
12

Rutledge G., Thomsen G., Beinlich I., Farr B., Sheiner L., Fagan L.M.: Combining Qualita-

tive and Quantitative Computation in a Ventilator Therapy Planner, Proceedings 13th

Annual Symposium on Computer Applications in Medical Care (SCAMC–89), Wash-

ington, DC, pp.315–19, 1989.

Rutledge G.W., Thomsen G.E., Farr B.R., Tovar M.A., Polaschek J.X., Beinlich I.A.,

Sheiner L.B., Fagan L.M.: The Design and Implementation of a Ventilator–management

Advisor, Artificial Intelligence in Medicine, 5(1), pp.67–82, 1993.

Shortliffe E.H.: Knowledge–Based System in Medicine, Proceedings of the Medical Infor-

matics Europe 1991 (MIE–91), Springer, Berlin, pp.5–9, 1991.

Uckun S., Dawant B.M. : Qualitative Modeling as a Paradigm for Diagnosis and Prediction

in Critical Care Environments, Artificial Intelligence in Medicine 4(2), pp.127–44,

1992.

Uckun S., Dawant B.M., Lindstrom D.P.: Model–based Diagnosis in Intensive Care Monitor-

ing: the YAQ Approach, Artificial Intelligence in Medicine, 5(1), pp.31–48, 1993.

Uckun S.: Intelligent Systems in Patient Monitoring and Therapy Management, Stanford

University, Knowledge Systems Laboratory, Report KSL 93–32, 1993.



11

tive and absolute time representation (e.g. ”adjustment of the ventilator setting PIP was

performed 10 minutes before the neonate’s health condition got better”, ”to improve the

ventilation takes longer than to improve the oxygenation”). Additionally, we are improving

our component of assessment of different kinds of trends in the sense that we will apply

different trend–detection methodologies. 
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For example, the degree of artificial ventilation determined by values of the ventilator set-

tings can lead to modification of the transformation process. If the peak inspiratory pressure

(PIP, measured in cm H2O) is very high, extremely deranged PtcCO2 values are tolerated as

better ones. 

E.g., IF (30 < PIP � 35) and 

(PtcCO2 is ”extremely below target range”) 

THEN (PtcCO2 is changed to ”substantially below target range”) 

IF (PIP > 35) and 

(PtcCO2 is ”extremely below target range”) 

THEN (PtcCO2 is changed to ”slightly below target range”). 

5. Technical Remarks and Evaluation

VIE–VENT was implemented using the knowledge representation language Clips (NASA).

We used forward chaining rules for representing the knowledge base. VIE–VENT is running

on IBM–compatible personal computers, Apple Macintosh and UNIX–workstations.

VIE–VENT samples transcutaneous measurements and ventilator settings every 10 seconds.

These data are used for data validation, data abstraction and data–oriented therapy recom-

mendations in critical situations. In addition they provide the basis for calculating very

short–term and short–term trend data. These data are used to compare observed values with

expected behavior. The arithmetic means of these 10–second data are stored every 10 min-

utes for in–depth analysis using medium–term and long–term trends. These data provide the

basis for goal–oriented therapy recommendations (especially during weaning) and to pre-

serve a stable clinical situation where parameters stay within ”normal” limits.

So far, we did not evaluate every module separately. But we performed a technical evalu-

ation of the whole VIE–VENT system on real problems. The knowledge engineer and two

domain experts participate in the evaluation. Our sample consisted of seven real cases from

neonates’ case histories and six generated cases by the two physicians, each covering sev-

eral prototypical and extreme situations. We observed 22320 decision steps. The physicians

ranked VIE–VENT’s therapy recommendations, warnings and explanations as ”correct”,

”correct, but needs smoothing” and ”incorrect”. 65% were ranked as ”correct”, 31% as

”correct, but needs smoothing” and 4% as ”incorrect”. The ”incorrect” recommendations

were caused by the fact that extreme situations are underrepresented in the knowledge base

and by the lack of taking into consideration long–term effects sufficiently. Up to now, evalu-

ation showed no problems with our data validation and data abstraction components. The

physicians appreciated our idea of dealing with missing values, the priority lists, the dy-

namic calibration of values, the context–sensitive adjustment of qualitative values and the

assessment of different kinds of trends for data validation and therapy planning.

Future enhancements of VIE–VENT cover different levels. VIE–VENT represents a data–

driven approach with only limited time representation. Therefore, we are currently expand-

ing our model of artificial ventilation (the neonatal respiration) with a combination of rela-
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TV ... Target Value

s1 ... slightly

s2 ... substantially

s3 ... extremely

g1 ... slightly

g2 ... substantially

g3 ... extremely

Explanation of abbreviation:

below target range 

above target range

pCO

pH

2

arterial

pO

2

4530 55 60 65 70 75 700120

8020 87 91 93 94 97 100100

55 1540 37 35 32 30130 20

70 1552 45 40 37 35130 30

7,26,7 7,28 7,3 7,4 7,45 7,5 7,87,65

SaO 2

g3g2g1s1s2s3

TV

B

site of measurement:

L

O

O

D

G

A

S

K

I

N

D

O

F

Target Rangebelow target range above target range

IMV

IPPV

mode of

ventilation

Table 1: Transformation schema of arterial blood gas measurements

4.2.2 Dynamic Calibration of Values

The (static) transformation schemata provide a very clear and useful method for achieving

qualitative values. However, in a complex situation with several monitor parameters and

even several monitors, dynamic calibration of these schemata is necessary. When we ob-

serve several sensor channels, we know about parameters which reflect the identical pa-

tient’s situation. If these parameters deviate from each other due to the individual situation

of the patient or due to variations in the environment conditions under which the sensor

operates, we need a dynamic adjustment. This is done under the assumption that the data

validation task has classified the data as reliable. The method we use is linear calibration

based on the reliability ranking. The condition of activating calibration depends on the

measurement. In VIE–VENT calibration is only done in case the qualitative values differ by

two qualitative categories.

As an example: One of the benefits of VIE–VENT is the opportunity to combine values of

the transcutaneous blood gas monitor with discontinuous blood gas measurements. How-

ever, transcutaneous blood gases may deviate from the more reliable but only rarely drawn

invasive blood gas samples. Therefore transcutaneous measurements have to be calibrated

against invasive blood gas measurements. Although there is no tight linear correlation be-

tween the two types of measurement, we decided to use a linear calibration factor for

practical reasons (e.g., k = (PCO2 / PtcCO2); PtcCO2(new) = k * PtcCO2 (actual)). Calcu-

lated values are transformed into the qualitative values, which are used in our system model

of neonatal respiration.

4.2.3 Context–sensitive Adjustment of Qualitative Values

For extremely critical or life–threatening situations of a patient, the thresholds defined in

the transformation schemata are too strict. In these cases we adjust the qualitative values of

a parameter, which is equal to a shift of the numerical threshold value.
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When all measurements are ”unknown” or a critical situation has arisen in the past, VIE–

VENT is unable to find a solution and the recommendations of appropriate treatments are

shifted to the physician. In other situations VIE–VENT recommends changes or mainte-

nance of the degree of artificial ventilation depending on the parameters of the ventilator

and the ”priority lists” (see chapter 4.1.3). Using default rules is a weak method, because it

requires a large number of rules. For each combination of known and unknown parameters

a separate rule is needed.

4.2 Data Abstraction

Data abstraction is the process of transforming quantitative data of the observable system

into qualitative values. The qualitative values of the parameters are used in the system

model for data interpretation and therapy planning. We distinguish between three different

kinds of data abstraction: the absolute transformation of quantitative data into qualitative

values, the dynamic calibration of values and the context–sensitive adjustment of qualitative

values.

4.2.1 Absolute Transformation of Quantitative Data into Qualitative Values

The absolute transformation of quantitative data into qualitative values is usually performed

by dividing the numerical range of a parameter into regions of interest. Each region stands

for a qualitative value. This region defines the only common property of the numerical and

qualitative values. 

In VIE–VENT the basis of the transformation of the blood gas measurements are schemata,

which result in seven qualitative categories of the degree of blood gas abnormalities. These

schemata are defined for all kinds of blood gases depending on the sampling site of meas-

urement (arterial, capillary, venous, transcutaneous) and the mode of ventilation (IPPV,

IMV). 

Table 1 shows one example of such a transformation schema of the arterial blood gas

measurements during intermittent positive pressure ventilation (IPPV) or intermittent man-

datory ventilation (IMV). The middle of the table indicates the expected normal value

range, the target range. ”TV” is the target value we are aiming to reach. The term ”below

target range” means that the amount of artificial ventilation is too low. The term ”above

target range” means that the amount of artificial ventilation is too high. For example, the

transformation of the arterial pCO2 value of 47 mmHg, when the mode of ventilation is

IMV will result in a qualitative pCO2 value of s1 (”slightly below target range”). An advan-

tage of using qualitative values is their unified usability in the system model, no matter of

which origin they are. Adaptation to specific situations can easily be done by using specific

transformation tables without changing the model of respiration. 
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(E(Y)�=�a�+�b*Xi, where E(Y) is the expected value, Xi  are the observed data points, a is a

constant value (offset), and b is the growth rate). We assume that the observations are

mutually independent and have the same variance. 

Firstly, the growth rate allows to classify a measurement as being increasing or decreasing.

This supports the use the functional dependency checks on very short–term and short–term

trends.

Secondly, for each measurement there are limits which define an implausible high increase

or decrease respectively. If the growth rate b exceeds this limit a sensor problem is as-

sumed, the data value is invalidated and an alarm is triggered.

Thirdly, we compare changes of directions of the growth rate of the very short–term and the

short–term trends. Let bv  be the growth rate of the very short–term trend and bs  be the

growth rate of the short–term trend. If sign(bv) = sign(bs), with |bs|, |bv| > e, then the change

of direction is judged as true. This is an important information, which is forwarded to the

data interpretation module. It allows to recognize if there is either a serious problem coming

up or if a therapeutic action leads to the expected result.

Fourthly, an additional very relevant figure is the difference between the amount of the

growth rates d = |bs – bv|. Based on two thresholds b’ and b” we identify three situations

characterized by d:

if  0   � d < b’ then no essential change of the measurements is assumed;

if  b’  � d < b” then this major change of the measurements is indicating the

beginning of a serious problem;

if  b” � d then extremely rapid changes are physiologically impossible,

 therefore the last data values of this measurement must be 

artifacts.

Currently we are experimenting to find appropriate b’ and b” values for each measurement.

4.1.5 Missing Values

A robust system has to deal with missing values. In principle, there are two ways how

missing values are ”produced”: either a value is marked as an artifact by the data validation

procedure, or we receive no data from the monitor. There are two options to deal with

missing values:

(a) using a simplified system model for data interpretation:

The simplified system model uses few parameters in its model. VIE–VENT uses a simpli-

fied system model of neonatal respiration during the initial phase when the only reliable

continuous measurement is SaO2. There are restricted reactions to decrease oxygenation

depending on the degree of abnormality of the SaO2 and the actual tidal volume (VT). The

VT is estimated here by the extent of chest wall expansion.

(b) context–dependent rules applying defaults for missing values:

When the qualitative value of a measurement is transformed to ”unknown”, VIE–VENT

triggers a default rule. The default rules are measurement dependent and context sensitive.
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Causal and functional dependencies of different measurements are comparable to the rela-

tive descriptions of parameters in physical systems (Neitzke, 1992) in the sense that a pa-

rameter is described relative to another one.

4.1.3 Priority Lists for Reliability

Priority lists of the measurements are an indicator of the reliability of measurements. The

data validation process allows to identify a less reliable parameter from a set of conflicting

parameters. The result is a reliability ranking. From the medical and technical sampling

point of view, there is a well–defined priority which measurement is more reliable than

another, depending on different conditions. On the one hand these lists facilitate the data

validation task and on the other hand they also help the pruning of different and concurrent

therapy recommendations.

Examples of priority lists of VIE–VENT are:

 arterial blood gases are more reliable than venous blood gases;

invasive blood gases are more reliable than transcutaneous blood gases;

oxygenation: PO2 is more reliable than SaO2 and SaO2 is more reliable than PtcO2.

4.1.4 Assessment of Different Kinds of Trends

Comparison of different kinds of trends is an appropriate method to detect rapid oscillations

or very fast changes of a single measurement as well as to eliminate artifacts. We distin-

guish four kinds of trends based on our samples, which are derived from new measure-

ments every 10 seconds. The distinction of the trends are guided by physiological criteria:

(a) very short–term trend: sample of data points based on the last minute

(six data points)

 (b) short–term trend: sample of data points based on the last 10 minutes 

(60 data points)

(c) medium–term trend: sample of data points based on the last 30 minutes 

(max. 62 data points)

(d) long–term trend: sample of data points based on the last 3 hours 

(max. 77 data points)

The arithmetic means of the 10–second data are stored after every 10 minutes. Therefore a

maximum of 62 data points are available for the medium–term trend (2 arithmetic means

and maximum 60 of 10–second data) and a maximum of 77 data points for the long–term

trends (17 arithmetic means and maximum 60 of 10–second data). The medium– and long–

term trends are mainly used as basis for goal–oriented therapy recommendations.

The problem in the field of artificial ventilation of newborn infants – as in other medical

fields, like pediatric growth (Haimowitz, et al. 1993) – is the lack of an appropriate curve–

fitting model of the growth of measurements which could be matched with the actual meas-

urements. Therefore our first effort is to approximate the growth of the continuously as-

sessed measurements PtcO2, PtcCO2 and SaO2 with a simple linear regression model
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VENT uses the following methods for detecting artifacts: checking the plausibility of meas-

urements, causal and functional dependencies, priority lists, and assessment of different

kinds of trends.

The different methods to deal with these above–mentioned problems are discussed in the

following: 

4.1.1 Plausible Measurements 

The most basic method is range checking like built–in hardware alarms of monitors do. We

have enhanced this method by adding additional attributes, which define the clinical context

(e.g. arterial, IPPV). There are look–up tables for all input parameters, which cover the

plausible measurements. A parameter in the look–up table is specified by a parameter

name, a list of attribute descriptors, a upper limit and a lower limit. For example, (pCO2,

(arterial, IPPV), 15, 130), where ”arterial” refers to the kind of blood gas analysis and IPPV

to the mode of ventilation. When a new parameter value is received, the system checks if

this value is in or out of the range and a corresponding flag is set, e.g., if 15 � new_pCO2

(arterial, IPPV) � 130 then it is a plausible measurement. 

4.1.2 Causal and Functional Dependencies

The causal and functional dependencies are very useful methods to detect artifacts or ab-

normal behavior of parameters. 

A causal dependency specifies a relationship between an actual parameter and the expected

value of a corresponding parameter. It is a kind of cross–relation between different meas-

urements. 

The following example shows corresponding values of

chest wall expansion   tidal volume (VT) 

1 ... small     $ VT � 5 ml/kg

2 ... normal $ 5 ml/kg < VT � 10 ml/kg

  3 ... excessive $  VT  > 10 ml/kg 

A functional dependency describes a functional relationship between two or more parame-

ters. Firstly, a functional dependency may provide a value for a dependent parameter (e.g.,

AMV = VT * f, where AMV is the minute ventilation, VT is the tidal volume and f is

frequency). Secondly, we use functional dependencies for checking inadequate data trans-

mission (e.g., f = 60 / (tI + tE), where tI is the inspiration time and tE is the expiration time.

We receive all values of f, tI, and tE and check the functional dependency of these parame-

ters). Thirdly, we can define functional dependencies for expectations on trends. The in-

crease/decrease of one parameter suggests an increase/decrease of another one. If such an

expectation is violated, one of these parameters must be faulty. E.g., if the minute ventila-

tion (AMV) is increasing then PCO2 is expected to decrease. Fourthly, the functional de-

pendencies could also be used to cope with missing values. Implicitly VIE–VENT integrates

this feature in the simplified system model for data interpretation (see chapter 4.1.5). 
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conditions (e.g., critical ventilatory condition of the neonate, elapsed time intervals). VIE–

VENT uses the following input parameters: 

(a) continuous data:

ventilator settings: FiO2, f, PIP, PEEP, tI, tE, vi, ve, VT

mode of ventilation: IPPV, IMV, CPAP

transcutaneous blood gases: PtcO2 , PtcCO2 , SaO2

(b) discontinuous data:

neonate’s personal description (e.g., name, sex)

clinical parameters (e.g., weight, age, chest wall expansion, spontaneous breathing

effort)

invasive blood gases: pH, PO2 , PCO2

site of blood gas measurements: arterial, capillary, venous.

The output parameters are primarily therapy recommendations. A therapy recommendation

consists of the amount and frequency of the ventilator’s parameters to be changed. Addi-

tionally, VIE–VENT prints warnings in critical situations, as well as comments and explana-

tions about the health condition of the neonate. VIE–VENT is an open–loop system.

4. Context–Sensitive Data Validation and Data Abstraction

Among other approaches, like statistical analysis and control theory, knowledge–based sys-

tem technology may appropriately represent and organize the practical and theoretical

knowledge of experienced specialists and help to cope with information overload with con-

tinuous data selection, data validation and therapy planning (Shortliffe, 1991). But to detect

also artifacts and complex faulted behavior an adjustment of thresholds and a transforma-

tion of data into qualitative values context–sensitively and dynamically as well as a combi-

nation of statistical analysis with knowledge–based system technology is needed. 

”Context–sensitivity” means validation of parameters based on the interaction of different

parameters of one monitor or of several monitors and the clinical situation of the patient. In

contrast, built–in hardware alarms of a monitor are simple range–checks of one parameter.

In the next sections we go more deeply into our concepts of data validation and data ab-

straction.

4.1 Data Validation

The major aim of the data validation process is to arrive at reliable measurements. There

are different kinds of data validation actions: the checking of plausible measurements, the

handling of missing values, and the process of recognizing artifacts. There are well–known

methods to deal with the first two issues. But the recognition of artifacts is a rather compli-

cated task. An artifact is a situation where the measured values do not reflect the clinical

context. Several monitors have a built–in module for recognizing unusual data values, espe-

cially those arising from hardware problems. But these built–in modules often trigger a false

alarm. VIE–VENT recognizes such alarms reported by the monitors, in addition. VIE–
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During the past decade, several knowledge–based systems were introduced to support clini-

cians with the monitoring of critical care patients and to assist them in diagnostic decisions

and therapy planning (Uckun, 1993). These systems range from simple intelligent alarms

(e.g., RESPAID (Chambrin, at al. 1989), PONI (Garfinkel, et al. 1988)) to sophisticated

systems for anesthesia monitoring or ventilator management (e.g., VentPlan (Rutledge, et

al. 1989; 1993), SIMON (Uckun, et al. 1992; 1993), GUARDIAN (Hayes–Roth, et al. 1992;

Ash, et al. 1993)).

Simple alarming tasks can be managed by well–known techniques, like time–series analysis

or control theory. For detection of artifacts and complex faulty behavior a combination of

these methods with knowledge–based system technology is needed.

3. VIE–VENT’s System Architecture

Our aim in developing VIE–VENT was to incorporate monitoring and therapy planning

tasks. As shown in Figure 1, the architecture of VIE–VENT consists of several modules:

data selection, data validation, data abstraction, data interpretation and therapy recommen-

dations. All these steps are involved in a single cycle of data collection from monitors.

According to our design criteria of a practically oriented knowledge–based system, we built

the various module components in analogy to the clinical reasoning process. VIE–VENT

represents a data–driven approach. In this paper we emphasize only two components: the

data validation and the data abstraction. A description of VIE–VENT’s data interpretation

and therapy planning task is given in Miksch, et al. (1993).

Data selection

Data validation

Data abstraction

signals (raw data)

cycle of data 

collection

Data interpretation

Therapy recommendations

Figure 1: VIE–VENT’s system architecture according to the tasks of knowledge–based

monitoring and therapy planning

VIE–VENT’s whole input data set can be divided into continuous and discontinuous data.

The continuous data are taken from the output of the data selection module every 10 sec-

onds. The discontinuous data are entered on request to the system depending on different
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account that not all sensor data can be checked in limited time and there are more faulty

data than may be expected.

The monitoring problem becomes more difficult when the behavior of a system involves

interactions among components or interactions with people or with the environment. Under

these conditions, correct decisions become context–dependent. It is possible to determine a

priori a set of sensor parameters with their fixed plausible ranges. But if the context is

shifting, like one component gets in a critical condition, a capability for dynamic adjustment

of threshold values is needed.

Control theory or statistical analysis is a useful task that permits a straightforward mapping

between sensor data values and appropriate control action. By contrast, monitoring requires

a more ”intelligent” approach including tasks like interpretation and prediction of the sys-

tem behavior, focussing, context–sensitive data validation and abstraction (Hayes–Roth

1993). 

In this paper, we concentrate on the initial steps in the monitoring and therapy planning

process – detecting anomalous system behavior quickly and arriving at reliable measure-

ments for the therapy planning steps. Our approach is a context–sensitive focussing on

relevant continuous and discontinuous data, a validating and an abstracting of these data.

An important issue is the adjustment of thresholds and the transformation of data into

qualitative values context–sensitively and dynamically. These components are realized in

two essential modules of VIE–VENT (Miksch et al. 1993), a knowledge–based monitoring

and therapy planning system of the artificial ventilation of newborn infants, which we are

developing at the Austrian Research Institute for Artificial Intelligence (\FAI) in coopera-

tion with the Department of Pediatrics of the Hospital of M|dling, the Neonatal Intensive

Care Unit (NICU) of the Department of Pediatrics of Vienna’s University Medical School,

and the Department of Medical Cybernetics and Artificial Intelligence, University of

Vienna. 

2. The Monitoring Problem in Intensive Care Units (ICUs)

The care of critically ill patients in ICUs is increasingly complex, involving interpretation of

many variables, comparative evaluation of many therapy options, and control of many pa-

tient–management parameters. The increasing demand for information storage, retrieval

and processing creates problems of information management due to the increased sophisti-

cation of laboratory and monitoring equipment. The technical improvement of the ICUs’

equipment makes a huge amount of measurements available to the medical staff, and even

skilled physicians frequently suffer from information overload. An additional huge problem

at modern ICUs is the high evidence of false alarms of the monitors during critical situ-

ations of the monitoring process.

The quality of intensive care is not only limited by the amount of information to be proc-

essed, but also by human factors, like the problem of vigilance, varying expertise, and

human errors. These frequently lead to errors in diagnosis and selection of appropriate

treatments. 
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Abstract

This paper addresses two important components of our knowledge–based system, VIE–VENT,

a monitoring and therapy planning system for artificially ventilated newborn infants: data

validation and data abstraction. VIE–VENT is specifically designed for practical use under

real–time constraints in Neonatal Intensive Care Units (NICUs). Monitoring includes observ-

ing and guiding the behavior of a system. We concentrate on the initial steps in the monitor-

ing and therapy planning processes – detecting anomalous system behavior quickly and

arriving at reliable measurements for the therapy planning steps. The monitoring task must

take into account that not all sensor data can be checked in available time and there are

more faulty data than may be expected. 

Our approach is a context–sensitive focussing on relevant continuous and discontinuous

data, a validating and an abstracting of these data. Important issues are the detection of

artifacts, the adjustment of thresholds and the transformation of numerical data into quali-

tative values. These methods were applied in a context–sensitive and dynamic way by recog-

nizing the interaction between different measurements in the context of the current clinical

situation of the neonate. Additionally, we used a combination of statistical analysis with

knowledge–based system technology.

This paper presents a summary of the methods used for data validation and data abstrac-

tion. The methods are illustrated by examples from our VIE–VENT application.

1. Introduction: The Monitoring Problem

Monitoring involves observing and guiding the behavior of a system with real–time con-

straints. Monitoring consists of a number of problem–solving tasks, like recognizing abnor-

mal conditions, combining sensor information into a picture of the global state of a system,

isolating faults, predicting both normal and faulted behavior, and maintaining safe opera-

tion in the presence of faults (Doyle, et al. 1989). Additionally, decisions must often be

made in limited time, and with partial information. The monitoring task must take into


