
Controlling Constructive Induction in CiPF:

An MDL Approach

Bernhard Pfahringer

bernhard@ai.univie.ac.at

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3

A-1010 Vienna

Austria

Abstract

We describe the learning system CiPF, which tightly couples a simple

concept learner with a sophisticated constructive induction component. It

is described in terms of a generic architecture for constructive induction.

We focus on the problem of controlling the abundance of opportunities

for constructively adding new attributes. In CiPF the so-called Minimum

Description Length (MDL) principle acts as a powerful control heuristic.

This is also con�rmed in the experiments reported.

1 Introduction

In learning concept descriptions from preclassi�ed examples, simple concept learn-

ers typically make strong assumptions about the way these examples are repre-

sented. For e�ectively learning a concept its examples must populate one or a few

regions of the hypothesis space expressible in the description language. For ex-

ample, decision trees encode axis-parallel nested hyper-rectangles. Two di�erent

problems may cause irregular distributions of learning examples in the original

representation space: noise and/or an inadequate description language. Both

phenomena lead to complex, convoluted induced concept descriptions which will

be hard to understand and will perform poorly at predicting concept membership

of unclassi�ed examples.

As a remedy for the latter problem constructive induction has been intro-

duced, e.g. in [Dietterich & Michalski 81] and [Mehra et al. 89]. The basic idea

is to somehow transform the original representation space into a space where the

learning examples exhibit (more) regularities. Usually this is done by introducing

new attributes and forgetting old ones. So constructive induction is searching for

an adequate representation language for the learning task at hand.

In this paper we report on CiPF, a generic constructive induction system, and

on how search in the representation space is controlled in CiPF. Section 2 briey

describes a generic architecture for constructive induction and discussed CiPF

in these terms. In section 3 will focus on how the problem of controlling search

for useful representation changes is solved in CiPF by means of the powerful

Minimum Description Length (MDL) Principle [Rissanen 78]. Section 4 reports

experiments and compares results to C4.5 [Quinlan 93], a well-known sophisti-

cated decision tree learner. Section 5 summarizes related work, gives conclusions

and talks about further research directions we are pursuing within CiPF.

2 A Generic Architecture and an introduction

to CiPF

This section will briey describe a generic architecture for constructive induction

and use this architecture to introduce CiPF. We will also discuss some important

design rationales of CiPF.

Figure 1 depicts a possible generic architecture for describing constructive

learners. Most implemented systems can be described in terms of this architecture

or a subset of it, if one supplies proper instantiations for the di�erent processes

(boxes in the model). The three di�erent processes working together are:

� The CI module: Given examples and attribute descriptions and possibly al-

ready some descriptions/hypotheses, this module constructs new attributes

according to some methodology. Output of this module are new attribute

descriptions and the augmented and transformed learning examples.

� The Selective Learner: Any (classical) propositional learning algorithm can

be used to induce rules from the transformed learning data. Output of this

module is a set of rules forming a hypothesis that compresses and explains

the learning data.

� The Evaluator: This current hypothesis must be evaluated in some way

to decide whether it is of good enough quality to serve as a �nal result,

or if it should be input into another cycle of induction. It might also be

the case that no good hypothesis is found, but computation nonetheless

terminates due to exhausted resources like maximal number of cycles or

heuristically/statistically based doubt about the possibility of �nding any

better hypothesis.

Actual systems not only di�er in their choices for the di�erent parameters

(e.g. which methods they select for doing CI or what algorithm lies at the heart

2

?

?

?

-

-

Raw Input Data

CI module

Transformed Data

Selective Learner

Hypothesis

Evaluator

done

Figure 1: Constructive Induction: A Generic Architecture

3

of their respective learner), they may even omit modules and/or pathways at all;

for instance, some systems do not run in cycles, but perform sequential one-shot

learning only.

The main goal in building CiPF is designing a practical system for construc-

tive induction that minimizes the number of user-settable parameters. So we

try to identify principled choices or automated ways of choosing good values for

necessary decisions where other systems rely on user-speci�ed parameter values.

This was one reason for choosing the Minimum Description Length Principle as

an evaluator. This will be described in more detail in the next section.

CiPF borrows heavily from existing systems in that we have tried to collect

useful features of known machine learning systems. We try to combine these in a

synergetic fashion in CiPF. CiPF is a true instance of the generic architecture

for constructive induction described above in that it realizes all the boxes and

pathways. CiPF's components will be detailed in the following.

2.1 Constructive Induction in CiPF (the CI module)

Just like the multi-strategy system AQ17-MCI [Bloedorn et al. 93], CiPF takes

an operator-based approach to constructive induction. It supplies a (still growing)

list of generally useful CI operators plus an interface allowing for user-supplied

special operators. For instance, these might encode possibly relevant background

knowledge. The current set contains among others the following operators:

� Compare attributes of the same type: is attribute A1 Equal to/Di�erent

from/Greater than/Less than attribute A2.

� Discretize numeric attributes into several intervals using Chi-Merge tech-

niques [Kerber 92].

� Conjoin possible values of nominal attributes into sets using modi�ed Chi-

Merge as proposed in [Kerber 92].

� Count how many of a given set of boolean attributes are true (or false).

� Conjoin two attributes occuring in a good rule [Matheus & Rendell 89].

� Perform intra-construction [Muggleton 87, Muggleton & Buntine 88] of good

rules.

� For the set of positive examples covered by a good rule: compute inter-

vals/subsets for the respective numerical/nominal base-level attributes, so

that these intervals/subsets exactly cover these positive examples.

� Drop attributes not used by any of the good rules.

4

� The medical 3�-heuristic: for numerical attributes construct an attribute

testing if this numerical value is in a plausible range. This healthy range

is operationally de�ned in terms of mean values and standard deviations

derived from the healthy part of a population as the interval [��3�; �+3�].

A value outside such a range is a strong indicator for pathological test results

in medical applications

1

(see also section 4.2).

Recursive application of these operators may yield complex new attributes like

the number of numerical attributes being o� more than 3� from the 'healthy' mean

is zero or one . It is the user's task to choose the appropriate operators for any

learning problem.

2.2 CiPF's Selective Learner

We have implemented a simple propositional FOIL-like learner [Quinlan & Cameron-Jones 93].

So we are using ideas from Inductive Logic Programming and translate them back

(specialize them) for propositional problems. We prefer direct induction of rules

over decision trees for various reasons. The two most important ones are:

� Unknown values can be dealt with pragmatically: never incorporate tests

for unknown in a rule.

� Induction focuses on one class at a time. At least in relational learning this

approach seems to be superior to decision trees [Watanabe & Rendell 91]

and we suspect that the same might be true for propositional learning.

Currently the learner is a quick-and-dirty custom implementation, as we want

to focus on constructive induction, but still like to have the possibility of work-

ing on the internals of the learner. We will of course have to address the se-

rious shortcomings of this module in further research. Right now this learner

in CiPF uses the Laplace expected error estimate as a search heuristic, because

[Lavrac et al. 92] shows that accuracy estimators outperform information gain

criteria when learning rules instead of decision trees

2

. The only stopping crite-

rion used is no improvement of the estimate. There is currently no other form of

pruning in the learning component.

3 Using MDL to control constructive induc-

tion (the evaluator module)

CiPF takes a rather eager approach to constructive induction: at every step

all possible new attributes are added. This over-abundance in the representation

1

Personal communication from a lab physician

2

Use of the more general M-estimate also discussed in that paper instead of the Laplace

estimate would introduce one of those parameters we are trying to avoid if possible.

5

space combinedwith the simplistic learner quickly results in unwieldy, overly com-

plex induced rule sets when learning without appropriate control. These rule sets

may be both di�cult to comprehend for the user and yield mediocre results when

classifying unseen examples. In analogy to noise �tting [Angluin & Laird 87] this

phenomenon could be called language �tting. Typical examples of such behaviour

are published in the section on AQ17-HCI in the Monk report [Thrun et al. 91],

which describes three arti�cial learning problems for evaluating and comparing

di�erent algorithms. We have made similar experiences with early versions of

CiPF lacking sophisticated control.

To prevent CiPF from language �tting we have devised the following simple,

yet e�ective control regime:

� Every time the CI module is called, it is allowed to construct an unlimited

number of new attributes.

� These attributes will be input to the next learning step. There they will

compete with each other for being used in induced rules.

� Only the �ttest attributes will be allowed to survive.

So how are the �ttest attributes determined in CiPF? We pragmatically

equate them with the set of attributes being used by good rules. How CiPF de-

termines the set of good rules for a class is one of its major innovations. Instead of

using some ad-hoc measures of accuracy and quality or some user-supplied eval-

uation functions we have identi�ed the so-called Minimum Description Length

Principle [Rissanen 78, Quinlan & Rivest 89] as a very well-performing evalua-

tor.

In a nutshell, MDL is a concept from information theory that takes into

account both a theory's simplicity and a theory's predictive accuracy simultane-

ously. MDL is disarmingly simple: concept membership of each training example

is to be communicated from a sender to a receiver. Both know all examples and

all attributes used to describe the examples. Now what is being transmitted is a

theory (set of rules) describing the concept and, if necessary, explicitly all positive

examples not covered by the theory (the false-negative examples) and all negative

examples erroneously covered by the theory (the false-positive examples). Now

the cost of a transmission is equivalent to the number of bits needed to encode a

theory plus its exceptions in a sensible scheme. The MDL Principle states that

the best theory derivable from the training data will be the one requiring the

minimum number of bits.

So for any set of rules generated by the learner and for subsets of these rules a

cost can be computed. The rule-set with minimum cost is the best theory for the

training data. Only rules of this set will be called good rules and will be used as

input for the constructive induction module. The precise formula used to apply

6

the MDL Principle in CiPF is the same one as used by C4.5 [Quinlan 93] for

simplifying rule sets:

Cost = TheoryCost+ log

2

C

FP

!!

+ log

2

NC

FN

!!

In this formula TheoryCost is an estimate for the number of bits needed

to encode the theory. C is the total number of training examples covered by

the theory, FP is the number of false-positive examples, NC is the total number

of training examples not covered by the theory, and FN is the number of false-

negative examples. So the second and the third term of the formula estimate the

number of bits needed to encode all false-positive and all false-negative examples

respectively. In summary this formula approximates the total cost in number of

bits for transmitting a theory and its exceptions.

A slight modi�cation necessary for constructive induction is to take into ac-

count also the di�erent complexities of constructed attributes. This can easily

be achieved in a uniform manner by adding attribute-de�ning rules to the rule

set, one for each constructed attribute used in the original rule set. Thus using

a constructed attribute entails a kind of penalty or cost, which will be amortized

either if this attribute o�ers superior compression or if it is used in more than

one rule.

Furthermore, Cipf di�ers in the way the above MDL estimate is utilized al-

gorithmically. For complexity reasons it is of course impossible to evaluate all

possible subsets of rules. [Quinlan 93] reports serious di�culties using greedy

hill-climbing and therefore resorts to expensive simulated annealing. In contrast,

in our setting a hill-climbing strategy seems to work quite satisfactorily in com-

bination with a preprocessing step as follows:

� Sort all rules induced by the learner in descending order of their estimated

accuracy.

� Starting with an empty theory, always add the next best rule to the current

theory as long as the MDL estimate improves, i.e. a better compression is

achieved.

The output of this algorithm is a subset of all the originally induced rules

which will be a good, if not the best theory for the training data in terms of

the currently available attributes. Exactly this subset will be used to determine

which attributes are to be kept and which are to be dropped for the next cycle

of induction: exactly those (original and constructed) attributes are kept which

appear in at least one rule of the selected theory. This subset of rules is also used

as input for the constructive induction module.

Globally, CiPF does a kind of hill-climbing in the representation space, com-

puting new attributes and new sets of rules utilizing these attributes as long as the

7

overall cost estimate (as measured by the above MDL formula) improves. This

last theory is then the overall output of CiPF. Empirically this simple strategy

seems to produce good results, as indicated by the experiments reported in the

next section and it is e�ectively computable. Also, to repeat its two main ad-

vantages, the strategy includes no user-settable parameters, and also it does not

require a secondary training set (train-test set), like e.g. AQ17-MCI, to evaluate

the quality of constructed attributes.

4 Experiments

In the experiments reported here, CiPF's performance was compared to C4.5 on

the same training and test sets. C4.5 is a very sophisticated, production quality

selective learner. It was run with default settings and the results reported are for

pruned decision trees

3

on the test set.

4.1 Monk's Problems

The Monk's problems [Thrun et al. 91] are three arti�cially constructed problems

in a space formed by six nominal attributes having from two to four possible

values. These three problems are abbreviated to Monk1, Monk2, and Monk3

in the following. CiPF in its current status gives mixed results for the Monk's

problems. From table 1 we see that Monk1 was solved without problems. CiPF

�nds the correct theory:

true <= (jacket_color = red)

true <= (head_shape = body_shape)

This is no surprise as this example is simple and CiPF has the necessary

constructive operator compare attributes of the same type at its disposal. C4.5

achieves only 72.4% accuracy for the pruned decision tree, but is able to reach

the full 100% for the rules extracted from this tree.

Performance on Monk2 is far from optimal, though. Comparison with C4.5,

which is better, but also far from optimal, seems to indicate missing constructive

operators. We believe that full negation and disjunction (currently not available

in CiPF) may solve Monk2. Alternatively a student at our department is cur-

rently �nishing work [Kramer 93] on an interesting general constructive operator

computing extensional products of nominal attributes. This operator seems to be

able to solve Monk2 very well.

Results for Monk3 are quite good, but seem to indicate that CiPF has a

problem with noise. Potential answers to noise in CiPF will be briey discussed

3

Typically pruned trees yielded better accuracy than both unpruned trees and rule sets

generated from the tree.

8

CiPF �rst CiPF �nal C4.5

Monk1 70.78 100 72.4

Monk2 66.92 80.7 83.3

Monk3 92.36 97.2 97.2

Table 1: Monk's Problems: Accuracies (percentages) for CiPF after the �rst and

the �nal cycle of induction and for C4.5.

#Errors Accuracy

CiPF 14.6 81.29

C4.5 13.3 82.95

Table 2: Hepatitis Data: Average number of errors and average accuracy for ten

test runs for CiPF and C4.5.

in the next major section. For C4.5 the unpruned tree is slightly better than

the pruned tree, which is not what we expected knowing that the training set

exhibits 5% class noise.

To give an impression of both the inferiority of the simple learner currently

used in CiPF and the strong abilities of the CI component we have included into

table 1 accuracies of the theories induced in the �rst step (just before the �rst con-

structive induction step is taking place). Typically these values are signi�cantly

worse than those of C4.5, but with the help of the strong CI component CiPF

is able to reach and sometimes even outperform C4.5's predictive performance!

4.2 Two Medical Datasets

For another set of experiments we used two medical datasets, one being the hep-

atitis data available from the Machine Learning Archive at Irvine, the second be-

ing numerical descriptions extracted from cardiac thallium scintigrams recorded

at the University of Vienna Medical School [Prem et al. 93]. The �rst set exhibits

a good mixture of numerical and boolean attributes with a few values missing.

The second set is of comparable size (159 examples total), but uses 45 numerical

attributes, which we strongly believe to be redundant. The classi�cation task

for both datasets is to separate ill from healthy patients. Experiments were per-

formed with the examples split randomly into equally sized training and test sets

for ten runs. Tables 2 and 3 show the respective results of these experiments.

The absolute number of errors translate into an average error of 18.71% and

17.05% for CiPF and C4.5 for the hepatitis data, and into 22.87% and 29.13%

9

Run 1 2 3 4 5 6 7 8 9 10 Average #Errors

CiPF 19 15 20 22 16 14 20 20 19 18 18.3

C4.5 23 22 25 22 20 21 29 30 19 22 23.3

Table 3: Scan Data: Absolute number of errors and their average for ten test

runs for CiPF and C4.5.

average error respectively for the scan data. So CiPF performs slightly worse

than C4.5 on the �rst set, but signi�cantly better on the second set. We attribute

C4.5's better performance on the hepatitis data to both C4.5's sophisticated

handling of noise and to the fact that CiPF's general medical heuristic is not

applicable here.

4

For the scan data, in almost all cases CiPF is signi�cantly

better than C4.5. This is a direct consequence of CiPF's constructive abilities.

In all these test runs CiPF either constructs an attribute at most one attribute

value is \out of the healthy range" (see above description of the 3�-heuristic),

which is a good way of characterizing healthy people. Or CiPF constructs the

opposite attribute more than a certain number of attribute values (typically 5)

are \out of the healthy range", which is well-suited for characterizing people

exhibiting serious health problems.

4.3 Inductive Logic Programming Exercises

Encouraged by the original INDUCE system [Dietterich & Michalski 81], which

was able to learn structural descriptions from examples, and by the current suc-

cess of LINUS [Dzeroski & Lavrac 91], which essentially translates ILP problems

into an attribute-value representation for e�cient induction, we started to exam-

ine two classical ILP exercises: illegal king-rook-king (KRK) chess endgame po-

sitions [Fuernkranz 93] and �nite element mesh design [Dolsak & Muggleton 92],

[Dzeroski & Bratko 92].

KRK is very easily represented in CiPF. The example tupels of the relation

illegal/6 are transformed into six basic attributes encoding rank and �le of all

three pieces. Background knowledge in the original formulation consists of de�ni-

tions for =/2, less than/2 and adjacent/2. Only the last predicate adjacent/2

had to be encoded as a CI operator, as both Equal-To and Less-Than are pre-

supplied CI operators in CiPF. Induced theories usually resemble the approxi-

mate theories given in [Fuernkranz 93]. A sample theory derived by CiPF from

100 training examples looks as follows:

4

Still CiPF discovers regularities missed by C4.5, like that all female patients are healthy.

This can be attributed to directly learning rules instead of decision trees.

10

FOIL mFOIL GOLEM CiPF

A 17 22 17 21

B 5 12 9 13

C 7 9 5 10

D 0 6 11 23

E 5 10 10 26

Sum 34 59 54 93

Table 4: Mesh Design: Number of Correctly Classi�ed Examples.

[1] illegal <= (BLACK-KING-FILE = WHITE-ROOK-FILE)

[2] illegal <= (BLACK-KING-RANK = WHITE-ROOK-RANK)

[3] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and

(adjacent BLACK-KING-RANK WHITE-KING-RANK)

[4] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and

(BLACK-KING-RANK = WHITE-KING-RANK)

This approximate theory was tested with 5000 test examples yielding an ac-

curacy of 98.4%. This is consistent with [Fuernkranz 93] which proves a theory

consisting of the �rst three clauses 1,2,3 to be 98.451% correct.

For the mesh design domain we did a manual translation along the lines im-

plicitly suggested in [Dolsak & Muggleton 92]. All the one-argument predicates

were translated into three nominal attributes with the appropriate sets of possible

values. Ignoring all two-argument attributes encoding structure (neighbor/2,

opposite/2 and same/2) CiPF achieves the surprising results shown in table 4

(results for FOIL,mFOIL,andGOLEM were taken from [Dzeroski & Bratko 92]).

One sample rule induced covering 22 positive and no negative example looks

like the following:

N=1 <= (LOAD = ONE_SIDE_LOADED or NOT_LOADED) and

(EDGE-TYPE = NOT_IMPORTANT)

The ability to form appropriate subsets of possible values of an attribute

(called internal value disjunction in AQ17-derived systems) seems to provide

useful contructed attributes for this learning task. So CiPF without any struc-

tural information performs almost twice as well as FOIL, mFOIL, or GOLEM.

Still even 93 correctly classi�ed examples translate to less than 40% accuracy. So

11

there probably is a good chance of achieving much better results by means of a

more careful analysis of the mesh design problem itself.

For translating and using the complete original speci�cation automatically

we will have to encode constructive operators capable of recursively inspecting

objects linked to the object in focus and of summarizing properties of these ob-

jects. We are currently designing such operators. These would allow construct-

ing attributes like this node has a neighbor node with the property (edge-type

= fixed) or this node has at least two opposite nodes. Naturally the property

to be learned - number of �nite elements for this node in the mesh domain -

could also be represented as an attribute of the example available for inspection

by constructive operators. Thus for the mesh domain attributes like number of

�nite elements of my same neighbor could be constructed which e�ectively rep-

resent a kind of recursive de�nition. Once such recursive de�nitions are allowed,

additional control will be needed, e.g. to prevent the construction of cyclic at-

tributes useless for e�ective prediction. For instance an attribute the number of

�nite elements of my same neighbor's same neighbor would not make sense for

prediction, as it references the node in question itself. Pitfalls of recursion in ILP

are dealt with at length in [Cameron-Jones & Quinlan 93].

A constructive induction system equipped with such operators might o�er an

alternative perspective

5

on ILP, possibly providing a more natural �t for data

in object-oriented representations or databases.

5 Conclusions, Related Work, and Further Re-

search

Incorporating the MDL Principle into CiPF as the single, uniform heuristic for

evaluating theories and thereby implicitly guiding constructive induction proved

valuable. The MDL Principle combines both accuracy and complexity of a theory

into a single uniform measure. Thus CiPF does not require any ad-hoc measure-

ments or user-de�ned evaluation functions of possibly questionable quality and

can nonetheless use all of the available training data for induction. Other ap-

proaches (e.g. AQ17-MCI) have to resort to splitting the training data into two

or more sub-parts performing some sort of cross-validation on these sub-parts.

Such an approach may be more expensive computationally and may miss regular-

ities in the data. Nonetheless, on a systems level, CiPF certainly is most closely

related to and inuenced by the multi-strategy system AQ17-MCI. The main

di�erence is the way control is imposed on constructive induction. CiPF eagerly

tries to use every opportunity for constructive induction until the MDL principle

stops this cycling process. AQ17-MCI takes a di�erent approach: relying on a

set of meta-rules [Aha 92], it tries to identify the need (when) and the directions

5

at least at the level of implementation

12

(how) for a change in the representation space. On the operator sideAQ17-MCI

seems to be more mature especially regarding so-called deconstructors. It would

certainly be interesting to compare both systems on some tasks using the same

set of operators in both systems. A further di�erence is our aiming at emulating

and extending ILP in a constructive induction framework.

Principled Constructive Induction is an interesting concept introduced in

[Mehra et al. 89]. Geometric interpretation of the various constructors and the

notion of linear separability is used to guide the selection of appropriate construc-

tors. These ideas might have interesting implications for CiPF, too.

The problem of language �tting is also mentioned and discussed in [Matheus 90]

in the context of the CITRE system and a framework for constructive induction.

This approach uses additional background knowledge in two di�erent ways when

constructing attributes. Domain-knowledge constraints are used to eliminate

less desirable new attributes beforehand and domain-dependent transformations

generalize newly constructed attributes even further in ways meaningful to the

current problem. Though these ideas do not currently �t directly into CiPF's

schema for constructive induction, they might still point to valuable further im-

provements possible for CiPF.

Our further research directions for CiPF include:

� Replacing all other heuristics currently employed byCiPF (e.g. the Laplace

estimate as a search heuristic guiding the selective learner) by the MDL

principle [Tangkitvanich & Shimura 93]. We have already implemented a

simple selective learner guided by MDL instead of some accuracy estimator

plus stopping criterion. Preliminary experiences seem to suggest robustness

regarding noise but a bias towards over-general theories.

� Identifying and implementing additional generally useful constructive op-

erators.

� Improving the selective learner: for instance, the stopping criterion could be

modi�ed to take into account the results of the evaluator. From the worst

rule still included in the current rule set according to the MDL principle a

stronger stopping criterion (like minimal accuracy) could be estimated.

An additional endeavour is the search for learning problems at the right level of

di�culty. Unfortunately, most of the public machine learning databases at Irvine

seem to be easy [Holte 93]. Therefore the best one can hope for for a system like

CiPF (and other constructive learners) is to be on a par with sophisticated se-

lective learners (e.g. C4.5) for such databases. We are looking for more di�cult

and complex learning tasks (tasks where it is hard to de�ne an adequate repre-

sentation language beforehand), which will allow constructive induction systems

to really show their abilities.

13

Acknowledgements

This research is sponsored by the Austrian Fonds zur F�orderung der Wissenschaftlichen

Forschung (FWF) under grant number P8756-TEC. Financial support for the Austrian

Research Institute for Arti�cial Intelligence is provided by the Austrian Federal Min-

istry of Science and Research. I would like to thank Gerhard Widmer for constructive

discussion and help with this paper.

References

[Aha 92] Aha D.W.: Generalizing from Case Studies: A Case Study, in Sleeman D.

and Edwards P.(eds.), Machine Learning: Proceedings of the Ninth International

Workshop (ML92), Morgan Kaufmann, San Mateo, CA, pp.1-10, 1992.

[Angluin & Laird 87] Angluin D., Laird P.: Learning from Noisy Examples, Machine

Learning, 2(4), 343-370, 1987.

[Bloedorn et al. 93] Bloedorn E., Wnek J., Michalski R.S.: Multistrategy Construc-

tive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of

the Second International Workshop on Multistrategy Learning (MSL-93), Harpers

Ferry, W.VA., pp.188-206, 1993.

[Cameron-Jones & Quinlan 93] Cameron-Jones R.M., Quinlan J.R.: Avoiding Pitfalls

When Learning Recursive Theories, in Bajcsy R.(ed.), Proceedings of the Thir-

teenth International Joint Conference on Arti�cial Intelligence, Morgan Kauf-

mann, San Mateo, CA, pp.1050 -1057, 1993.

[Dietterich & Michalski 81] Dietterich T.G., Michalski R.S.: Inductive Learning of

Structural Descriptions: Evaluation Criteria and Comparative Review of Selected

Methods, Arti�cial Intelligence, 16(3), 257-294, 1981.

[Dolsak & Muggleton 92] Dolsak B., Muggleton S.: The Application of Inductive Logic

Programming to Finite-Element Mesh Design, in Muggleton S., Inductive Logic

Programming, Academic Press, London, U.K., 1992.

[Dzeroski & Lavrac 91] Dzeroski S., Lavrac N.: Learning Relations from Noisy Ex-

amples: An Empirical Comparison of LINUS and FOIL, in Birnbaum L.A. and

Collins G.C.(eds.), Machine Learning: Proceedings of the Eighth International

Workshop (ML91), Morgan Kaufmann, San Mateo, CA, pp.399-402, 1991.

[Dzeroski & Bratko 92] Dzeroski S., Bratko I.: Handling Noise in Inductive Logic Pro-

gramming, Proceedings of the 2nd International Workshop on Inductive Logic

Programming, 1992.

[Fuernkranz 93] Fuernkranz J.: A numerical analysis of the KRK domain. Working

Note, 1993. Available upon request.

[Holte 93] Holte R.C.: Very Simple Classi�cation Rules Perform Well on Most Com-

monly Used Datasets, Machine Learning, 11(1), 1993.

14

[Kerber 92] Kerber R.: ChiMerge: Discretization of Numeric Attributes, in Proceed-

ings of the Tenth National Conference on Arti�cial Intelligence, AAAI Press/MIT

Press, Menlo Park, pp.123-128, 1992.

[Kramer 93] Kramer S.: CN2-MCI: Ein zweistu�ges Verfahren f�ur konstruktive Induk-

tion, Master's thesis in preparation, Vienna, 1993.

[Lavrac et al. 92] Lavrac N., Cestnik B., Dzeroski S.: Search heuristics in empirical

Inductive Logic Programming, in Workshop W18, Logical Approaches to Machine

Learning, ECAI-92, Vienna, 1992

[Matheus & Rendell 89] Matheus C.J., Rendell L.A.: Constructive Induction On De-

cision Trees, in Proceedings of the Eleventh International Joint Conference on

Arti�cial Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 645-650,

1989.

[Matheus 90] Matheus C.J.: Adding Domain Knowledge to SBL Through Feature Con-

struction, in Proceedings of the Eighth National Conference on Arti�cial Intelli-

gence (AAAI -90), AAAI Press/MIT Press, Menlo Park, CA, pp.803-808, 1990.

[Mehra et al. 89] Mehra P., Rendell L.A., Wah B.W.: Principled Constructive Induc-

tion, in Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 651-656, 1989.

[Muggleton 87] Muggleton S.: Duce, An Oracle-based Approach to Constructive In-

duction, in Proceedings of the 10th International Joint Conference on Arti�cial

Intelligence (IJCAI-87), Morgan Kaufmann, Los Altos, CA, p.287-292, 1987.

[Muggleton & Buntine 88] Muggleton S., Buntine W.: Machine Invention of First Or-

der Predicates by Inverting Resolution, in Laird J.(ed.), Proceedings of the Fifth

International Conference on Machine Learning, Univ.of Michigan, Ann Arbor,

June 12-14, Morgan Kaufmann, San Mateo, CA, pp.339-352, 1988.

[Prem et al. 93] Prem E., Mackinger M., Dor�ner G., Porenta G., Sochor H.: Concept

Support as a Method for Programming Neural Networks with Symbolic Knowl-

edge, in Ohlbach H.J.(ed.), GWAI-92: Advances in Arti�cial Intelligence, Springer,

Berlin, Lecture Notes in AI, Vol.671, 1993.

[Quinlan & Rivest 89] Quinlan J.R, Rivest R.L.: Inferring Decision Trees using the

Minimum Description Length Principle, in Information and Computation, 80:227-

248, 1989.

[Quinlan & Cameron-Jones 93] Quinlan J.R., Cameron-Jones R.M.: FOIL: A Midterm

Report, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.3-

20, 1993.

[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, CA, 1993.

15

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, in Automatica,

14:465-471, 1978.

[Tangkitvanich & Shimura 93] Tangkitvanich S., Shimura M.: Learning from an Ap-

proximate Theory and Noisy Examples, in Proceedings of the Eleventh National

Conference on Arti�cial Intelligence (AAAI -90), AAAI Press/MIT Press, Menlo

Park, CA, pp.466-471, 1993.

[Thrun et al. 91] Thrun S.B., et.al.: The MONK's Problems: A Performance Com-

parison of Di�erent Learning Algorithms, CMU Tech Report, CMU-CS-91-197,

1991.

[Watanabe & Rendell 91] Watanabe L., Rendell L.: Learning Structural Decision

Trees from Examples, in Proceedings of the 12th International Conference on

Arti�cial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.770-776, 1991.

16

