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Abstract

Pruning is an e�ective method for dealing with noise in Machine

Learning. Recently pruning algorithms, in particular Reduced Error

Pruning , have also attracted interest in the �eld of Inductive Logic

Programming . However, it has been shown that these methods can

be very ine�cient, because most of the time is wasted for generating

clauses that explain noisy examples and subsequently pruning these

clauses. We introduce a new method which searches for good theories

in a top-down fashion to get a better starting point for the pruning al-

gorithm. Experiments show that this approach can signi�cantly lower

the complexity of the task as well as increase predictive accuracy.
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1 Introduction

Pruning is a standard way of dealing with noise in Machine Learning. In

particular in decision tree learning pruning methods proved to be most ef-

fective (see e.g. [Mingers, 1989] or [Esposito et al., 1993]). Pre-pruning |

heuristically deciding when to stop growing clauses and concepts | has

been present in Inductive Logic Programming (ILP) in the form of stop-

ping criteria for quite some time (see e.g. Foil [Quinlan, 1990], mFoil

[D�zeroski and Bratko, 1992] and Fossil [F�urnkranz, 1994]). The basic idea

behind most post-pruning methods is to learn a concept description on one

part of the training instances and to subsequently delete several parts of

this theory in order to improve performance on the remaining set. The most

prominent use of this method in ILP is the adaptation of Reduced Error Prun-

ing [Brunk and Pazzani, 1991]. However, it has been shown in [Cohen, 1993]

that REP can be very ine�cient, because most of the time is wasted for gen-

erating clauses that explain noisy examples and subsequently pruning these

clauses. We solve this problem by adapting the relational learning algo-

rithm Fossil to combine pre-pruning and post-pruning by �rst performing

a general-to-speci�c search for a good starting theory and then pruning this

theory.

2 Fossil and the Cuto� Stopping Criterion

Fossil [F�urnkranz, 1994] is a Foil-like ILP system that uses a search heuris-

tic based on statistical correlation. Intuitively, the so-called correlation coef-

�cient corr(c; l) measures the congruence of the truth values of the instances

covered by the partially grown clause c with the truth values assigned to

these instances when extending c with the candidate literal l on a scale from

�1 to +1. Ideally, l would be true for all positive instances covered by c and

false for all negative instances covered by c. In this case corr(c; l) = +1.

If l is false for all negative instances and true for all positive instances,

then corr(c; l) = �1. This means that :l perfectly discriminates between

positive and negative examples and should be chosen to extend c. If there

is no perfect discrimator among the candidate literals, corr(c; l) is computed

for all literals l and the one with the maximum value of jcorr(c; l)j will be

chosen (:l if corr(c; l) < 0). corr(c; l) = 0 suggests that l is equally likely to
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cover positive as well as negative instances, which means that l is no good

discriminator and should not be used to extend the clause. Literals that are

always true or always false must be treated separately, because corr(c; l)

is unde�ned on these. Currently they are assigned a correlation value of 0.

Previous research has shown that the correlation heuristic works very well

in connection with the simple and e�cient cuto� stopping criterion: the user

is able to specify a certain threshold, the Cuto�, such that only literals for

which jcorr(c; l)j > Cuto� holds are considered for extending the partially

grown clause c. If no such literal can be found, the clause is considered to be

complete and all covered (positive and negative examples) will be removed

from the training set. If no new clause can be started with a literal above

the treshold, learning stops. Experiments have shown that this method is

very noise-tolerant and that a good value for the Cuto� is independent of

the noise level as well as independent of the size of the training set.

A more detailed description of the algorithm can be found in [F�urnkranz, 1994].

The version of Fossil used in the experiments reported here is almost iden-

tical to the one reported there, except that it has been sped up considerably

and that tuple sets are not extended after the introduction of new variables

(which amounts to counting covered instances instead of counting the proofs

for the covered instances). In addition, modes, types and symmetries can

now be declared for the literals in the background knowledge.

3 Top-Down Pruning

3.1 Pruning in Inductive Logic Programming

Pruning is a standard way of dealing with noise in Decision Tree learning (see

e.g. [Mingers, 1989] or [Esposito et al., 1993]). There are two fundamentally

distinct approaches to pruning:

Pre-Pruning means that during concept generation some training examples

are deliberately ignored, so that the �nal concept description does not

classify all training instances correctly.

Post-Pruning means that �rst a concept description is generated that per-

fectly explains all training instances. This will be subsequently gener-
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alized by cutting o� branches of the decision tree (as in [Quinlan, 1987]

or [Breiman et al., 1984]).

In ILP, Pre-Pruning has been common in the form of stopping criteria

as used in Foil [Quinlan, 1990], mFoil [D�zeroski and Bratko, 1992], and

Fossil (see section 2). Post-Pruning was introduced to ILP with an adap-

tation of Quinlan's Reduced Error Pruning [Brunk and Pazzani, 1991]. First

the training set is split into two subsets: a growing set and a pruning set .

A concept description explaining all of the examples in the growing set is

generated with a relational learning algorithm. The resulting concept is then

generalized by deleting literals and clauses from the theory until all possible

deletions would result in a decrease of predictive accuracy, measured on the

pruning set.

While this method proved to be very e�ective in avoiding noise-�tting in

several domains, [Cohen, 1993] has shown that REP is a very costly process.

Its time complexity on random data is as bad as 
(n

2

log n) for generating a

concept description from n examples and 
(n

4

log n) for pruning the result-

ing set of rules. [Cohen, 1993] has then suggested a more e�cient pruning

method, which only has a worst-case time complexity of O(n

2

log n). This al-

gorithm was further improved by adding some pre-pruning methods to speed

up the concept generation phase.

In the next sections we will show a way to signi�cantly speed up both

the growing and the pruning phase by generating a series of concept descrip-

tions from general to speci�c and selecting an appropriate starting point for

subsequent reduced error pruning.

3.2 Generating a series of concept descriptions

An interesting feature of Fossil's cuto� stopping criterion (section 2) | be-

sides its e�ciency and stability | is its close relation to the search heuristic.

While Foil (encoding length restriction) and mFoil (signi�cance test) have

to do separate calculations to determine when to stop learning, Fossil needs

to do a mere comparison between the heuristic value of the best candidate

literal and the cuto� value. This allows the design of a very simple algo-

rithm that can generate all theories that could be learned by Fossil with

any setting of the Cuto� parameter (see �gure 1).
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Cuto� = 1:0

Concepts = ;

while (Cuto� > 0:0) do

NewConcept =Fossil(Examples)

Cuto� = MaxPrunedCorr(NewConcept)

Concepts = Concepts [ NewConcept

return(Concepts)

Figure 1: Algorithm to generate all theories learnable by Fossil

The basic idea behind the algorithm given in �gure 1 is the following: As-

sume that we are trying to learn a theory with a Cuto� of 1.0. Unless there is

one literal in the background knowledge that perfectly discriminates between

positive and negative examples, we will not �nd a literal with a correlation

of 1.0 and thus learn an empty theory. During this run we can remember

the literal with the maximum correlation. If we now set the new cuto� to

exactly this maximum value, at least one literal (the one that produced this

maximum correlation) will be added to the theory.

At this new setting of the cuto� parameter a new theory will be learned

and again the maximum correlation of the literals that have been cut o�

will be remembered. Obviously, for all values between the old cuto� and

the new maximum, the same theory would have been learned. Thus we can

choose this value as the cuto� for the next run. It can also be expected that

the new theory will be more speci�c than the previous one. This process is

repeated until at a certain setting of the Cuto� no further literal is cut o�

(i.e. MaxPrunedCorr = 0:0) and thus the most speci�c theory has been

reached.

In �gure 2 we see an example how Fossil generates a series of theories

from 1000 noise free examples in the king-rook-king chess endgame domain.

1

It is interesting to see how the algorithm steadily modi�es the theory until it

arrives at a 99.32% correct theory (evaluated on a test set of 5000 examples),

which explains all of the examples in the training set. Note that lowering

the cuto� does not necessarily result in a theory with more clauses, because

1

A short description of the domain can be found at the beginning of section 4.
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C = 1.0

illegal(A,B,C,D,E,F) :- fail.

67.04 % correct (0 % positive, 100 % negative)

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not X < A.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- C = E, A < Y, not B < F.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not Z < A).

88.42 % correct (65.53 % positive, 99.67 % negative)

97.60 % correct (93.39 % positive, 99.67 % negative)
99.36 % correct (98.48 % positive, 99.79 % negative)

99.32 % correct (98.60 % positive, 99.67 % negative)

97.42 % correct (92.60 % positive, 99.79 % negative)

C = 0.5101

C = 0.4995

C = 0.3871

C = 0.3927

C = 0.3607

C = 0.0

Figure 2: Generating a series of theories in the KRK domain
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adding a literal to the current concept de�nition will change the search space

for subsequent literals and thus change the correlation values of the literals

at all subsequent choice points.

The next section shows how the simple algorithm of �gure 1 can be re-

�ned to a powerful algorithm which selects an appropriate starting point for

Reduced Error Pruning, thus improving over run-time and accuracy of REP.

3.3 Top-Down Pruning

A very nice property of the algorithm of �gure 1 is that we get a series of

di�erent concept descriptions in a | roughly | general to speci�c order

2

(top-down) as opposed to pruning methods that generate a most speci�c

theory �rst and then successively generalize it (bottom-up). If we could �nd

a way of evaluating the theories as they are generated, and stopping when

the generated theories get worse, we could avoid learning the most speci�c

theory, which is usually quite expensive.

Also note that usually several clauses | up to the point where the highest

cuto� has occurred | can be reused from the previous run, so that the total

cost of generating a series of concept description may not be much more than

the cost of generating the most speci�c theory only.

Based on the above ideas, we have implemented the following simple

algorithm. It tries to �nd the most speci�c among all reasonably good the-

ories, and subsequently generalizes this theory with Reduced Error Pruning.

Because of the initial general-to-speci�c search for a good theory, we have

named the method Top-Down Pruning.

1. Split the training set into a growing set and a pruning set (usually 2=3

and 1=3).

2. Generate a series of concept descriptions from the examples in the grow-

ing set.

3. While you go, evaluate each theory on the pruning set.

2

Note that we use the terms \general" and \speci�c" in an intuitive way. We consider

the empty theory to be most general, because \Everything is false." is a very general

statement. However, our \most speci�c" theory will cover more ground instances than the

empty theory, and thus may be considered (extensionally) more general. See [Flach, 1992]

for a discussion of related matters.
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4. When the measured accuracy of one the theories falls below the mea-

sured accuracy of the best theory so far minus the Standard Error for

classi�cation

3

, stop generating theories and return the last theory within

the 1 SE margin.

5. Prune the theory obtained in step 4. using Reduced Error Pruning as

described in [Brunk and Pazzani, 1991].

We expected this method to be faster than Reduced Error Pruning, in

particular with high numbers of noisy examples, because it will generate a

more general starting theory and thus

� Speed up the growing phase, because the most expensive theories will

not be generated

� Speed up the pruning phase, because pruning starts from a simpler

theory and thus the number of possible pruning operations is much

smaller.

4

The next section reports experiments that con�rm the above hypotheses.

4 Experiments

We tested the algorithm developed in the last section on the chess king-rook-

king endgame domain that has been extensively used in ILP. The setup for

the experimental evaluation of Top-Down Pruning was the same as described

in [F�urnkranz, 1993]. The only di�erence was that the most recent version of

Fossil allows to specify modes, types and symmetries of background pred-

icates, and this facility was used in all experiments. Experiments were per-

formed with 10% of the examples having their classi�cation reversed. Testing

was done on sets of 5000 noise-free examples. Reduced Error Pruning (REP)

3

This is based on on idea in CART [Breiman et al., 1984], where the most general

pruned decision tree within one SE of the best will be returned. The standard classi�-

cation error is de�ned as SE =

q

p�(1�p)

N

where p is the probability of mis-classi�cation

(estimated on the pruning set) and N is the number of examples in the pruning set.

4

These considerations, of course, only apply to noisy domains. In non-noisy domains

the most speci�c theory will in general be the most precise and thus our algorithm will be

a little slower than REP.
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and Top-Down Pruning (TDP) were both given the same 10 training sets for

each of the 4 di�erent training set sizes. Both algorithms split the sets into

the same growing (ca. 2=3) and pruning sets (ca. 1=3). REP generated the

most speci�c theory �rst (Cuto� = 0), and then used the method described

in [Brunk and Pazzani, 1991] for pruning. TDP is an implementation of the

algorithm decribed in the last section, which made use of all optimizations

described there.

Our �rst concern, of course, is whether the new method does not loose

predictive accuracy compared to REP (see table 1).

Average Accuracy 50 100 250 500

REP Before Pruning 79.28 84.84 86.88 87.11

After Pruning 78.60 94.67 96.72 97.80

TDP Before Pruning 79.90 89.15 92.30 97.84

After Pruning 78.60 95.14 96.81 98.77

Table 1: Accuracy in the KRK domain with 10% classi�cation noise.

Surprisingly, it not only does not lose, but gains predictive accuracy. The

reason for this is that TDP already starts with a much better theory than

REP (see below) and thus is less likely to get caught in a local optimum. In

particular at training set size 500, REP sometimes returned suboptimal the-

ories. However, REP may pro�t from this in some rare cases, as it happened

in one of the ten sets with 250 training examples: Here TDP started o� with

a theory that was 98.18% correct, but unfortunately one of the literals had

no support in the pruning set and consequently was pruned, thus yielding

a theory with a mere 81:34%. This did not happen to REP because it got

caught in a 91:36% correct theory, and did not even get to the 98:18% theory.

As we have already mentioned, it becomes obvious from table 1 that

TDP's top-down search for a good starting point for pruning helps a lot.

TDP's di�erence between the accuracy of the theories before and after prun-

ing is steadily decreasing with training set size. At size 500 the starting

theories for TDP were already slightly better than the pruned theories ob-

tained from REP. The top-down search for a good theory (without pruning)

could even yield better results if we did not use the most speci�c theory
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within one standard error of the best theory, but the best itself. However,

this could lead to over-generalization. Starting with a more speci�c theory

is better for the subsequent pruning process, which is quite inexpensive, as

can be seen from table 2.

Average Run-time (sec.) 50 100 250 500

REP Growing 1.56 6.66 75.22 397.17

Pruning 0.35 2.93 91.46 1248.48

Total 1.91 9.59 166.68 1645.65

TDP Growing 2.11 7.87 48.55 47.18

Pruning 0.29 1.71 23.50 3.33

Total 2.40 9.58 72.05 51.01

Table 2: Run-time in the KRK domain with 10% classi�cation noise.

Looking at the run-times, it can be seen that with increasing training set

sizes, the costs of REP are dominated by the pruning process. This result

is consistent with the �ndings of [Cohen, 1993] (see section 3.1). TDP on

the other hand, even manages to decrease run-time with growing training set

sizes. The explanation for this surprising result can be found in two reasons:

� With increasing training set sizes the size of the allowed Standard Error

decreases (see footnote 3), so that it is less and less likely that the most

speci�c theories are within the error margin.

� The starting theories learned by Fossil become increasingly accurate

as the training set grows, so that less and less pruning has to be done.

This can be seen from the decreasing di�erences between the accuracies

of the theories before and after pruning (table 1).

This supports the two hypotheses stated at the end of the last section.

5 Conclusion

We have shown that the Inductive Logic Programming algorithm Fossil

allows a top-down generation of a series of theories that can be used to �nd
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a good starting point for a subsequent pruning process. This method |

Top-Down Pruning | results in a signi�cant speed-up compared to Reduced

Error Pruning along with a small gain in accuracy. Similar results have been

obtained in [Cohen, 1993], but concentrated mostly on lowering the pruning

cost only. In our approach, the entire process of TDP may be signi�cantly

faster than REP's growing phase alone. However, TDP has not yet been

tested as extensively as the methods proposed in [Cohen, 1993].

Another reason for the di�erences in predictive accuracy observed in ta-

ble 1 might be that the rules generated by a Foil-like learning algorithm are

order-dependent in the sense that learning a wrong �rst rule a�ects the pop-

ulation of training instances for the learning of subsequent rules, because of

Foil's separate-and-conquer strategy. This is currently under investigation.

Of course pruning methods in general are subject to the problem that

learning general theories in order to avoid over�tting the noise might be

inappropriate in some domains [Scha�er, 1993]. In fact it has been observed

in [Cohen, 1993] that pruning sometimes leads to a decrease in predictive

accuracy. However, there is some evidence that simple rules perform well in

many real world domains (or at least in those domains that are commonly

used as a test bed for machine learning algorithms) [Holte, 1993], and TDP's

general-to-speci�c search might be a good method in those domains.
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