
A specialized, incremental solved form

algorithm for systems of linear inequalities

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

email: christian@ai.univie.ac.at

voice: +43 1 53532810, fax: +43 1 5320652

TR-94-07

Abstract

We present a computationally improved incremental solved form algorithm for

systems of linear equations and inequalities. The algorithm is of the pivotal algebra

type. It bene�ts (computationally) from a specialization of the classical Simplex

algorithm that treats inequalities of dimension one, i.e. of the shape kx + d � 0,

special. In particular, the introduction of a slack variables is avoided in this case,

which results in a basis that consists of higher dimensional inequality constraints

only. Although the classical results concerning the complexity results for the Simplex

algorithm apply, in particular in the worst case, the specialization is justi�ed on the

basis that even in the unlikely case that the special cases should not occur in practical

programs, the average complexity is not higher than that of the classical algorithm.

The proposed algorithm matches and advances current activities in the CLP area

that try to restrict the use of general and expensive decision methods to the cases

where they are unavoidable.

Keywords: Constraint Logic Programming, Implementation, Linear Programming

1

1 Introduction

[Imbert et al. 93] propose a syntactically partitioned solved form for the incremental

solution for systems of linear equalities, inequalities (strict or non-strict), and disequalities

in a CLP context. The basic idea of the approach is the restriction of the use of general and

expensive decision methods to the cases where they are unavoidable. The method features

e�cient dereferencing by considering subclasses of solved forms and e�cient testing for

inconsistencies between equality and disequality constraints, where the detection of �xed

variables plays an important role. Our work, as described in this paper, continues and

complements the very same idea.

We introduce an incremental, specialized variant of the Simplex algorithm [Dantzig 63],

that also exploits a partitioned solved form. The idea proper has been realized a long time

ago in the area of linear programming under the name of bounded variable linear programs

[Murty 76].

In bounded variable linear programs, some or all variables are restricted to lie within indi-

vidual �nite lower and upper bounds. Such problems can of course be solved by including

all bound restrictions as constraints, i.e. rows in the simplex tableau. The advantage of

keeping them out of the tableau is that the size of the working basis is smaller.

Our motivation for developing specialized versions of general decision methods is the same

as in [Imbert et al. 93]: We hope that the syntactically restricted forms of constraints

will indeed occur frequently in actual CLP programs. Complementing this common sense

argument, we claim justi�cation for the specialization by the fact that Branch and Bound

algorithms, which address mixed integer linear optimization problems, add such simple

constraints in the course of their execution.

2 Solved form for inequalities over bounded vari-

ables

We formalize bounded variable linear programs as:

Minimize cx

subject to (1:a) Ax = b

(1:b) l

j

� x

j

� u

j

for j 2 J

(1:c) x

i

unrestricted for i 62 J

(1)

Where Ax = b denotes the subset of the constraints fc

i

jdim(c

i

) > 1g, and inequalities

have been transformed into equations through the introduction of slack variables. Strict

inequalities are dealt with the same way as in [Imbert et al. 93]: For the Simplex algorithm

all inequalities are non-strict. The strictness is enforced through appropriate disequations.

Sign restrictions on slack variables are recorded in (1.b). J is the index set for bounded

2

variables. Note that if a variable has only one bound instead of two, it is still in (1.b).

In order to decide whether a set of linear inequalities has an non-empty solution set, we

can either employ what has been termed Simplex Phase 1, which works with an arti�cial

objective function cx, or we can utilize a result by [Orden 71], who gives an equivalent

algorithm that avoids the arti�cial row. Before we describe the application of Orden's

method to our problem, we need a basic result from polyhedral theory [Murty 76]: A

feasible solution ~x of (1) is a BFS

1

i� the set

fA

;j

: j 2 J; l

i

� x

j

� u

j

g [fA

;j

: j 62 Jg

is linearly independent. A working basis for (1) is a square, nonsingular sub matrix of A of

order m. Variables associated with column vectors of the working basis will be called basic

variables. All other variables will be called non-basic variables. It is clear that a feasible

solution ~x is an extreme point in the solution space, i� there exists a corresponding working

basis with the property that:

1. all non-basic variables are either at their lower or upper bound

2. the basic variables are within their bounds

The working basis, together with conditions 1 and 2 from above, constitutes our proposed

solved form for linear inequalities over bounded variables. Note that the solved form is not

unique.

Example:

Input constraints Solved form

x1 + x2 + 2x3 � 4;

3x2 + 4x3 � 6;

0 � x1; x1 � 2;

0 � x2; x2 � 9;

0 � x3

x1

[0;2]

= 1 +

1

2

x2 +

1

2

s2� s1

x3

[0;]

=

3

2

�

3

4

x2�

1

4

s2

9

=

;

basis

s1

[0;]

s2

[0;]

x2

[0;9]

Notational conventions: x

[0;2]

means that x1 has a (non-strict) lower bound of zero and

a (non-strict) upper bound of two. An unspeci�ed bound is denoted as in x3

[0;]

, where

we have no �nite upper bound. The active bound of non-basic variables is denoted by

overlining as in x2

[0;9]

. If you insert the values for the active bounds into the rhs of the basic

1

Basic Feasible Solution

3

variables x1; x3, you will �nd that the resulting values for x1; x3 are within the respective

bounds. Note that only the two higher dimensional inequalities led to the introduction of

slack variables s1; s2.

Finding the solved form of a bounded variable linear program can be rephrased as a search

problem, where we have:

1. A given initial state, consisting of a system where the solved form invariants may be

violated.

2. The speci�cation of a solution state through the solved form invariants.

3. The operators:

(a) pivot(x

i

; x

j

)

(b) toggle active bound(x

i

) for non-basic variables

The non-determinism in the selection of the the operators and their arguments can be

removed by the same rules that are employed in the original Simplex algorithm: A variable

to enter the basis must have the proper sign in the objective function, and the leaving

variable corresponds to the row in the working basis that imposes the tightest constraint

on the entering variable.

A violation of the solved form is always detected by locating a basic variable that is out

of its bounds. To repair such a row, we interpret the linear combination of variables that

de�nes the basic variable as objective function [Orden 71]. If the current evaluation of the

rhs is beyond the upper bound of the basic variable, we will try to decrease the objective

function. If the rhs evaluation is below the lower bound of the basic variable, we will

increase the objective function until it is inside the bound.

3 The incremental solved form algorithm

The purpose of the algorithm to be developed in this section is to maintain the solved

form invariants which will be threatened through the addition of constraints to the current

solved form. The constraints fed sequentually to our algorithm are arithmetically simpli�ed

into one of the two following forms:

P

k

i

x

i

+ b � 0

P

k

i

x

i

+ b = 0

4

De�nition 1 The variables x

i

will be of the following types:

1. x

[;]

2. x

[lower;]

3. x

[;upper]

4. x

[lower;upper]

5. x

[lower;]

6. x

[;upper]

7. x

[lower;upper]

8. x

[lower;upper]

Variables start their lives as of type x

[;]

. Eventually they acquire a lower and an upper

bound. Once they have bounds, these might get activated individually and exclusively as

the variable plays the role of an independent variable in the solved form.

The algorithm performs of the following steps with a new constraint c

i

that is to be added

to a set of constraints in solved form C

sf

. Assume that the solved form C

sf

is available to

all procedures, i.e. all procedures are curried with regard to this parameter.

De�nition 2 add constraint(c

i

)

1. If dim(c

i

) = 0, c

i

is trivially decidable and does not change the solved form.

2. If c

i

is an inequality perform enter inequality(c

i

)

3. If c

i

is an equation perform enter equation(c

i

)

De�nition 3 enter equation(c

i

):

1. Let c

0

i

= dereference(c

i

)

2. If dim(c

i

) = 0, c

i

is trivially decidable and does not change the solved form.

3. If there is an unbounded (type 1) variable among the x

i

, solve for it:

x

i

= �

1

k

i

X

i 6=j

k

j

x

j

+ b

Occurrences of x

i

on the rhs of the solved form are replaced with this de�nition. The

constraint x

i

= �

1

k

i

P

i 6=j

k

j

x

j

+ b is added to the solved form.

5

4. If there is no unbounded (type 1) variable among the x

i

, solve for an arbitrary bounded

variable: x

i

= �

1

k

i

P

i 6=j

k

j

x

j

+ b. x

i

will now become a basic variable, which has to

be re
ected by its type. A type 6 variable would be changed into a type 3 variable,

for example. Perform activate rhs dec(x

i

). Backsubstitute as in the previous step.

Some of the a�ected basic variables x

J

might be out of their range now | perform

repair(x

j

) on them.

De�nition 4 repair(x

j

):

1. If eval rhs(x

j

) > upper(x

j

) perform dec till below(x

j

; upper(x

j

))

2. If eval rhs(x

j

) < lower(x

j

) perform inc till above(x

j

; lower(x

j

))

We only give the de�nition of dec till below here, inc till above is its dual.

De�nition 5 dec till below(x

j

; Bound):

1. If eval rhs(x

j

) < Bound return true

2. else let Status = dec step(x

j

).

(a) Status = applied, return dec till below(x

j

; Bound).

(b) Status = unlimited(x

k

), perform pivot(x

k

; x

j

), return true.

(c) Status = optimum:

i. eval rhs(x

j

) > Bound, return false.

ii. eval rhs(x

j

) = Bound, perform enter equation(x

j

= Bound), return true.

iii. eval rhs(x

j

) < Bound, record the tightened bound on x

j

, return true.

De�nition 6 dec step(x

j

): the basic variable x

j

is de�ned as: x

j

=

P

k

i

x

i

+ b, look at

each x

i

in turn:

1. If type(x

i

) = [;], return unlimited(x

i

)

2. If type(x

i

) = [; upper] and k

i

> 0 let x

j

= lb(x

i

) be the basic variable imposing the

tightest lower bound on x

i

:

(a) If there is no lower bound imposed, return unlimited(x

i

).

(b) Else perform pivot(x

j

; x

i

), return applied.

3. If type(x

i

) = [lower; upper] and k

i

> 0 let x

j

= lb(x

i

) be the basic variable imposing

the tightest lower bound on x

i

:

(a) If i = j, transform x

i

into x

[lower;upper]

, return applied.

6

(b) Else perform pivot(x

j

; x

i

), return applied.

4. If type(x

i

) = [lower;] and k

i

< 0 let x

j

= ub(x

i

) be the basic variable imposing the

tightest upper bound on x

i

:

(a) If there is no upper bound imposed, return unlimited(x

i

).

(b) Else perform pivot(x

j

; x

i

), return applied.

5. If type(x

i

) = [lower; upper] and k

i

< 0 let x

j

= ub(x

i

) be the basic variable imposing

the tightest upper bound on x

i

:

(a) If i = j, transform x

i

into x

[lower;upper]

, return applied.

(b) Else perform pivot(x

j

; x

i

), return applied.

6. If none of the previous cases applied to any x

i

, return optimum.

De�nition 7 lb(x

i

): determine the basic variable that imposes the tightest lower bound on

x

i

. Map over all basic variables, return x

b

where the quantity lb has its maximum. Let k

be the coe�cient of x

i

in x

b

=

P

k

j

x

j

+ b and r = eval rhs(x

b

)

1. x is of type x

[lower;]

and k > 0 let lb =

lower�r

k

2. x is of type x

[;upper]

and k < 0 let lb =

upper�r

k

3. x is of type x

[lower;uper]

(a) k > 0 let lb =

lower�r

k

(b) k < 0 let lb =

upper�r

k

Note that in order to guarantee �nite termination of the modi�ed Simplex algorithm,

we brake ties in the standard way by extending the de�nition of maximum to that of a

lexicographic maximum [Murty 76]. If x

b

later leaves the basis, it gets a non-basic variable

at the bound that determined lb above. For variables of type x

[lower;uper]

this depends on

the sign of k.

De�nition 8 pivot(x

b

; x

i

): x

b

leaves the basis, x

i

enters. x

b

=

P

k

j

x

j

+ b, therefore

x

i

= �

1

k

i

X

i 6=j

k

j

x

j

� x

b

+ b

Record this de�nition for x

i

and backsubstitute into he solved form. Note that the pivot

operation is not de�ned i� x

i

is not among the x

j

, i.e. has a zero coe�cient in the linear

form.

7

De�nition 9 enter inequality(c

i

):

1. If dim(c

i

) = 1, i.e. c

i

is of the form kx+ b � 0, let Bound = �b=k

(a) If k < 0 perform update lower(x;Bound)

(b) If k > 0 perform update upper(x;Bound)

2. else let c

0

i

= dereference(c

i

)

(a) If dim(c

0

i

) = 0, c

0

i

is trivially decidable and does not change the solved form.

(b) If dim(c

0

i

) = 1, i.e. c

0

i

is of the form kx+ b � 0, let Bound = �b=k

i. If k < 0 perform update lower(x;Bound)

ii. If k > 0 perform update upper(x;Bound)

(c) else if c

0

i

:

P

k

i

x

i

+ b � 0 contains an unbounded (type 1) variable x

i

, de�ne

x

i

= �

1

k

i

X

i 6=j

k

j

x

j

+ s

[0;]

+ b

where s is a fresh slack variable. Record this de�nition in the solved form and

backsubstitute x

i

.

(d) otherwise de�ne s

[;0]

=

P

k

i

x

i

+ b, where s is a fresh slack variable. No need

to backsubstitute because the slack variable just introduced cannot occur on any

rhs in the solved form. Check if the evaluated rhs is within the slack's bound:

Perform activate rhs dec(s) and dec till below(s; 0).

We will give only the de�nition of update lower here, update upper is it's dual.

De�nition 10 update lower(x;Bound):

1. If x is a basic variable, perform update lower basic(x;Bound)

2. else perform update lower nonbasic(x;Bound)

De�nition 11 update lower basic(x;Bound):

1. x of type x

[;]

is transformed into x

[Bound;]

.

(a) If there is an unbounded variable among the x

i

solve for it: x

i

= �

1

k

i

P

i 6=j

k

j

x

j

+b

and backsubstitute.

(b) else perform activate rhs inc(x), perform repair(x).

2. x of type x

[lower;]

is transformed into x

[Bound;]

if the new bound is tighter than the

old one, perform repair(x).

8

3. x of type x

[;upper]

is transformed into: x

[Bound;upper]

if the lower bound does not exceed

the upper bound, perform repair(x), else fail. If the lower bound meets the upper

bound, perform enter equation(x = Bound).

4. x of type x

[lower;upper]

: perform repair(x) is the new bound is tighter than the old

one and does not exceed the upper bound. If the lower bound meets the upper bound,

perform enter equation(x = Bound).

De�nition 12 activate rhs inc(x): for each x

i

in x =

P

k

i

x

i

+ b:

1. if x

i

is of type x

[lower;]

, change the type of x

i

into x

[lower;]

2. if x

i

is of type x

[;upper]

, change the type of x

i

into x

[;upper]

3. if x

i

is of type x

[lower;upper]

(a) If k

i

> 0 change the type of x

i

into x

[lower;upper]

(b) If k

i

< 0 change the type of x

i

into x

[lower;upper]

De�nition 13 activate rhs dec(x): for each x

i

in x =

P

k

i

x

i

+ b:

1. if x

i

is of type x

[lower;]

, change the type of x

i

into x

[lower;]

2. if x

i

is of type x

[;upper]

, change the type of x

i

into x

[;upper]

3. if x

i

is of type x

[lower;upper]

(a) If k

i

< 0 change the type of x

i

into x

[lower;upper]

(b) If k

i

> 0 change the type of x

i

into x

[lower;upper]

De�nition 14 update lower nonbasic(x;Bound):

1. x of type x

[;]

is transformed into: x

[Bound;]

2. x of type x

[lower;]

is transformed into: x

[Bound;]

if the new bound is tighter than the

old one.

3. x of type x

[;upper]

is transformed into: x

[Bound;upper]

if the lower bound does not ex-

ceed the upper bound, else fail. If the lower bound meets the upper bound, perform

enter equation(x = Bound).

4. x of type x

[lower;upper]

is transformed into: x

[Bound;upper]

if the new bound is tighter than

the old one. Fail in case the new bound exceeds the upper bound. If the lower bound

meets the upper bound, perform enter equation(x = Bound).

9

5. x of type x

[;upper]

is transformed into x

[lower;upper]

if the lower bound does not ex-

ceed the upper bound, else fail. If the lower bound meets the upper bound, perform

enter equation(x = Bound).

6. x of type x

[lower;upper]

is transformed into x

[Bound;upper]

if the new bound is tighter than

the old one. Fail in case the new bound exceeds the upper bound. If the lower bound

meets the upper bound, perform enter equation(x = Bound).

7. x of type x

[lower;]

: If the new bound is tighter than the old one, determine the tightest

upper bound imposed through the basic variables: x

j

= ub(x). If the new bound on x

is within the bound imposed by x

j

, we are done

2

. Otherwise perform pivot(x

j

; x) and

perform inc till above(x;Bound).

8. x of type x

[lower;upper]

: Perform the same steps as for type [lower;]. If the lower

bound meets the upper bound, perform enter equation(x = Bound).

3.1 Remarks

3.1.1 Termination

All iterations mentioned in the algorithms either run over a linear form

P

k

i

x

i

+ b, or

over the basis of the solved form. Both data structures a apparently �nite. The pivot

and backsubstitution steps individually terminate because A in Ax = b is of �nite order.

The pivot selection rule, in particular the selection of a lexicographic minimum/maximum,

guarantees productive pivot steps, and hence �nite termination.

3.1.2 Complexity

The Simplex algorithm is known to be of exponential complexity in the worst case. [Orden

71] used a simple statistical model to explain the long observed fact that the number of

pivot steps to be expected per row is in the order of the number of rows. Speci�cally he

notes that the expected ratio of the number of pivots to m, the number of rows in the

system, is log

e

m.

In our variant of the Simplex algorithm, a series of full pivot steps are the worst thing

that can happen with regard to complexity. Our design is such that we can avoid them

frequently. The type system facilitates the minimization of the number of tests to be

performed to detect trivial redundancy and feasibility. Updates on inactive bounds of non-

basic variables are of O(1). Trivially non-redundant, feasible updates on active bounds of

non-basic variables are at least of O(n) where n is the size of the basis, maybe followed

by a series of pivot steps. This is the reason for delaying the activation of the bounds of

2

max(x) � the upper bound imposed by x

j

10

non-basic variables. An eager strategy would �x the activity as soon a variable is known

to be non-basic, i.e. it appears on the rhs of a basic variable.

3.1.3 Detection of �xed variables

There is no need for algorithmic twists in order make our algorithm detect �xed vari-

ables. The trivial detection, where a lower bound meets an upper bound, is of O(1).

The more subtle and expensive detections take place in the procedures dec till below and

inc till above where we try to decrement/increment the rhs of a basic variable in order to

satisfy the bounds. Note that the test in step 1 is strict, i.e. the procedure does not stop

to decrement/increment at the bound, which would be su�cient regarding satis�ability,

but goes ahead at least one step further. It turns out that this is su�cient to �nd all �xed

variables. In oder words, if we do not have to identify �xed variables, we can save a few

pivot steps, and in the worst case exponential many, by using a non-strict test in step 1 in

dec till below and inc till above.

4 Implementation

The algorithm as described in this article has been implemented in Prolog. It now replaces

the linear solver kernel of the CLP(<) and CLP(Q) systems distributed with DMCAI-Clp,

a CLP system based on extensible uni�cation [Holzbaur 92, Holzbaur 92, Holzbaur 93],

which initially employed a classical Simplex algorithm without the specialization for lower

dimensional constraints. The rich type system in the new algorithm and the choice of Pro-

log as implementation language led to a very tabular coding style. In fact, the executable

speci�cations corresponding to the abstract procedures in this text, are somewhat more

compact than the text proper. This positive experience seems to justify a further type

re�nement: We will use extra types for variables with lower or upper bounds of zero in the

future.

In the preceding text we spoke of the evaluation of the rhs of basic variables, where the

active bounds of the non-basic variables would be substituted for the non-basic variables.

This evaluation is performed relatively frequently. In the actual implementation, this

value is therefore initialized when a variable gets a bound activated and maintained across

pivots and other operations that change the solved form. Technically this is achieved with

no algorithmic fuzz through an arti�cial column in the tableau, the same way the constant

term in the linear forms is dealt with.

11

Acknowledgments

This research was sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen

Forschung under grant P9426-PHY. Financial support for the Austrian Research Institute

for Arti�cial Intelligence is provided by the Austrian Federal Ministry for Science and

Research.

References

[Dantzig 63] Dantzig G.B.: Linear Programming and Extensions, Princeton

University Press, Princeton, NJ, 1963.

[Holzbaur 92] Holzbaur C.: Metastructures vs. Attributed Variables in the

Context of Extensible Uni�cation, in Bruynooghe M. & Wirs-

ing M.(eds.), Programming Language Implementation and Logic

Programming, Springer, LNCS 631, pp.260-268, 1992.

[Holzbaur 92] Holzbaur C.: A High-Level Approach to the Realization of CLP

Languages, in Proceedings of the JICSLP92 Post-Conference

Workshop on Constraint Logic Programming Systems, Wash-

ington D.C., 1992.

[Holzbaur 93] Holzbaur C.: Extensible Uni�cation as Basis for the Implemen-

tation of CLP Languages, in Baader F., et al., Proceedings of the

Sixth International Workshop on Uni�cation, Boston University,

MA, TR-93-004, pp.56-60, 1993.

[Imbert et al. 93] Imbert J.-L., Cohen J., Weeger M.-D.: An Algorithm for Lin-

ear Constraint Solving: Its Incorporation in a Prolog Meta-

Interpreter for CLP, in Special Issue: Constraint Logic Program-

ming, Journal of Logic Programming, 16(3&4), 235-253, 1993.

[Murty 76] Murty K.G.: Linear and Combinatorial Programming, Wiley,

New York, 1976.

[Orden 71] Orden A.: On the Solution of Linear Equation/Inequality Sys-

tems, Mathematical Programming (1)137-152, 1971.

12

Appendix

We step through a slightly larger example:

x1 + x3� x4 + x5 + 2x6 + x7 � 6;

x2 + x4� 2x5 + x6� 2x7 � 4;

x3� x4 + 2x6 + x7 � 1;

0 � x1; x1 � 6;

0 � x2; x2 � 6;

0 � x3;

0 � x4; x4 � 4;

0 � x5; x5 � 2;

0 � x6; x6 � 10;

0 � x7;

minimize(�3x1 + 4x2 + 2x3 � 2x4� 14x5 + 11x6 � 5x7)

The �rst three inequalities lead to the introduction of (positive) slack variables. There are

three basic variables.

x5

[;]

= 5 � x1 + s3� s1

x6

[;]

=

16

5

+

1

5

x4�

2

5

x3�

1

5

x2 �

2

5

x1�

1

5

s2�

2

5

s1

x7

[;]

= �

27

5

+

3

5

x4�

1

5

x3 +

2

5

x2 +

4

5

x1� s3 +

2

5

s2 +

4

5

s1

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x1

[;]

; x2

[;]

; x3

[;]

; x4

[;]

The next inequalities lead to applications of:

1. update lower nonbasic(x1; 0)

2. update upper nonbasic(x1; 6)

3. update lower nonbasic(x2; 0)

4. update upper nonbasic(x2; 6)

5. update lower nonbasic(x3; 0)

6. update lower nonbasic(x4; 0)

7. update upper nonbasic(x4; 4)

The next interesting event is update lower basic(x5; 0), leading to activate rhs inc(x5),

which activates the lower bounds of x1; s3; s1, and 5 = eval rhs(x5) > 0, the new lower

bound on x5.

x5

[0;]

= 5 � x1 + s3� s1

x6

[;]

=

16

5

+

1

5

x4�

2

5

x3�

1

5

x2 �

2

5

x1�

1

5

s2�

2

5

s1

x7

[;]

= �

27

5

+

3

5

x4�

1

5

x3 +

2

5

x2 +

4

5

x1� s3 +

2

5

s2 +

4

5

s1

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x1

[0;6]

; x2

[0;6]

; x3

[0;]

; x4

[0;4]

13

update lower basic(x5; 2) necessitates a call to dec till below(x5; 2). After one pivot step

pivot(x5; x1), the rhs of x5 evaluates to zero:

x1

[0;6]

= 5� x5 + s3� s1

x6

[;]

=

6

5

+

2

5

x5 +

1

5

x4 �

2

5

x3�

1

5

x2�

2

5

s3 �

1

5

s2

x7

[;]

= �

7

5

�

4

5

x5 +

3

5

x4�

1

5

x3 +

2

5

x2 �

1

5

s3 +

2

5

s2

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x2

[0;6]

; x3

[0;]

; x4

[0;4]

; x5

[0;2]

update lower basic(x6; 0) necessitates a call to inc till above(x6; 0). The upper bound of

x4 and the lower bounds of x3; x2; s2 are activated, the rhs of x6 evaluates to 2 > 0. The

bound set by update upper basic(x6; 10) is likewise satis�ed by this rhs.

update lower basic(x7; 0) needs not activate any non-basic variables, and we have the

solved form:

x1

[0;6]

= 5� x5 + s3� s1

x6

[0;10]

=

6

5

+

2

5

x5 +

1

5

x4�

2

5

x3�

1

5

x2 �

2

5

s3�

1

5

s2

x7

[0;]

= �

7

5

�

4

5

x5 +

3

5

x4�

1

5

x3 +

2

5

x2 �

1

5

s3 +

2

5

s2

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x2

[0;6]

; x3

[0;]

; x4

[0;4]

; x5

[0;2]

The linear form to be minimized reads after dereferencing:

Min =

26

5

�

13

5

x5�

14

5

x4�

7

5

x3�

1

5

x2�

32

5

s3 �

21

5

s2 + 3s1

which evaluates to �6 at the currently active bounds. x5 is suitable to decrement this value

further because it occurs with a negative coe�cient, and moving it from the currently active

lower bound 0 towards the upper bound will yield the desired e�ect. The most constraining

basic variable is x7. After pivot(x7; x5), the linear form evaluates to �

37

4

:

x1

[0;6]

=

27

4

+

5

4

x7 �

3

4

x4 +

1

4

x3�

1

2

x2 +

4

5

s3 �

1

2

s2� s1

x5

[0;2]

= �

7

4

�

5

4

x7 +

3

4

x4�

1

4

x3 +

1

2

x2 �

1

4

s3 +

1

2

s2

x6

[0;10]

=

1

2

�

1

2

x7 +

1

2

x4�

1

2

x3�

1

2

s3

Min =

39

4

+

13

4

x7�

19

4

x4 �

3

4

x3�

3

2

x2�

23

4

s3�

11

2

s2 + 3s1

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x2

[0;6]

; x3

[0;]

; x4

[0;4]

; x7

[0;]

Now x3 is suitable to further decrease the rhs evaluation of Min. The most constraining

row is x5: pivot(x5; x3) yields en evaluation of �13. The next pivot is pivot(x6; x2), which

does not change the current minimum of �13. The next non-basic candidate for a pivot

step is x5. It turns out that its own upper bound is the tightest one. Therefore the active

14

bound is toggled from lower to upper, giving a current minimum of �19:

x1

[0;6]

= 5 � x5 + s3� s1

x2

[0;6]

= 4 + 2x7� x6 + 2x5 � x4� s2

x3

[0;]

= 1 � x7� 2x6 + x4� s3

Min = 3 + x7 + 3x6 � 3x5� 4x4 � 5s3 � 4s2 + 3s1

s1

[0;]

; s2

[0;]

; s3

[0;]

;

x4

[0;4]

; x5

[0;2]

; x6

[0;10]

; x7

[0;]

The next pivots are pivot(x1; s3) with a yield of �34, pivot(x2; s2) with a yield of �50,

pivot(x3; x7) with a yield of �64, and pivot(s3; x1) with a yield of �70, optimum:

s2

[0;]

= 6� 5x6 + 2x5 + x4� 2x3 � x2� 2s3

x1

[0;6]

= 5� x5 + s3 � s1

x7

[0;]

= 1� 2x6 + x4 � x3 � s3

Min = �20 + 21x6� 11x5 � 7x4 + 7x3 + 4x2 + 2s3 + 3s1

s1

[0;]

; s3

[0;]

;

x2

[0;6]

; x3

[0;]

; x4

[0;4]

; x5

[0;2]

; x6

[0;10]

Solving �20 + 21x6 � 11x5 � 7x4 + 7x3 + 4x2 + 2s3 + 3s1 = �70 �xes the values of all

variables:

x1 = 3; x2 = 0; x3 = 0; x4 = 4; x5 = 2; x6 = 0; x7 = 5; s1 = 0; s2 = 14; s3 = 0

15

