
Morphology with a Null-Interface

Harald Trost and Johannes Matiasek

Austrian Research Institute for Arti�cial Intelligence

�

Vienna, Austria

email: harald@ai.univie.ac.at

Abstract

We present an integrated architecture for word-level and sentence-level processing in

a uni�cation-based paradigm. The core of the system is a CLP implementation of a

uni�cation engine for feature structures supporting relational values. In this frame-

work an hpsg-style grammar is implemented. Word-level processing uses X2MorF

a morphological component based on an extended version of two-level morphology.

This component is tightly integrated with the grammar as a relation. The advantage

of this approach is that morphology and syntax are kept logically autonomous while

at the same time minimizing interface problems.

1 Introduction

Over the last few years there has been a growing interest in computational morphology and

phonology. A number of systems have been developed that deal with word-level processing.

A widely used approach is �nite-state morphology, most notably two-level morphology

(for an introduction, see Sproat 92). Morphological components are successfully used for

a wide range of stand-alone applications like spelling correction and hyphenation. One

obvious application is the use in NLP systems geared at the analysis/generation of text.

Surprisingly, they have not been widely applied in this domain up to now.

A main reason is the problem of interfacing morphology with syntax. Re
ecting the

current trend in syntax towards lexicalism uni�cation-based systems use highly structured

feature structures as input. Translating the output of morphological components into such

a representation has proved to be di�cult. Reducing interface problems is therefore crucial

for success.

A tight integration between word and sentence level processing also has linguistic advan-

tages. The boundary between morphology and syntax is fuzzy. When processing written

�

Financial support for the Austrian Research Institute for Arti�cial Intelligence is provided by the

AustrianMinistry of Science and Research. We would like to thank Wolfgang Heinz for valuable comments

and suggestions

1

text the units morphology has to deal with are|in a technical sense|not words but char-

acter strings separated by delimiters. While these strings roughly correspond to the words

of a sentence there are problematic cases. In German, e.g., zu-in�nitive or verbs with

separable pre�xes are written as a single unit in some instances and separately in others.

The problem has been recognized and some possible remedies have been proposed.

They all try to minimize or to eliminate the interface between word and sentence level

processing. One step is the description of word formation in terms of a uni�cation-based

grammar to make the result of morphological processing directly available to syntax and

vice versa, an approach already taken in X2MorF (Trost 90, Trost 91), an extension of

two-level morphology.

The harder problem is the integration of morphophonology which is traditionally for-

malized in a way not easily translatable into the feature formalism. We will show, how

this can be achieved by merging the word-level grammar of X2MorF into an hpsg-style

grammar, and by adopting a relational view of its two-level rules.

In this paper we assume basic familiarity with uni�cation-based NLP techniques and

two-level morphology.

2 Integrating Morphology into HPSG

Head-driven Phrase Structure Grammar (hpsg, Pollard & Sag 87, Pollard & Sag in press)

can be viewed as a mono-level but multi-stratal theory of grammar, where di�erent strata

relate to di�erent aspects of linguistic information, but are represented uniformly in feature

logics. As such it is well suited as a linguistic theory for our enterprise.

hpsg di�erentiates between three strata|phon, synsem and dtrs. Though mor-

phology is not considered in the standard approach, it suggests itself to include it as a

fourth stratum by introducing a feature morph into the type sign. Morphotactics are

easily described in terms of a feature based grammar. The problem is, how to deal with

morphophonology. Two proposals have been made to overcome this problem.

Krieger et al. 93 encode �nite state automata directly in the feature formalism. Since

two-level rules can be compiled into such automata, morphophonology can be straightfor-

wadly integrated into the grammar. While this is formally elegant it seems to be no good

solution for practical considerations. First, it is not entirely clear from their paper how the

problem of null characters can be handled. Second, encoding large automata will result in

a very large and unwieldy type hierarchy. In general, introducing automata into feature

structures and encoding morphophonology directly at that level seems to be too low-level.

Bird & Klein 93 argue against the use of two-level morphology because of linguis-

tic considerations. The linguistic background of two-level rules|main stream segmental

phonology|has widely been rejected as a valid linguistic model. Instead, they base their

implementation on autosegmental phonology (cf. Goldsmith 90).

This is certainly linguistically appealing. But there are reasons for sticking to a more

conservative approach. Finite-state morphology as a formalism is not necessarily tied

to segmental phonology. There are various approaches to cope with non-concatenative

2

phenomena|one of them X2MorF (Trost 90). Also, for a number of languages complete

sets of two-level rules do exist and can immediately be brought to bear. Finally, �nite-state

morphology has proven to be e�cient while the method proposed by Bird & Klein 93 seems

to be computationally costly.

Like the other approaches ours is also based on hpsg. However, we do employ a di�erent

approach to integration. Our grammar is encoded using a uni�cation engine based on

constraint logic programming (CLP). Besides conventional attribute-value descriptions this

system allows for the direct representation of more general relations, as they are required

by hpsg. This extension of the formalism is used for the integration of morphology. Thus

X2MorF is treated as one special relation of the grammar. As a result, our approach

is more modular than the others. While being fully integrated morphology can still be

viewed as an autonomous component leading to a more
exible design.

We will now give an overview of X2MorF before describing the integrated system and

its implementation in detail.

3 Word Level Processing { X2MorF

X2MorF di�ers from standard two-level morphology in two important aspects. Con-

tinuation classes are replaced by a feature-based word grammar. This allows for a more

�ne-grained description of morphs. It is also a prerequisite for a tight integration with a

uni�cation-based grammar. X2MorF uses a morph lexicon where each morph has one

or more feature structures assigned. The word grammar itself is simple. Morphs have a

functor-argument structure along the lines of di Sciullo & Williams 87. A�xes are unary

functors while stems are arguments without any further structure resulting in a binary tree

structure.

The other extension concerns the two-level rules which are supplemented with a mor-

phological �lter consisting of a feature structure. This is important because in mor-

phophonology only some rules are purely phonologically motivated. Others are triggered

by a mixture of phonological and morphological facts. Such rules can not be properly

represented in the standard approach.

Take, e.g., umlaut and schwa epenthesis in German: The third person singular present

tense su�x for German verbs is -t, e.g., sag-t ! sagt. For stems ending in a dental, schwa

is inserted before the ending, e.g., bad-t ! badet. This rule does not hold across the whole

vocabulary though. Stems of the strong paradigm do exhibit umlaut in 3rdPersSgPres

which blocks schwa epenthesis. Therefore, the �nal dental of the stem must be omitted

instead, e.g., rat-t ! r�at.

The following three rules

1

|together with the appropriate entries in the morph lexicon

(cf. Fig. 6 below)|produce the required behaviour.In particular, these rules relate surface

r�at to lexical $rAt+t$.

1

These rules as well as other data presented in the examples are simpli�ed for the purpose of

demonstration

3

(i) A:�a () ; [morphjmheadjumlaut aou-umlaut]

2

(ii) t:0 () +:0 t

(iii) +:e () dental +:0 [s j t] ; [morphjmheadjepenthese +]

X2MorF can be seen as a relation between a surface string (the word form), a lexical

string and a feature structure (the interpretation of the word form). Relevant for sentence

level processing is the morphosyntactic information and the stem found as the values of

pathes morphjmhead and morphjstem respectively (cf. Fig. 8 below). This is supple-

mented by lexeme speci�c information in the value of synsem (for a detailed description

see Trost 93).

4 Implementing HPSG in a CLP Framework

hpsg employs strongly typed feature structures and principles to further constrain them.

Well-typedness requirements restrict the space of valid feature structures (cf. Carpenter

92): Every feature structure must be associated with a type and every type restricts its

associated feature structure in that only certain features are allowed and the values of these

features must be of a certain type. Appropriateness and value restrictions are inherited

along the type hierarchy.

The second source of constraints to admit only linguistically valid feature structures are

the principles of grammar. Pollard & Sag 87 allow general implicative and negative con-

straints in the form of conditional feature structures, in Pollard & Sag in press principles

are given only in verbal form. Recent work on formalizing the basis of hpsg models them

as constraints attached to types (e.g., Carpenter et al. 91). However, these distinctions

a�ect only the way how the applicability of a principle is speci�ed. More important for our

present purpose is the form which the constraints expressed by a principle may take. Be-

sides constraints enforcing simple structure sharing (e.g., the Head Feature Principle given

in Fig.1) there are also complex relational dependencies (e.g., in the Subcategorization

Principle

3

). Constraints like these go beyond the expressivity of pure feature formalisms

alone and need to be de�ned in a recursive manner.

In order to integrate such complex constraints in the feature uni�cation framework,

we interpret uni�cation of typed feature structures under the restrictions of principled

constraints as constraint solving in the CLP paradigm (Ja�ar & Lassez 87).

In CLP the notion of uni�cation is replaced by the more general notion of constraint

solving. Constraint solvers may be embedded into a logic programming language either by

writing a metainterpreter or by making use of a system which allows for the implementation

of uni�cation extensions.

2

The lexical character A may have the surface realizations a and �a. The rule has an empty phonological

context but a morphological �lter. This is an example for the treatment of non-concatenative phenomena

in X2MorF.

3

\In a headed phrase (i.e., a phrasal sign whose dtrs value is of sort head-struc), the subcat value

of the head daughter is the concatenation of the phrase's subcat list with the list (in order of increasing

obliqueness) of synsem values of the complement daughters."(Pollard & Sag in press)

4

The second approach is taken by DMCAI CLP

4

(Holzbaur 92), a Prolog system whose

uni�cation mechanism is extended in such a way that the user may introduce interpreted

terms and specify their meaning with regard to uni�cation through Prolog predicates.

The basic mechanism to achieve this behavior is the use of attributed variables, which are

allowed to be quali�ed by arbitrary user-de�ned attributes. Attributed variables behave

like ordinary Prolog variables with two notable exceptions: when an attributed variable

is to be uni�ed with a non-variable term or another attributed variable the uni�cation

extensions come into play. For either case the user has to supply a predicate which explicitly

speci�es how the attributes interact and how they have to be interpreted with respect to

the semantics of the application domain. Uni�cation succeeds only if these constraint

solving clauses managing the combination|or veri�cation|of the involved attributes are

successful.

The implementation of typed feature structures in our system makes use of the CLP

facilities provided by this enhanced Prolog system. Feature structures are implemented

by the attribute fs(Type,Dag,Goals), where Dag is a list of feature-value pairs, which is

empty in case of atomic types, or a marker indicating uninstatiatedness of the substructure

(feature structures are instantiated lazily). Goals is a list of delayed constraints (see below).

Well-typed uni�cation of two feature structures is implemented via the constraint solving

clauses mentioned above, taking into account type hierarchy and feature appropriateness

(for a detailed description cf. Matiasek & Heinz 93).

Constraints imposed onto feature structures by the principles of grammar are stated in

a conditional form where the antecedent is restricted to contain only typing requirements.

5

In order to account for these conditional constraints we adopt a licensing view: Every node

of a feature structure has to be licensed by all principles of grammar.

A node is licensed by a principle if either (i) the feature structure F rooted in that

node satis�es the applicability conditions of the principle and the constraints expressed

by the principle successfully unify with F , or (ii) the feature structure F rooted in that

node is incompatible with the applicability conditions of the principle. The interesting case

arises when a feature structure does not satisfy the applicability conditions of the principle

but is compatible with them. Thus applicability of the principle can be decided only later,

after further instantiation or uni�cation steps have restricted the (sub)structure rooted at

that node. In precisely this case the application (or the abandoning) of the constraint has

to be delayed. The delay mechanism utilizes the Goals slot in the fs/3

6

attribute, which is

dedicated to hold the delayed constraints. As an example take the well known Head Feature

Principle of hpsg (Fig.1

7

). The conditional operator ===> is translated at read time via

term expansion/2 and implements the delay mechanism by compiling precondition checks

4

DMCAI CLP is an enhanced version of SICStus Prolog, available by anonymous ftp from

ftp.ai.univie.ac.at

5

This is only a syntactic variant of attaching constraints solely to types (Carpenter et al. 91) and does

not permit general conditional structures as used in Pollard & Sag 87.

6

pred/n is the usual notation for a n-ary Prolog predicate.

7

The operators ::=, ::, :, === are de�ned for typing of a node, path restriction, path concatenation

and value restriction (type or coreference) respectively.

5

AVM

"

synsemjlocjcatjhead 1

dtrsjhead-dtrjsynsemjlocjcatjhead 1

headed-phrase

#

Prolog

head_feature_principle(X) :-

X::=headed_phrase

===>

X::synsem:loc:cat:head===H,

X::dtrs:head_dtr:synsem:loc:cat:head===H.

Figure 1: Head Feature Principle

into the principle. These antecedent checks trigger either the application of the principle,

or its dropping or its delay (by annotating the variables not su�ciently constrained to

decide on the antecedent with the delayed goals).

Two advantages of this approach to implement principled constraints are especially

important for our present purpose: First, stating redundant typing requirements for em-

bedded structures (i.e. type restrictions that would follow automatically from well-typing)

functions as forcing delay of the conditional constraint until these substructures are in-

stantiated. This device can, e.g., be used to block in�nite recursion in recursively de�ned

constraints. Second, the right hand part of the conditional is not restricted to feature

logical expressions, but instead can contain arbitrary Prolog goals. This way constraints

involving relational dependencies (such as the Subcategorization Principle and the morpho-

logical relation between a lexical and a surface string) can be expressed within the feature

formalism. Thus there is no need for external devices controlling this interaction. Fur-

thermore, the conditional constraint syntax is not restricted to unary licensing principles,

but can also be used to express relations, such as fs append/3|needed for implementing

the Subcat Principle|which appends two feature structure lists (Fig. 2). Note that dis-

fs_append(X,Y,Z) :- fs_empty_append(X,Y,Z),

fs_nonempty_append(X,Y,Z).

fs_empty_append(X,Y,Z) :- X::=elist ===> Y = Z.

fs_nonempty_append(X,Y,Z) :- X::=nelist ===> X::first===F,Z::first===F,

X::rest===XRest,Z::rest===ZRest,

fs_append(XRest,Y,ZRest).

Figure 2: Append for feature structure lists

junctive relations such as append can now be written as the conjunction of two specialized

cases applying conditionally. Furthermore, in�nite loops due to uninstantiated variables

can never occur, a crucial requirement when integrating relational dependencies into a lazy

instantiating feature formalism.

6

5 Embedding X2MorF into the Feature System

Originally, X2MorF was realized as a separate morphological component interfaced to

the sentence analyzer/generator only via sequential data transfer. In case of analysis the

feature structure representing the word form was transmitted to the parser. For generation,

X2MorF expected a feature structure as input reproducing one or more word forms. This

purely sequential architecture was not satisfying because of the problems mentioned in the

introduction.

In order to achieve tight integration, we adopt a relational view of X2MorF, and

encode the relation between surface string and lexical string directly without using �nite

state automata (for arguments supporting this approach cf. Abramson 92). However, our

approach extends the one of Abramson 92 in that it (i) explicitly accounts for insertion

of null characters and (ii) introduces the �lter concept of X2MorF into the relational

approach.

The general format of a two-level rule speci�cation in our system is

LeftContextPairs <=> TransitionPair <=> RightContextPairs [:- Filter]

in the case of equivalence rules, optional rules are written using only single arrows

(=> and <=). These rules are compiled into Prolog clauses

8

relating the lexical and surface

character streams appropriately (see Fig.3 for an example of the t-elision rule for German).

t:0 () +:0 t

Input <=> t:0 <=> ['+':0, t:t].

Compiled

morphrule([116,43,116|LS],[Sc,48,116|SS0],SS,LCon,SCon,F) :-

!, Sc=48,

morphology([43,116|LS],[48,116|SS0],SS,[116|LCon],[H|SCon],F).

Figure 3: Sample Two-Level Rule

To obtain a correct relationship between surface and lexical string, every transition has

to be licensed by a morphological rule. Transitions not mentioned by rules are handled

by a default rule. Instantiation of contexts may not be done by the rules itself, since this

would make it impossible to obtain negation via the cut-operator but, instead, is handled

separately in a backtrackable fashion.

The central relation is the morphology predicate, (see Fig. 4) mediating between lexical

string, surface string (with inserted null elements), the pure (denulli�ed) surface string and

the feature structure of the morphological sign. Instantiation of pairs is done depending

8

Note, that left contexts are encoded reversed to account for the left to right traversal of the pair of

character streams. Left contexts can be rememebered and checked most e�ciently this way.

7

morphology(LexStream,SurfStream0,SurfPlainIn,LexContext,SurfContext,F) :-

instantiate(LexStream,SurfStream0,SurfPlainIn,SurfPlainOut,F),

morphrule(LexStream,SurfStream,SurfPlainOut,LexContext,SurfContext,F).

instantiate([LC|LCs],[SC|SCs],SurfPlainIn,SurfPlainOut,F) :-

valid_alphabet_pair(LC,SC],

synchronize([SC|SCs],SurfPlainIn,SurfPlainOut),

lookahead(LC,LCs,SCs,SurfPlainOut).

synchronize([48|_],Stream,Stream) :- !.

synchronize([Char|_],[Char|Stream],Stream).

Figure 4: The morphology relation

on the possible lexical continations (the lexicon being represented by a trie-structure).

The amount of lookahead is determined by the current pair which is to be licensed by

morphrule.

9

Synchronization of surface and lexical string by insertion of null characters is

also handled on the instantiation level.

The integration of the two-level relation into the general framework of the feature

based sentence-level and word-level grammars is now performed by adding this relation as

a principled constraint at the appropriate level.

In a de�nite clause style AVM notation this could be written as follows (given that

morphology/3 is a wrapper around the morphology relation given above starting with the

empty contexts and hiding the nulli�ed surface stream):

2

6

6

6

6

6

6

4

phon 2 string

morph 3

2

4

mstring 1 string

stem string

mhead mhead

3

5

head head

synsem synsem

word

3

7

7

7

7

7

7

5

 morphology(1 , 2 , 3)

The actual implementation as a principled constraint in our formalism additionally takes

care of delaying the actual enforcement of this relation in case none of the strings is

su�ciently instantiated.

A second provision has to be made in the word level grammar to assure proper con-

catenation of the lexical strings of the morphological signs being combined. Given the

subtyping of msign into marg and mfunctor , which in turn has the subtypes leftfunctor

and rightfunctor , the principled constraints ensuring concatenation of a left functor with

its argument are shown in Fig. 5. Concatenation is delayed until the argument's mstring

is instantiated. Thus, in�nite loops when concatenating are avoided.

9

This interaction and the lexicon lookup of the feature structure corresponding to the current morph

taking place when encountering a morph boundary is not shown for the sake of simplicity.

8

concat_right_functor(X) :-

X::=rightfunctor,

X::arg:mstring===subtype_of(string)

===>

X::arg:mstring===Arg,X::affix===Suffix,X::mstring===Mstring,

concat(Arg,Suffix,Mstring).

Figure 5: Concatenation of lexical strings

As an example we demonstrate how these constraints interact in forming the third

person singular present tense form of the German verb raten (to guess). The lexical string

is composed of the stem rAt and the su�x +t . The lexical entries of these two morphs are

given in Fig. 6.

rAt :

2

6

6

6

6

4

mstring "rAt"

stem "rat"

mhead

2

4

epenthese -

person pers3

umlaut aou umlaut

verb stem

3

5

marg

3

7

7

7

7

5

+t:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

stem 1 string

affix "+t"

mhead

2

6

6

4

epenthese 3 boolean

person pers3

tense tense pres

umlaut 2 umlaut

verb form

3

7

7

5

arg

2

4

stem 1

mhead

�

epenthese 3

umlaut 2

verb stem

�

msign

3

5

rightfunctor

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 6: Lexical entries

The two-level rules applicable for this example are the t-elision rule (Fig.3) and two

rules with �lters licensing a-umlaut and epenthesis, given in the input notation for our

system (Fig.7).

Interaction between syntactic and morphological processes takes place at the word level.

Also the application of the two-level rules relating the surface string (i.e the phon-value of

the word) and the lexical-string (i.e. morphjmstring) is triggered here. This interaction

is completely neutral with respect to the direction of processing due to its relational nature.

Parsing is performed by simply instantiating the phon value. Generation can be achieved

when morphjmstring is present, which in turn is obtained by concatenating the lexical

9

A-umlaut:

<=> A:"a <=> :- filter(X, [X::mhead:umlaut===aou umlaut])

Epenthesis

dental <=> '+':e <=> s or t :- filter(X, [X::mhead:epenthese==='+'])

Figure 7: Filter Rules

strings of the msigns instantiated by the morph grammar.

As a result of this constraint interaction the structure shown in Fig. 8 is obtained.

Syntactic features relevant on the sentence level (such as person and tense) are per-

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phon "r�at"

morph

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

mstring "rAt+t"

stem 1 "rat"

affix "+t"

mhead

2

6

6

4

epenthese 3 -

person pers3

tense tense pres

umlaut 2 aou umlaut

verb form

3

7

7

5

arg

2

6

6

6

6

4

mstring "rAt"

stem 1

mhead

2

4

epenthese 3

person pers3

umlaut 2

verb stem

3

5

marg

3

7

7

7

7

5

rightfunctor

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

word

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 8: Result of constraint interaction (simpli�ed)

colated from morphjmhead to synsemjlocjcatjhead via structure sharing constraints

attached to the type word (this interaction is not shown in Fig. 8). Information on subcat-

egorization and semantic content for the word is obtained from the lexeme lexicon using

morphjstem as a key. These constraints complete the interaction between syntactic and

morphological processing at the word-level.

6 Conclusion

We have presented a framework for the tight integration of word level and sentence level

processing in a uni�cation-based paradigm. The system is built upon a uni�cation engine

implemented in a CLP language supporting types and de�nite relations as part of feature

descriptions. Using this extended feature formalism which is independently motivated by

10

requirements of standard hpsg, a reimplementation of X2MorFwas integrated into the

grammar as a spezialized relation.

This architecture has computational as well as linguistic advantages. Integrating mor-

phology and morphophonology directly into the grammar is in the spirit of hpsg which

views grammar as a relation between the phonological (or graphemic) form of an utter-

ance and its syntactic/semantic representation. This way also the treatment of phenomena

transcending the boundary between morphology and syntax is made possible.

On the implementation side, the practical problems of interfacing two inherently dif-

ferent modules are eliminated. For applications this means that using a morphological

component is made easy. Nevertheless, this tight integration still leaves morphology and

syntax/semantics as autonomous components, enabling direct use of existing data sets

describing morphophonology in terms of the two-level paradigm.

References

Abramson H.: A Logic Programming View of Relational Morphology, in Proceedings of

the 15th International Conference on Computational Linguistics, August 23-28, 1992,

Vol.III, pp.850-854, 1992.

Bird S., Klein E.: Enriching HPSG Phonology, University of Edinburgh, UK, Research

Paper EUCCS/RP-56, 1993.

Carpenter B., Pollard C., Franz A.: The Speci�cation and Implementation of Constraint-

Based Uni�cation Grammars, Proceedings of the Second International Workshop on

Parsing Technology, Cancun, Mexico, 143-153, 1991.

Carpenter B.: The Logic of Typed Feature Structures, Cambridge University Press, Cam-

bridge Tracts in Theoretical Computer Science 32, 1992.

Goldsmith J.A.: Autosegmental and Metrical Phonology, Basil Blackwell, Oxford, 1990.

Holzbaur C.: Metastructures vs. Attributed Variables in the Context of Extensible Uni�ca-

tion, in Bruynooghe M. and Wirsing M.(eds.), Programming Language Implementation

and Logic Programming, Springer, LNCS 631, pp.260-268, 1992.

Ja�ar J., Lassez J.L.: Constraint Logic Programming, in Proceedings 14th ACM POPL

Conf., Munich, 1987.

Krieger H.-U., Pirker H., Nerbonne J.: Feature-based Allomorphy, Proceedings of the 31st

Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio,

pp.140-147, 1993.

Matiasek J., Heinz W.: A CLP Based Approach to HPSG,

�

Osterreichisches Forschungsin-

stitut f�ur Arti�cial Intelligence, Wien, TR-93-26, 1993.

Pollard C.J., Sag I.A.: Information-Based Syntax and Semantics, University of Chicago

Press, Chicago, 1987.

11

Pollard, C.J, Sag I.A.: Head-Driven Phrase Structure Grammar, To be published by Uni-

versity of Chicago Press and CSLI Publications, in press.

di Sciullo A.-M., Williams E.: On the De�nition of Word, MIT Press, Cambridge, MA,

1987.

Sproat R.: Morphology and Computation, MIT Press, Cambridge, MA, ACL-MIT Series

in NLP, 1992.

Trost H.: The Application of Two-Level Morphology to Non-Concatenative German Mor-

phology, in Karlgren H.(ed.), Proceedings of the 13th International Conference on Com-

putational Linguistics, Helsinki, Finland, pp.371-376, 1990.

Trost H.: X2MORF: A Morphological Component Based on Augmented Two-Level Mor-

phology, in Proceedings of the 12th International Conference on Arti�cial Intelligence,

Morgan Kaufmann, San Mateo, CA, pp.1024-1030, 1991.

Trost H.: Coping with Derivation in a Morphological Component, in 6th Conference of the

European Chapter of the Association for Computational Linguistics, Utrecht, pp.368-

376, 1993.

12

