is of course necessary to also assess and include cost for constructed at-

tributes into the total cost of theories. Otherwise CiPF would successively create

more and more complex attributes probably only stopping at a theory of exactly

two rules testing a single boolean attribute: if true we conclude class A, if false

we conclude class B. This way the complexity would solely be shifted from the

rules into the structure of the attributes (and would be hidden there at zero cost).

To prevent this from happening, CiPF assesses cost of constructed attributes

by estimating the cost of encoding such constructions (expressed in numbers of

bits). For example a subset test (attribute A's value is one of the following values)

needs to encode the kind of attribute (subset test), the underlying attribute being

involved (A), the set of values (possibly as a bitmask for the total set of possible

values for attribute A), and an additional bit to represent whether we test for

truth or falsity Thus using a constructed attribute entails a kind of penalty or

cost, which can be amortized either if this attribute o�ers superior compression

or if it is used in more than one rule.

Empirically this simple strategy seems to produce good results, as indicated

by the experiments reported in section 5 and it is e�ectively computable. Also, to

repeat its two main advantages, the strategy includes no user-settable parameters,

and it also does not require a secondary training set (train-test set) to evaluate

the quality of constructed attributes, like e.g. AQ17-MCI or various forms of

reduced error pruning [Fuernkranz & Widmer 94] do.

4 The Simpli�ed Kramer Operator

In [Kramer 93] a new, general constructive induction operator is introduced,

which essentially abstracts the extensional product of the set of possible values

of two given attributes to a new boolean attribute. For example two attributes

A1 with possible values a or b and A2 with possible values 1, 2, or 3 could be

abstracted to C(A1,A2) as:

C(A1,A2) = t iff A1 = a and A2 is 1 or 2

C(A1,A2) = f iff A1 = b and A2 is 3

When applied to two boolean attributes, the result can of course be any bi-

nary boolean function (including e.g. xor or nand). We take care of immediately

6

rejecting trivial constructions like tautologies or projections of one of the argu-

ments.

CiPF 2.0 introduces the following simpli�cations. In [Kramer 93] a heuristic

chooses a few good rules and from these rules a few pairs of co-occuring attributes

are taken as input for a involved A*-search for the best split according to another

heuristic estimating split values. On the contrary, CiPF uses all pairs of co-

occuring attributes, estimates for each such pair its info-gain on the original

training set, and introduces the single (non-trivial) abstraction with the highest

info-gain. Info-gain and binarization for abstraction are computed greedily as

follows:

� For each pair of values of the two attributes determine the number of pos-

itive and negative examples covered by these two tests.

� Sort all pairs according to the ratio of positive versus all examples covered.

� Compute info-gain for all split-points in this sorted list of pairs.

� Finally choose the split yielding the maximal info-gain.

So this operator can also be partially described as compiling limited look-

ahead information for decision tree induction into new attributes. Our simpli-

�cations allow for e�cient implementation with tightly limited search (linear in

the number of pairs of values), but still seems to yield useful (though maybe

not always immediately the absolute best) abstractions. This operator can also

be seen as a generalization of the technique described in [Breiman et al. 84] for

computing optimal binary splits for single attributes: we handle combinations of

two attributes. The usefulness of this operator is also evident in the results of

the experiments reported on below.

5 Experiments

In the following experiments,CiPF 2.0's performance was usually averaged over

ten runs randomly choosing the appropriate number of training examples and

randomly reversing the class attribute (from yes to no or vice versa) for N% of

the these examples, when the noise level was set to N. We always report testing

accuracy of the initially induced rule-set (which is of course identical to the

result of just calling C4.5 followed by C4.5rules) and the accuracy of the best

set according to the MDL-heuristic used. Typically this best accuracy as selected

by the MDL principle is also the absolute best value of any of the induced rule-

sets. Occasionally though, for combinations of higher noise levels with a low

percentage of examples selected for training CiPF 2.0 failes to choose the best

possible candidate rule-set. Nonetheless the �nal result is most often better than

the initial result, and for the rare cases where it is not, di�erences are marginal,

e.g. an accuracy of 80% instead of 82%.

7

5.1 Monk's Problems

The Monk's problems [Thrun et al. 91] are three arti�cially constructed problems

in a space formed by six nominal attributes having from two to four possible

values. There is a total of 432 di�erent possible examples. The three problems are

abbreviated to Monk1, Monk2, and Monk3 in the following. CiPF 2.0 results for

the Monk's problems very encouraging. The original Monk's Problems' de�nition

explicitly speci�es a training set for each of the three problems and measures

accuracy on the total set of possible examples. From table 1 we see that CiPF

2.0 solves all three problems satisfactorily.

Monk1 was solved without problems. CiPF �nds the correct theory:

true <= (jacket_color = red)

true <= (head_shape = body_shape)

This is no surprise as this example is simple and CiPF has the necessary

constructive operator compare attributes of the same type at its disposal. Fur-

thermore, regarding solely accuracy, even the initial rule-set is a 100% accurate;

but when (implicitly) rewritten by constructive induction to the above given con-

cept de�nition, it is much more concise and therefore it correctly gets assigned a

lower MDL estimate.

Performance on Monk2 shows how e�ective constructive induction can be.

Starting from an accuracy of only 67.1% CiPF 2.0 manages to induce an almost

correct concept de�nition giving an accuracy of 95.6%. This success can be

attributed to the addition of the simpli�ed Kramer operator as described in

section 4. This general constructive operator is (after repeated application in 11

cycles of induction and construction) able to compute a very good approximation

of the correct theory.

Results for Monk3 are quite good, shoowing that CiPF 2.0 has overcome

its initial problems regarding noise. This is of course the result of incorporating

such a robust induction algorithm like C4.5 into CiPF. Actually C4.5 alone is

able to solve this problem to full 100% accuracy when called with the -s ag

to force subsetting of nominal attributes. But this ag is not set as a default

because it can cause large computational overheads and it is speculated, that a

more focussed way of introducing subsets of possible values might be more useful.

At least for Monk3 CiPF 2.0 seems to prove this speculation, as its constructive

operators allow for the introduction of the right subsets necessary to improve

accuracy from the intial 96.3% to the �nal 100%.

Additionally we would like to mention that some other learning systems also

exhibit very good performance on the original Monk's problems, e.g. AQ17-HCI

achieves 100%, 93.1%, and 100% on Monk1, Monk2, and Monk3 respectively,

2

2

AQ17-HCI has at its disposal a very special CI operator which perfectly �ts the Monk2

problem, thus explaining its impressive performance on this problem.

8

CiPF �rst CiPF best

Monk1 100.0 100.0

Monk2 67.1 95.6

Monk3 96.3 100.0

Table 1: Monk's Problems: accuracies (percentages) for CiPF after the �rst and

after the best cycle of induction.

and a specialized form of Backpropagation yields 100%, 100%, and 97.2% respec-

tively.

As there are �xed, prespeci�ed training and test sets for the Monk's problems,

there is of course always the danger lurking that one tunes one's system to good

performance on these sets. To prevent us from this pitfall and to a larger de-

gree to study CiPF 2.0's abilities regarding noise and inadequate representations

simultaneously, we designed the following series of experiments.

For Monk1 we randomly chose 30, 40, 50, or 60% of all examples for training,

chose a noise level of 0, 5, 10, 15, 20, or 25% respectively and for every combi-

nation did ten test-runs of CiPF to average results. These averages are given in

table 2.

Interpreting table 2 we can notice a few interesting facts regarding Monk1:

certainly results get more akey when both noise is high and the number of

training examples is small. Still in the worst case of 25% noise and only 30%

percent training examples CiPF 2.0 still on average achieves an accuracy of

81.5%. Furthermore, on average the �nal result is never worse than the initial

accuracy, and if both values are equal, then these values are also high. C4.5 alone

proves to be quite a robust learner given medium or smaller levels of noise and

adequate numbers of examples: the initial runs for these cases always yield accu-

racies around (100 �Noise=2)% or better. Still in almost all cases constructive

induction signi�cantly improves the �nal result.

For Monk2 we deliberatly left columns for 30 and 40% training set size empty,

because results looked more or less like for the 50% experiments: �nal accura-

cies are rarely signi�cantly better than the average initial 65%. For constructive

induction to reliably push overall accuracy to levels above 90% we need both an

adequate number of training examples and a moderate noise level. This is due to

the rather complicated target concept de�nition: it is a kind of an xor including

all base-level attributes testing if exactly two of these six attributes have as their

respective value the �rst possible value given in their domains. But given su�-

cient information CiPF 2.0 is able to achieve impressive improvements. Other

approaches seem to achieve such improvements only by incorporating specialized

CI operators �tting well this special kind of target concept.

9

TrainEx% Noise% Monk1 Monk2 Monk3

�rst best �rst best �rst best

30 0 99.1 100.0 99.9 100.0

5 97.4 100.0 98.7 99.1

10 93.7 99.4 97.0 98.4

15 87.4 96.6 93.8 93.4

20 80.4 89.2 90.0 90.4

25 77.8 81.5 84.3 85.7

40 0 99.4 100.0 100.0 100.0

5 98.8 99.9 99.4 100.0

10 97.8 99.4 97.0 98.3

15 92.7 97.7 95.5 98.3

20 89.5 97.9 89.0 95.4

25 78.9 88.9 84.4 91.9

50 0 100.0 100.0 68.2 79.8 100.0 100.0

5 99.7 100.0 66.5 87.1 99.3 99.8

10 96.9 99.7 67.8 84.8 97.3 99.8

15 92.9 99.0 63.7 64.1 95.1 98.0

20 88.0 96.3 63.2 63.4 93.3 97.8

25 83.8 95.8 60.2 60.9 87.7 94.1

60 0 100.0 100.0 64.5 97.3 100.0 100.0

5 99.8 99.8 66.1 83.6 99.6 99.9

10 96.7 99.6 63.7 81.7 97.6 99.2

15 93.1 98.8 64.1 65.2 95.9 99.1

20 91.1 97.9 63.6 63.6 90.5 97.5

25 85.2 99.0 60.7 65.4 87.3 94.7

Table 2: Monk's Problems: accuracies (percentages) for CiPF 2.0 after the �rst

and after the best cycle of induction for various levels of noise and various sizes

of the training set for Monk1, Monk2, and Monk3.

10

For Monk3 we can more or less repeat the facts found for Monk1, with overall

�nal accuracies being even better: with the exception of the 25% noise and 30%

training examples case every �nal accuracy is above 90%.

This test series empirically proves the utility of constructive induction even

when \only" dealing with noise. Constructive induction seems to shift the rep-

resentation language towards appropriate, more concise de�nitions allowing the

learner to distinguish more easily between variety and noise.

5.2 Illegal King-Rook-King Chess Positions

This domain is a very valuable testbed for experiments involving various amounts

of noise and varying sizes of training sets. As such it has been used intensivly in

inductive logic programming. There are a few hundred thousand di�erent pos-

sible examples. [Fuernkranz 93] is a theoretical study including various approx-

imate theories and showing a test-set size of 5000 to be su�cient for estimating

accurracies of induced theories.

KRK is very easily represented for CiPF. The original example tupels of the

relation illegal/6 have six arguments encoding rank and �le of all three pieces.

Background knowledge in the original formulation consists of de�nitions for =/2,

less than/2 and adjacent/2. Taking into regard predicate modes, symmetries,

and the fact that in CiPF with a boolean attribute both a test and its negation

can be represented, every original illegal/6 example was transformed into a

tuple of 18 boolean attributes encoding all possible body literals.

Induced theories (with no noise present) usually resemble the approximate

theories given in [Fuernkranz 93]. A sample theory derived by CiPF from 100

training examples looks as follows:

[1] illegal <= (BLACK-KING-FILE = WHITE-ROOK-FILE)

[2] illegal <= (BLACK-KING-RANK = WHITE-ROOK-RANK)

[3] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and

(adjacent BLACK-KING-RANK WHITE-KING-RANK)

[4] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and

(BLACK-KING-RANK = WHITE-KING-RANK)

This approximate theory was tested with 5000 test examples yielding an ac-

curacy of 98.4%. This is consistent with [Fuernkranz 93] which proves a theory

consisting of the �rst three clauses 1,2,3 to be 98.451% correct.

To get a better picture of the relationship between class noise, training set

size, and testing accuracy, we ran experiments using training sets of 100, 250, and

500 examples, choosing noise levels of 0, 10 and 20% each and randomly iterating

�ve times for each pair of settings. Averaged accuracies are given in table 3.

11

Noise% 100 Ex 250 Ex 500 Ex

�rst best �rst best �rst best

0 98.6 98.6 98.5 98.6 99.1 99.3

10 95.0 95.7 97.1 97.5 98.5 98.9

20 92.4 93.2 96.2 96.5 97.2 97.8

Table 3: Illegal KRK: accuracies (percentages) for CiPF 2.0 after the �rst and

after the best cycle of induction for various levels of noise and various sizes of the

training set in the King-Rook-King domain.

Using only 100 training examples at a noise level of 10%, CiPF 2.0 sig-

ni�cantly outperforms all approaches compared in [Fuernkranz & Widmer 94].

When using 250 training examples, it performs slightly worse than the

best approach (incremental reduced error pruning - IREP) cited in

[Fuernkranz & Widmer 94]. For 500 training example CiPF 2.0 in turn out-

performs IREP by an even smaller margin: 98.48% vs. 98.9%. These small

di�erences for training set sizes of 250 or 500 examples may not be statistically

signi�cant, though.

On the overall the expected e�ect - larger absolute error - can be found when

dealing with small example sets at higher noise levels. The absolute di�erences

are rather small, though. Generally, for this domain the selective learner on its

own produces almost perfect theories. Therefore constructive induction is only

occasionally able to improve the scores marginally. But in every test-run the

initially induced theory was rewritten into a concise and easily comprehensible

form like exempli�ed by the above given sample rule-set.

6 Conclusions, Related Work, and Further Re-

search

We have shown empirically, that interfacing a robust selective learner to strong

constructive operators under a rigid control schema can result in a robust con-

structive induction system being able to deal with both noise and inadequate

representation language simultanously. Incorporating the MDL Principle into

CiPF as the single, uniform heuristic for evaluating theories and thereby implic-

itly guiding constructive induction proved valuable. The MDL Principle combines

both accuracy and complexity of a theory into a single uniform measure. Thus

CiPF does not require any ad-hoc measurements or user-de�ned evaluation func-

tions of possibly questionable quality and can nonetheless use all of the available

training data for induction. Other approaches (e.g. AQ17-MCI or reduced error

12

pruning) have to resort to splitting the training data into two or more sub-parts

performing some sort of cross-validation on these sub-parts. Such an approach

may be more expensive computationally (but see [Fuernkranz & Widmer 94] for

e�cient reduced error pruning) and may miss regularities in the data for rea-

sons intrinsic to this approach. Still, on a systems level, CiPF certainly is most

closely related to and inuenced by the multi-strategy system AQ17-MCI. The

main di�erences are the underlying inductive learner and the way control is im-

posed on constructive induction. CiPF eagerly tries to use every opportunity

for constructive induction until the MDL principle helps choosing the best result

from this cycling process. AQ17-MCI takes a di�erent approach: relying on a

set of meta-rules [Aha 92], it tries to identify the need (when) and the directions

(how) for a change in the representation space. On the operator sideAQ17-MCI

seems to be more mature especially regarding so-called deconstructors. It would

certainly be interesting to compare both systems on some tasks using the same

set of operators in both systems.

Principled Constructive Induction is an interesting concept introduced in

[Mehra et al. 89]. Geometric interpretation of the various constructors and the

notion of linear separability is used to guide the selection of appropriate construc-

tors. These ideas might have interesting implications for CiPF, too.

The problem of language �tting is also mentioned and discussed in

[Matheus 90] in the context of the CITRE system and a framework for con-

structive induction. This approach uses additional background knowledge in two

di�erent ways when constructing attributes. Domain-knowledge constraints are

used to eliminate less desirable new attributes beforehand and domain-dependent

transformations generalize newly constructed attributes even further in ways

meaningful to the current problem. Though these ideas do not currently �t

directly into CiPF's schema for constructive induction, they might still point to

valuable further improvements possible for CiPF.

Our further research directions for CiPF 2.0 include adding again support

for numerical attributes (as was already present in CiPF 1.0, application to

especially medical databases, and the de�nition of constructive operators dealing

with structured objects, hopefully giving CiPF some of the representational power

found in inductive logic programming systems like FOIL.

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen

Forschung (FWF) under grant number P8756-TEC. Financial support for the Austrian

Research Institute for Arti�cial Intelligence is provided by the Austrian Federal Min-

istry of Science and Research. I would like to thank Gerhard Widmer for constructive

discussion and help with this paper, and Johannes F�urnkranz for providing the king-

rook-king position generator.

13

References

[Aha 92] Aha D.W.: Generalizing from Case Studies: A Case Study, in Sleeman D.

and Edwards P.(eds.), Machine Learning: Proceedings of the Ninth International

Workshop (ML92), Morgan Kaufmann, San Mateo, CA, pp.1-10, 1992.

[Angluin & Laird 87] Angluin D., Laird P.: Learning from Noisy Examples, Machine

Learning, 2(4), 343-370, 1987.

[Bloedorn et al. 93] Bloedorn E., Wnek J., Michalski R.S.: Multistrategy Construc-

tive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of

the Second International Workshop on Multistrategy Learning (MSL-93), Harpers

Ferry, W.VA., pp.188-206, 1993.

[Breiman et al. 84] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.: Classi�ca-

tion and Regression Trees, Wadsworth International Group, Belmont, CA, The

Wadsworth Statistics/Probability Series, 1984.

[Dietterich & Michalski 81] Dietterich T.G., Michalski R.S.: Inductive Learning of

Structural Descriptions: Evaluation Criteria and Comparative Review of Selected

Methods, Arti�cial Intelligence, 16(3), 257-294, 1981.

[Fuernkranz 93] Fuernkranz J.: A numerical analysis of the KRK domain. Working

Note, 1993. Available upon request.

[Fuernkranz & Widmer 94] Fuernkranz J., Widmer G.: Incremental Reduced Error

Pruning. OeFAI Tech Report TR-94-09, also submitted to ML-94, 1994.

[Kramer 93] Kramer S.: CN2-MCI: Ein zweistu�ges Verfahren f�ur konstruktive Induk-

tion, Master's thesis in preparation, Vienna, 1993.

[Matheus & Rendell 89] Matheus C.J., Rendell L.A.: Constructive Induction On De-

cision Trees, in Proceedings of the Eleventh International Joint Conference on

Arti�cial Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 645-650,

1989.

[Matheus 90] Matheus C.J.: Adding Domain Knowledge to SBL Through Feature Con-

struction, in Proceedings of the Eighth National Conference on Arti�cial Intelli-

gence (AAAI -90), AAAI Press/MIT Press, Menlo Park, CA, pp.803-808, 1990.

[Mehra et al. 89] Mehra P., Rendell L.A., Wah B.W.: Principled Constructive Induc-

tion, in Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 651-656, 1989.

[Pfahringer 94] Pfahringer B.: Controlling Constructive Induction in CiPF: An MDL

Approach, in Proceedings of the European Conference on Machine Learning

(ECML94), 1994.

[Quinlan & Rivest 89] Quinlan J.R, Rivest R.L.: Inferring Decision Trees using the

Minimum Description Length Principle, in Information and Computation, 80:227-

248, 1989.

14

[Quinlan & Cameron-Jones 93] Quinlan J.R., Cameron-Jones R.M.: FOIL: A Midterm

Report, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.3-

20, 1993.

[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, in Automatica,

14:465-471, 1978.

[Thrun et al. 91] Thrun S.B., et.al.: The MONK's Problems: A Performance Com-

parison of Di�erent Learning Algorithms, CMU Tech Report, CMU-CS-91-197,

1991.

[Watanabe & Rendell 91] Watanabe L., Rendell L.: Learning Structural Decision

Trees from Examples, in Proceedings of the 12th International Conference on

Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.770-776, 1991.

15

