
Incremental Reduced Error Pruning

Johannes F�urnkranz

1

and Gerhard Widmer

1;2

1

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

2

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

E-mail: [juffi,gerhard]@ai.univie.ac.at

Keywords: Inductive Logic Programming, Pruning, Noise

Abstract

This paper outlines some problems that may occur with Reduced Error

Pruning in Inductive Logic Programming , most notably e�ciency. There-

after a new method, Incremental Reduced Error Pruning , is proposed that

attempts to address all of these problems. Experiments show that in many

noisy domains this method is much more e�cient than alternative algo-

rithms, along with a slight gain in accuracy. However, the experiments

show as well that the use of this algorithm cannot be recommended for

domains with a very speci�c concept description.

OEFAI-TR-94-09

1 Introduction

Being able to deal with noisy data is a must for algorithms that are meant

to learn concepts in real-world domains. Signi�cant e�ort has gone into

investigating the e�ect of noisy data on decision tree learning algorithms

(see e.g. [Quinlan, 1993, Breiman et al., 1984]). Not surprisingly, noise han-

dling methods have also entered the emerging �eld of Inductive Logic Pro-

gramming (ILP) [Muggleton, 1992]. Linus [Lavra�c and D�zeroski, 1992] relies

directly on the noise handling abilities of decision tree learning algorithms

like CN2 [Clark and Niblett, 1989, Clark and Boswell, 1991] or ASSISTANT

[Bratko and Kononenko, 1986]. Others, likemFoil [D�zeroski and Bratko, 1992],

have adapted some of these well-known methods from attribute-value learning for

the ILP framework.

Pruning is a standard way of dealing with noise in decision tree learning

(see e.g. [Mingers, 1989] or [Esposito et al., 1993]). There are two fundamentally

di�erent approaches [Cestnik et al., 1987]:

Pre-Pruning means that during concept generation some training examples are

deliberately ignored, so that the �nal concept description does not classify

all training instances correctly.

Post-Pruning means that �rst a concept description is generated that perfectly

explains all training instances. This theory will subsequently be general-

ized by cutting o� branches of the decision tree (as in [Quinlan, 1987] or

[Breiman et al., 1984]).

In ILP, pre-pruning has been common in the form of stopping criteria as

used in Foil [Quinlan, 1990], mFoil [D�zeroski and Bratko, 1992], or Fossil

[F�urnkranz, 1994a]. Post-pruning was introduced to ILP with Reduced Error

Pruning (REP) [Brunk and Pazzani, 1991] based on ideas by [Quinlan, 1987] and

[Pagallo and Haussler, 1990]. First the training set is split into two subsets: a

growing set and a pruning set . A concept description explaining all of the ex-

amples in the growing set is generated with a relational learning algorithm. The

resulting concept is then generalized by deleting literals and clauses from the the-

ory until any further deletion would result in a decrease of predictive accuracy

measured on the pruning set.

However, this approach has several disadvantages, which we will highlight in

section 2. Section 3 brie
y presents the approach of [Cohen, 1993] designed to

solve some of these problems. In section 4 we propose Incremental Reduced Error

Pruning | a method that integrates pre- and post-pruning | as an alternative

solution. Section 5 then reports some experiments with two versions of this

algorithm.

1

2 Some Problems with Reduced Error Pruning

Reduced Error Pruning (REP) [Brunk and Pazzani, 1991] has proven to be quite

e�ective in raising predictive accuracy in noisy domains. However, this method

has several shortcomings, which we will discuss in this section.

2.1 E�ciency

In [Cohen, 1993] it was shown that the worst-case time complexity of REP is

as bad as
(n

4

) on random data (n is the number of examples). The growing

of the initial concept, on the other hand, is only
(n

2

log n). The derivation of

these numbers as given in [Cohen, 1993] rests on the assumption that for random

and thus incompressible data the concept description after the growing phase will

contain about 1 rule for each example (n rules altogether), each of them having

about log n conditions, because each literal will cover about half of the random

instances. It is further assumed that the �nal (pruned) theory will only have

constant size, i.e. its size is independent of n. The costs of adding 1 literal to

the rule are proportional to n, because each of the constant number of literals

1

has to be tested once against each of the n instances in the growing set. As there

will be about n log n literals in the concept description, we have a total cost of

the order of n

2

log n for the growing phase.

In each step of the pruning phase each of the n clauses can be simpli�ed by

deleting the last literal or deleting the whole clause. Each of the 2n simpli�ca-

tions has to test its � n rules against the n examples. Assuming that each rule

will be modi�ed or deleted at least once until the �nal concept description of

constant size will be found, this simpli�cation loop has to be performed at least

n times. Therefore we get a total cost of
(n

4

). A detailed proof can be found

in [Cohen, 1993]. It has also been pointed out there that this result for random

data generalizes to data containing noise, i.e. a constant fraction of random and

incompressible data. Therefore it can be concluded that in the long run the

costs of pruning will by far outweigh the costs of generating the initial concept

description, which has been shown experimentally on a variety of data sets.

2.2 Split of Training Data

A disadvantage of REP is that the training data has to be split into two sets, a

growing set (usually 2=3) and a pruning set (usually 1=3). A two-fold problem

results from this: Learning occurs from examples in the growing set only. There-

fore the algorithm might miss to learn important rules, if some or most of the

examples for this rule are in the pruning set and not in the growing set. On the

1

While the number of literals is constant, the number of variabilizations for each literal

might be increasing with the introduction of new variables. We assume that the number of

variables is bounded by a constant.

2

other hand, each learned rule has to have support in the pruning set, because if

some or all examples for this rule are in the growing set, the rule | although

learned correctly | might be pruned or deleted altogether. Thus a bad split of

the given examples can have a negative in
uence on the behavior of both the

learning and the pruning algorithm.

2.3 Separate-and-Conquer Strategy

In decision tree learning usually a divide-and-conquer strategy is used. This

means that the training set is split into disjoint sets according to the outcome of

the test chosen for the top level decision. After this, the algorithm is recursively

applied to each of these sets independently. Greedy covering algorithms like

Foil follow a separate-and-conquer strategy [Pagallo and Haussler, 1990]. This

method �rst learns a rule from the whole training set and subsequently removes

all examples that are covered by this rule. Then the algorithm recursively tries

to �nd rules that explain the remaining examples.

Although the separate-and-conquer approach shares many similarities with

the divide-and-conquer strategy, there is one important di�erence: Pruning of

branches in a decision tree will never a�ect the neighboring branches, whereas

pruning of literals of a rule will a�ect all subsequent rules. Pruning a literal

from a clause means that the clause is generalized, i.e. it will cover more posi-

tive instances along with some negative instances. These negative instances are

deliberately ignored, i.e. they are practically identi�ed to be wrong or noisy. Con-

sequently those additional positive and negative instances should be removed as

well so that they cannot in
uence the learning of subsequent clauses. However,

the initial growing phase of REP does not know which of the instances are noisy

and will henceforth carry along instances that should already be covered by one of

the previous clauses. In the best case those super
uous examples in the growing

phase only lead to the generation of some additional clauses that will be pruned

in the pruning phase. In the worst case, however, those instances may lead the

learner down a garden path, because they may change the evaluation of the liter-

als in subsequent learning and thus the \correct" literals might not be selected.

A wrong choice of a literal cannot be undone by pruning.

2.4 Bottom Up Hill-Climbing

REP employs a greedy hill-climbing strategy: Literals and clauses will be deleted

from the concept de�nition so that predictive accuracy on the pruning set is max-

imized. When each possible operator leads to a decrease in predictive accuracy,

the search process stops.

However, in noisy domains it can be expected that the theory that has been

generated in the growing phase is much too speci�c, i.e. REP will have to do

a lot of pruning and therefore has ample opportunity to get caught in a local

3

maximum. Therefore REP's speci�c-to-general search can be expected to be

slow and imprecise for noisy data, because it has to prune a signi�cant portion

of the theory previously generated in the growing phase and is likely to stop at

a local maximum during this process. [F�urnkranz, 1994b] reports experiments

with an algorithm that is able to �nd a starting theory much closer to the �nal

theory than the most speci�c theory. This method succeeded in improving both

run-time and accuracy of REP.

3 Cohen's Grow algorithm

In [Cohen, 1993] several of the problems of section 2 | in particular e�ciency|

have been recognized. Cohen has then proposed a pruning algorithm based on the

technique used in the Grove learning system [Pagallo and Haussler, 1990]. Like

REP,Grow �rst �nds a theory that over�ts the data. But instead of pruning the

intermediate theory until any further deletion results in a decrease in accuracy

on the pruning set, in a �rst step the intermediate theory is augmented with gen-

eralizations of all its clauses. In a second step, clauses from this expanded theory

are subsequently selected to form the �nal concept description until no further

clause that improves predictive accuracy on the pruning set can be found. The

generalizations of the clauses are formed by repeatedly deleting a �nal sequence

of conditions from the clause so that the error on the growing set goes up the

least. For a detailed description of the Grow algorithm see [Cohen, 1993].

This algorithm solves several of the problems from section 2:

� Under the assumptions of section 2.1 the costs of pruning on random data

are reduced to O(n

2

log n): Each clause contains about log n literals, each

of which can be the last literal in a generalized clause. So in the worst

case we get a total of n log n clauses in the augmented intermediate theory.

Each of them is tentatively added to the initially empty �nal theory and

the resulting set of clauses is tested on the n training examples. This is

repeated until all clauses in the �nal concept description of constant size

have been found. Therefore the costs of this algorithm are O(n

2

log n).

Again, consult [Cohen, 1993] for a detailed proof.

� Grow replaces the bottom-up hill-climbing search of REP by a top-down

approach (see section 2.4). It does not remove the most useless clause or

literal from the speci�c theory, but instead adds the most promising gener-

alization of a rule to an initially empty theory. This results in a signi�cant

gain in e�ciency, along with a slight gain in accuracy. An explanation for

the latter could be that top-down hill-climbing starts from the empty the-

ory, which in many domains is much closer to the correct theory than the

most speci�c one.

4

However, Cohen's Grow algorithm does not attempt to solve the remaining

problems with bad splits and the separate-and-conquer strategy. Besides, the

overall costs of the Grow algorithm still include the cost of over�tting the data

and thus are unnecessarily high. Consequently Cohen tried to improveGrow by

adding two stopping heuristics to the initial stage of over�tting, and thus achieved

a further speed-up of the algorithm. Another way of combining pre-pruning and

post-pruning methods to get better results can be found in [F�urnkranz, 1994b].

In section 4 we present an alternative approach that integrates pre-pruning

and post-pruning in a way that avoids the expensive initial phase of over�tting

altogether.

4 Incremental REP

As an attempt to solve the problems mentioned in section 2 we have developed a

new algorithm that integrates pre-pruning and post-pruning into learning. The

basic idea is that instead of �rst growing a complete concept description and

pruning it thereafter, each clause will be pruned right after it has been generated

(see �gure 1): After learning a clause from the growing set, literals will be deleted

from this clause in a greedy fashion until any further deletion would decrease the

accuracy of this clause on the pruning set. Each literal is considered for pruning

(not only a �nal sequence of literals). The resulting rule will then be added

to the concept description and all covered positive and negative examples will

be removed from the training | growing and pruning | set. The remaining

instances in the training set are then redistributed into a growing and a pruning

set and a new clause is learned. When the predictive accuracy of the pruned

clause is below the predictive accuracy of the empty clause (i.e. the clause with

the body fail), the clause will not be added to the concept description and

I-REP returns the learned clauses. Thus the accuracy of the pruned clauses on

the pruning set also serves as a stopping criterion.

As this algorithm does not prune on the entire set of clauses, but prunes each

one of them successively, we have named it Incremental Reduced Error Pruning

(I-REP). It addresses the problems of section 2 in the following ways:

E�ciency: I-REP does not generate an intermediate concept description. Thus

the costs of I-REP are roughly the costs for generating the �nal theory,

while REP and Grow have to generate a more speci�c theory �rst. As

in REP, growing one clause from purely random data costs n log n (see

section 2.1). I-REP considers every literal in the clause for pruning, i.e.

each of the log n literals has to be tested against n examples until the �nal

clause has been found, i.e. at most log n times. Thus the costs of pruning

one clause are n log

2

n. As the �nal theory only has a constant number of

clauses, the overall costs are also of the order n log

2

n.

5

procedure I-REP (Pos, Neg, SplitRatio)

Clauses = ;

while Pos 6= ;

SplitExamples(SplitRatio, Pos, PosGrow, PosPrune)

SplitExamples(SplitRatio, Neg, NegGrow, NegPrune)

Clause = ;

while NegGrow 6= ;

Clause = Clause [FindLiteral(Clause; PosGrow;NegGrow)

PosGrow = Cover(Clause; PosGrow)

NegGrow = Cover(Clause;NegGrow)

Clause = PruneClause(Clause; PosPrune;NegPrune)

if Accuracy(Clause) � Accuracy(fail)

return(Clauses)

else

Pos = Pos � Cover(Clause; Pos)

Neg = Neg � Cover(Clause;Neg)

Clauses = Clauses [Clause

return(Clauses)

Figure 1: Incremental Reduced Error Pruning

Split of Training Data: I-REP redistributes its pruning and growing sets after

a clause has been found. Thus the scope of the problems discussed in

section 2.2 is reduced to the learning of a single clause. However, it may

happen that a clause learned from a bad growing set or evaluated on a bad

pruning set appears worse than the empty clause, which causes I-REP to

stop learning, while REP would continue learning and prune the bad clause

later on.

Separate-and-Conquer Strategy: I-REP learns the clauses in the order in

which they will be used by a PROLOG interpreter. Before subsequent

rules will be learned, each clause is completed (learned and pruned) and all

covered examples are removed. For this reason the problems discussed in

section 2.3 cannot appear in I-REP.

Bottom-Up Hill-Climbing: Similarly to Grow, I-REP uses a top-down ap-

proach, instead of REP's bottom-up search: Final programs are not found

by removing unnecessary clauses and literals from an overly speci�c theory,

but by repeatedly adding clauses to an initially empty theory. However,

Grow still has to generate an intermediate, speci�c concept description,

while I-REP directly constructs the �nal theory. In cases where the correct

concept de�nition is fairly simple, the top-down approach can be expected

to be less sensitive to local optima as discussed in section 2.4.

6

Most of the e�ciency of the I-REP algorithm comes from the integration

of pre-pruning and post-pruning by de�ning a stopping criterion based on the

accuracy of the pruned clause on the pruning set. However, this may also cause

problems: Whenever the pruned clause does not have an accuracy above the

accuracy of the empty clause, no more clauses will be learned. This is more or

less the inversion of REP's delete-clause operator. However, if this accuracy

is not measured appropriately, either because there are not enough examples

left, or because of a bad split of the examples, I-REP will be prone to over-

generalization. Using the terminology of [Scha�er, 1993], I-REP has a strong

Over-�tting Avoidance Bias, which can be detrimental in some domains.

5 Experiments

5.1 Implementations of the Algorithms

We have tested two di�erent implementations of I-REP, which di�er in the way

they prune the clauses (let p (n) be the number of positive (negative) examples

covered by the current clause from a total of P (N) positive (negative) examples

in the current pruning set):

I-REP prunes clauses so that the number of covered positive examples plus the

number of not covered negative examples is maximized (

p+(N�n)

P+N

). The ac-

curacy of the empty clause (i.e. the clause with the body fail) is

N

P+N

.

Whenever the accuracy of the best pruned clause is below this value, learn-

ing stops.

I-REP-2 prunes clauses so that the \purity" of each clause (

p

n+p

) is maximized.

As the purity of the empty clause is meaningless (p = n = 0), we have

adopted the following stopping criterion: Only clauses that cover more

positive than negative examples (

p

n+p

> 0:5) are permitted, as only those

may increase the overall accuracy of the concept.

Both algorithms, REP and Grow, were implemented as described in

[Cohen, 1993] with the exception that delete-last-literalwas used as a clause

pruning operator (as in [Brunk and Pazzani, 1991]) instead of Cohen's operator

that deletes a �nal sequence of literals from a clause.

2

All systems were imple-

mented in Sicstus PROLOG, run-times were measured on a SUN SPARCstation

IPX.

2

Cohen used his delete-final-sequence operator in both REP and Grow, while we have

used delete-last-literal in both algorithms. Besides, [Cohen, personal communication] has

pointed out that his implementation of Grow in most cases produces all generalizations that

would be produced when using delete-last-literal instead.

7

5.2 Domains

We have run experiments in a variety of domains. As our current implemen-

tation of the algorithms is not capable of handling continuous attributes or

multi-valued classes, our choice of test domains was somewhat limited. Tests

were performed for most of the datasets in the UCI Machine Learning reposi-

tory that had only two classes and only symbolic attributes, and also for the

KRK [Muggleton et al., 1989] and the Mesh [Dol�sak and Muggleton, 1992] do-

mains. Table 1 gives an overview of the used databases along with a comparison

of the run-times of the di�erent algorithms. In some domains arti�cial noise

was generated by inverting the classi�cation of 10% of the examples. The col-

umn Over�tting refers to the initial growing phase that REP and Grow have

in common, while REP and Grow give the results for the pruning phases only.

Thus the total run-time of REP (Grow) is the run-time of Over�tting plus the

run-time of REP (Grow). The best result(s) in each line are emphasized.

Domain Over�tting REP Grow I-REP I-REP-2

KRK-100 (10%) 8.36 2.44 1.66 4.20 4.37

KRK-250 (10%) 91.31 104.98 19.81 17.30 18.09

KRK-500 (10%) 456.56 1578.16 100.81 46.32 57.05

KRK-750 (10%) 1142.78 7308.84 361.41 83.64 118.99

KRK-1000 (10%) 2129.89 23125.34 806.89 115.35 178.26

Monks 1 0.70 0.03 0.24 1.03 1.02

Monks 2 43.43 52.56 18.45 9.69 12.03

Monks 3 5.82 2.09 1.14 3.30 3.93

Mesh 3928.89 21168.56 2386.09 379.57 466.47

Promoters 241.03 1.00 0.63 179.64 195.79

Votes 59.05 13.26 4.87 23.87 37.63

Votes (VI) 185.94 101.87 30.83 41.59 69.97

Mushroom 108.03 2.30 5.26 106.95 110.49

KRKN 24.49 0.57 2.45 28.19 28.59

KRKPa7 937.93 26.29 17.41 608.78 728.59

Tic-Tac-Toe 191.47 45.46 57.74 112.98 131.06

Mushroom (10%) 1454.44 612.20 75.51 254.40 372.52

KRKN (10%) 862.84 504.77 48.19 86.29 116.30

KRKPa7 (10%) 3951.48 296.01 69.81 812.66 1068.26

Tic-Tac-Toe (10%) 443.76 390.02 114.33 92.71 134.89

Table 1: Average run-time

On the Votes and Promoters data a 10-fold cross-validation was performed.

TheMesh data were tested in 5 runs as described in [D�zeroski and Bratko, 1992],

but classi�cation accuracy on negative examples was measured as well. The KRK

data were tested on 5 di�erent example set sizes evaluated on 5000 noise-free

examples. For each training set size we used 10 di�erent example sets except

8

for the sets with 1000 examples, which were only tested on 6 sets because of

the high run-times of this task. The same was done with the KRKN data on

a training set size of 500. The Monks data have a dedicated testing set, so 10

runs were performed using di�erent pruning and growing set distributions, all

evaluated on the same testing set. In all other domains 10 sample sets with

a size of about 500 examples were generated and the rules were tested on the

remaining examples. The Votes (VI) set is the Votes data set with the most

signi�cant attribute removed. In all of the propositional domains the equality

relation was added as background knowledge. The Promoters data also included

two background relations specifying that the 4 DNA bases can be split into 2

groups [Ali and Pazzani, 1993], and in the KRKN data the < relation was added

for the 6 integer valued attributes. In all domains the system was given the task

of learning de�nitions for the minority class.

5.3 Results

Looking at table 1 it can easily be seen that Grow is much faster than REP,

but I-REP does not have to grow an intermediate theory and thus is faster than

both. In fact, I-REP is usually signi�cantly faster than the initial growing phase

that both REP and Grow have in common. Figure 2 illustrates the e�ect of

training set size on the performance of the algorithms in the KRK domain.

Looking at the classi�cation accuracies (table 2) the picture is more diverse.

However, several conclusions can be drawn: The experiments in the KRK domain

illustrate that I-REP is more sensitive to small training set sizes, but improves

much at larger sizes (see also �gure 2). The reason for this is that a bad distri-

bution of growing and pruning examples may cause I-REP's stopping criterion

to prematurely stop learning. Redistributing the examples before the learning of

each clause cannot help here, as there is little redundancy in the data because of

the small sample size. Thus each example has a signi�cant in
uence on the out-

come of learning. At larger example set sizes I-REP does better than the other

algorithms, because REP often gets caught in local maxima and is not able to

generalize to the right level. Interestingly, despite its top-down search strategy,

Grow also occasionally over�ts the noise in the data: Some of the highly special-

ized clauses in the intermediate theory sometimes also �t a few noisy examples

in the pruning set and thus will be added to the concept description. In I-REP

this is less likely to happen, because it generates fewer clauses and stops after

the �rst clause has been found that �ts noisy examples in the growing, but not

in the pruning set.

In domains with a very speci�c theory, where not much pruning has to be

done or pruning is even detrimental, the bottom-up approach to pruning is more

appropriate. This can be see most clearly in the noise-free Tic-Tac-Toe and

Monks 2 domains, where REP was signi�cantly more accurate and even a lit-

tle faster than Grow, although clearly some amount of pruning was performed.

9

0

2000

4000

6000

8000

10000

100 200 300 400 500 600 700 800 900 1000

R
u
n

T
i
m
e

Training Set Sizes

KRK(10%): Run-time vs. Training Set Size

No Pruning
REP
Grow
I-REP

80

85

90

95

100

100 200 300 400 500 600 700 800 900 1000

A
c
c
u
r
a
c
y

Training Set Sizes

KRK(10%): Accuracy vs. Training Set Size

No Pruning
REP
Grow
I-REP

Figure 2: Di�erent training set sizes in the KRK domain.

10

Domain Over�tting REP Grow I-REP I-REP-2

KRK-100 (10%) 85.29 91.77 91.60 84.55 85.37

KRK-250 (10%) 83.79 96.29 95.91 98.34 97.93

KRK-500 (10%) 84.29 97.62 98.17 98.48 95.67

KRK-750 (10%) 85.17 97.47 98.31 98.86 98.49

KRK-1000 (10%) 85.65 98.01 98.30 99.55 98.30

Monks 1 100.00 100.00 100.00 100.00 100.00

Monks 2 57.80 63.65 60.58 61.63 63.31

Monks 3 92.48 96.90 98.06 98.06 96.16

Mesh 84.63 88.87 88.81 91.00 90.97

Promoters 65.00 68.00 71.64 71.91 71.64

Votes 94.71 95.85 95.39 95.62 94.71

Votes (VI) 86.66 87.53 87.13 88.72 87.80

Mushroom 99.08 98.78 98.40 97.14 98.10

KRKN 99.54 99.76 99.76 99.28 99.68

KRKPa7 92.92 94.72 94.98 94.76 92.80

Tic-Tac-Toe 92.78 93.40 86.95 82.71 83.83

Mushroom (10%) 79.57 87.96 87.46 87.21 86.93

KRKN (10%) 85.12 97.86 97.72 99.00 98.37

KRKPa7 (10%) 74.89 83.41 83.53 81.93 82.73

Tic-Tac-Toe (10%) 72.41 74.43 73.29 71.83 73.14

Table 2: Average accuracy

I-REP had the worst classi�cation accuracy on these domains. The reason for

this is that I-REP's top-down approach to pruning has an even stronger Over�t-

ting Avoidance Bias than Grow, which can be inappropriate in some domains

[Scha�er, 1993].

I-REP-2 in general seems to be worse than I-REP. Its purity criterion for

evaluating a clause that tries to maximize the percentage of the covered positive

examples seems to have a preference for more speci�c clauses than I-REP (which

can also be seen from the higher run-times). This might be the reason why

I-REP-2 is worse than I-REP in domains with a fairly general theory, but seems

to do a little better in domains where speci�c theories have to be found.

In the natural domains Mesh, Promoters and Votes I-REP is at least equal

to the other algorithms in terms of predictive accuracy, but signi�cantly faster

than both of them. This seems to con�rm the observation of [Holte, 1993] that

in most commonly used data sets, simple rules perform reasonably well.

As a general conclusion we may say that Grow outperforms REP and that

I-REP is better than REP and Grow whenever a fairly general theory has to be

found, whereas REP is appropriate when the underlying theory is rather speci�c.

11

6 Conclusion

In this paper we have introduced a new method of integrating pruning and learn-

ing | Incremental Reduced Error Pruning (I-REP). The system builds upon

ideas introduced by [Brunk and Pazzani, 1991] and [Cohen, 1993], but improves

upon them in the following ways:

E�ciency: [Cohen, 1993] has shown that the complexity of REP is
(n

4

) on

random data and has proposed an alternative algorithm | Grow | with

time complexity
(n

2

log n). The complexity of our algorithm, due to its

new method of integrating pruning into learning, is of the order n log

2

n.

Experiments con�rm the signi�cant run-time improvement over REP and

Grow, although I-REP uses a more expensive pruning operator.

3

Separate-and-Conquer Strategy: Section 2.3 argued that the separate-and-

conquer strategy of many relational learning algorithms may lead to prob-

lems when used for over�tting noisy data. Our algorithm avoids this prob-

lem, because the rules are pruned right after they are generated. Thus they

are immediately adjusted to the right level of generality and the learning of

subsequent clauses cannot be disturbed by the in
uence of an overly speci�c

�rst clause.

Split of Training Data: The performance of the above algorithms depends on

a reasonable split of the training set into a growing and a pruning set. I-

REP is also prone to this problem, but its method of redistributing the

examples after a clause has been learned may help to stabilize the behavior

of the algorithm.

I-REP's e�ciency stems from the tight integration of post-pruning and pre-

pruning. Whenever the algorithm learns a clause that is worse than the empty

clause, learning stops. However, this may cause the algorithm to over-generalize

in domains with a rather speci�c concept description [Scha�er, 1993]. Similar

problems may occur with small training sets.

In the near future I-REP should be adapted to be capable of dealing with

numeric data and multi-valued classes to allow a test in a broader variety of real-

world domains as in [Cohen, 1993]. A direct comparison of our results and the

work reported there is not possible, because Cohen's experiments were performed

with a propositional learning algorithm, while in our experiments relations like

equality were made available as background knowledge to all learners.

3

Experiments with Cohen's Grow and the delete-any-literal operator used in I-REP

indicate that its usage may result not only in an increase in runtime, but surprisingly also in

a decrease in accuracy. Whether using the delete-last-literal operator in I-REP would

also improve predictive accuracy remains to be investigated, but it would further speed up the

algorithm in any case.

12

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen For-

schung (FWF) under grant number P8756-TEC. Financial support for the Austrian Research

Institute for Arti�cial Intelligence is provided by the Austrian Federal Ministry of Science and

Research. We would like to thank our colleagues B. Pfahringer and Ch. Holzbaur for help on

many improvements of the PROLOG implementation of Foil.

References

[Ali and Pazzani, 1993] Kamal M. Ali and Michael J. Pazzani. HYDRA: A noise-

tolerant relational concept learning algorithm. In Proceedings of the Thirteenth Joint

International Conference on Arti�cial Intelligence, pages 1064{1071, Chamb�ery,

France, 1993.

[Bratko and Kononenko, 1986] Ivan Bratko and Igor Kononenko. Learning diagnostic

rules from incomplete and noisy data. In B. Phelps, editor, Interactions in AI and

Statistical Methods, pages 142{153, London, 1986.

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation

and Regression Trees. Wadsworth & Brooks, Paci�c Grove, CA, 1984.

[Brunk and Pazzani, 1991] Cli�ord A. Brunk and Michael J. Pazzani. An investigation

of noise-tolerant relational concept learning algorithms. In Proceedings of the 8th

International Workshop on Machine Learning, pages 389{393, Evanston, Illinois,

1991.

[Cestnik et al., 1987] Bojan Cestnik, Igor Kononenko, and Ivan Bratko. ASSISTANT

86: A knowledge-elicitation tool for sophisticated users. In Ivan Bratko and Nada

Lavra�c, editors, Progress in Machine Learning, pages 31{45, Wilmslow, England,

1987. Sigma Press.

[Clark and Boswell, 1991] Peter Clark and Robin Boswell. Rule induction with CN2:

Some recent improvements. In Proceedings of the 5th European Working Session of

Learning, pages 151{163, Porto, Portugal, 1991.

[Clark and Niblett, 1989] Peter Clark and Tim Niblett. The CN2 induction algorithm.

Machine Learning, 3(4):261{283, 1989.

[Cohen, 1993] William W. Cohen. E�cient pruning methods for separate-and-conquer

rule learning systems. In Proceedings of the 13th International Joint Conference on

Arti�cial Intelligence, pages 988{994, Chambery, France, 1993.

[Dol�sak and Muggleton, 1992] Bojan Dol�sak and Stephen Muggleton. The application

of Inductive Logic Programming to �nite-element mesh design. In Stephen Mug-

gleton, editor, Inductive Logic Programming, pages 453{472. Academic Press Ltd.,

London, 1992.

13

[D�zeroski and Bratko, 1992] Sa�so D�zeroski and Ivan Bratko. Handling noise in Induc-

tive Logic Programming. In Proceedings of the International Workshop on Inductive

Logic Programming, Tokyo, Japan, 1992.

[Esposito et al., 1993] Floriana Esposito, Donato Malerba, and Giovanni Semeraro.

Decision tree pruning as a search in the state space. In Proceedings of the European

Conference on Machine Learning, pages 165{184, Vienna, Austria, 1993. Springer-

Verlag.

[F�urnkranz, 1994a] Johannes F�urnkranz. Fossil: A robust relational learner. In Pro-

ceedings of the European Conference on Machine Learning, Catania, Italy, 1994.

Springer-Verlag.

[F�urnkranz, 1994b] Johannes F�urnkranz. Top-down pruning in relational learning.

Technical Report OEFAI-TR-94-03, Austrian Research Institute for Arti�cial In-

telligence, 1994.

[Holte, 1993] Robert C. Holte. Very simple classi�cation rules perform well on most

commonly used datasets. Machine Learning, 11:63{91, 1993.

[Lavra�c and D�zeroski, 1992] Nada Lavra�c and Sa�so D�zeroski. Inductive learning of

relations from noisy examples. In Stephen Muggleton, editor, Inductive Logic Pro-

gramming, pages 495{516. Academic Press Ltd., London, 1992.

[Mingers, 1989] John Mingers. An empirical comparison of pruning methods for deci-

sion tree induction. Machine Learning, 4:227{243, 1989.

[Muggleton et al., 1989] Stephen Muggleton, Michael Bain, Jean Hayes-Michie, and

Donald Michie. An experimental comparison of human and machine learning for-

malisms. In Proceedings of the 6th International Workshop on Machine Learning,

pages 113{118, 1989.

[Muggleton, 1992] Stephen Muggleton, editor. Inductive Logic Programming. Aca-

demic Press Ltd., London, 1992.

[Pagallo and Haussler, 1990] Giulia Pagallo and David Haussler. Boolean feature dis-

covery in empirical learning. Machine Learning, 5:71{99, 1990.

[Quinlan, 1987] John Ross Quinlan. Simplifying decision trees. International Journal

of Man-Machine Studies, 27:221{234, 1987.

[Quinlan, 1990] John Ross Quinlan. Learning logical de�nitions from relations. Ma-

chine Learning, 5:239{266, 1990.

[Quinlan, 1993] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Mateo, CA, 1993.

[Scha�er, 1993] Cullen Scha�er. Over�tting avoidance as bias. Machine Learning,

10:153{178, 1993.

14

