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Abstract

The research reported in this paper describes Fossil, an ILP system

that uses a search heuristic based on statistical correlation. Several inter-

esting properties of this heuristic are discussed, and a it is shown how it

naturally can be extended with a simple, but powerful stopping criterion

that is independent of the number of training examples. Instead, Fossil's

stopping criterion depends on a search heuristic that estimates the utility

of literals on a uniform scale. After a comparison with Foil and mFoil in

the KRK domain and on the mesh data, we outline some ideas how Fossil

can be adopted for top-down pruning and present some preliminary results.

1 Introduction

Being able to deal with noisy domains is a must for learning algorithms

that are meant to learn concepts from real-world data. Signi�cant e�ort

has been made into investigating the e�ect of noisy data on attribute-value

learning algorithms (see e.g. [Quinlan, 1993, Bratko and Kononenko, 1986,

Breiman et al., 1984, Mingers, 1989a]). Not surprisingly, noise handling meth-

ods have also entered the rapidly growing �eld of Inductive Logic Programming

[Lavra�c and D�zeroski, 1993]. Linus [Lavra�c and D�zeroski, 1992] relies directly

on the noise handling abilities of decision tree learning algorithms, others, like

mFoil [D�zeroski and Bratko, 1992a] and REP [Brunk and Pazzani, 1991], have

adapted well-known methods from attribute-value learning for the ILP frame-

work.

This paper presents Fossil, a Foil-like algorithm that uses a search heuris-

tic based on statistical correlation (section 2). One of the nice features of this

heuristic is that it gives a reliable measure of the heuristic value of a literal on an
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absolute and uniform scale. We show empirically that this feature can advanta-

geously be used to deal with noise by cutting o� all literals that have a heuristic

value below a certain threshold (section 3). We also present empirical evidence

that this threshold is robust, in the sense that a good value for it is independent

of the number of training examples and of the amount of noise in the data (sec-

tion 4). After comparing Fossil to Foil and mFoil we introduce several ideas

for adapting pruning methods from decision tree learning in a top-down fashion

along with some preliminary results (sections 5 and 6) and �nally draw some

conclusions (section 7).

2 Fossil's search heuristic

2.1 The Correlation Heuristic

Fossil's evaluation function is based on the concept of statistical correlation.

The correlation coe�cient of two random variables X and Y is de�ned as

corr(X;Y ) =

E((X � �

X

)(Y � �

Y

))

�

X

� �

Y

=

E(X � Y )� �

X

� �

Y

�

X

� �

Y

(1)

where � and � are expected value and standard deviation, respectively, of the

random variables X and Y .

This correlation coe�cient measures the degree of dependence of two series of

points on a scale from �1 (negative correlation) to +1 (positive correlation). In

the following description of its adaptation as a search heuristic for the Inductive

Logic Programming algorithm Foil, we will follow the notational conventions

used in [Lavra�c et al., 1992].

Suppose Fossil has learned a partial clause c. Let the set of tuples T

c

of

size n(c), containing n

�

(c) positive and n

	

(c) negative instances, be the current

training set. We arbitrarily assign the numeric values +1 and �1 for the logical

values true and false. The variable X in (1) now represents the multiset V (c) of

the signs (truth values) of the tuples in T

c

. The variable Y denotes the multiset

V (L) of the truth values of a candidate literal L. A literal L is said to be true,

whenever there exists a tuple in T

c

that satis�es L; if L introduces new variables,

they must have at least one instantiation that makes the literal true. Note that

V (c) and V (L) naturally contain the same number of values.

The expected values in (1) will be estimated by the mean values of V (c) and

V (L) respectively. Standard deviation will be approximated by the empirical

variance. Thus we get
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The last remaining term to be computed is E(V (c)�V (L)). If both the truth

values v(c) and v(L) of a tuple and the literal under scrutiny have the same sign,

then v(c)�v(L) = 1. Conversely, if one is positive and the other negative we have

v(c)� v(L) = �1. If we denote the number of positive tuples yielding a negative

value for the literal L with n

�

(c)

	

(and analogously de�ne n

�

(c)

�

, n

	

(c)

�

and

n

	

(c)

	

), we get

E(V (c)� V (L)) =

n

�

(c)

�

+ n

	

(c)

	

� n

	

(c)

�

� n

�

(c)

	

n

The partial results of above now only need to be substituted into the formula

for the correlation coe�cient (1). As �

c

and �

c

only need to be evaluated once

for each tuple set T

c

, evaluation of this formula is not as complicated as it may

seem at �rst sight. Also notice that with this approach no separate calculation

for negated literals has to be performed, as a high negative correlation indicates

a high dependence on the negated literal.

The literal L

c

with the highest absolute value of the correlation coe�cient (or

:L

c

if the sign of the coe�cient is negative) is then chosen to extend c to form

a new clause c

0

. This is based on the assumption that its high correlation with

the current training set T

c

indicates some form of causal relationship between the

target concept and L

c

. The set T

c

is then extended to a new set of tuples T

c

0

(which in general will have a di�erent size) and the process continues as described

in [Quinlan and Cameron-Jones, 1993].

2.2 Interesting features of the Correlation Heuristic

The information gain heuristic used in C4.5 [Quinlan, 1993] and Foil has

been extensively compared to other search heuristics in decision tree generation

[Mingers, 1989b, Buntine and Niblett, 1992] and Inductive Logic Programming

[Lavra�c et al., 1992]. The general consensus seems to be that it is hard to im-

prove on this heuristic in terms of predictive accuracy in learning from noise-free

data. While our results con�rm this, we nevertheless claim that Fossil's evalu-

ation function has some important features that distinguish it from the weighted

information gain heuristic used in Foil.

� In Foil, the heuristic value of each literal and of its negation have to be

calculated separately. Fossil does this in one calculation, as positive cor-

relation indicates a causal relationship between the tuple set and the literal

under scrutiny, while negative correlation indicates a causal relationship

between the tuple set and the negation of the literal.

� The correlation function is symmetric and gives equal consideration to cov-

ering many positive and excluding many negative examples.

3



� The correlation between a tuple set and a literal that has at least one

true grounding for each tuple

1

is unde�ned, because �

L

will be 1 and

thus �

L

will be 0. This allows the user to take care of the problem

in a exible way. The experiments reported in this paper ignored this

problem by treating unde�ned cases as having correlation 0. De�ning

the heuristic value of determinate literals as 1 would put all determinate

into the clause body. Irrelevant literals could be removed later in a post-

processing phase. Values between 0 and 1 result in the behavior described

in [Quinlan and Cameron-Jones, 1993]: until a literal with a correlation

above a pre-set value is found, determinate literals will be added to the

clause body.

� Fossil's correlation coe�cient | after taking absolute values and choos-

ing the appropriate, positive or negative, literal | allows to compare the

candidate literals on a uniform scale from 0 to 1.

How this last property of the correlation heuristic can be used for a simple, but

powerful criterion to distinguish noise from useful information will be described

in the next section.

3 The Cuto� Stopping Criterion

The value of Foil's evaluation function is dependent on the size of the tuple set.

The same literal will have di�erent information gain values in di�erent example

set sizes of the same concept, although its relative merit compared to its competi-

tors will be about the same. Fossil on the other hand can judge the relevance of

a literal on an absolute basis. This allows the user to require the literals that are

considered for clause construction to have a certain minimum correlation value

| the cuto� .

This can be used as a simple, but robust criterion for �ltering out noise, as it

can be expected that tuples originating from noise in the data will only have a

low correlation with predicates in the background knowledge. If no literal with

a correlation above the cuto� can be added to the current clause, this clause is

considered to be complete. Similarily, if no literal can be found that can start a

new clause, the concept de�nition is considered to be complete. Note that it may

happen that Fossil \refuses" to learn anything in cases where no predicate in

the background knowledge has a signi�cant correlation with the training data.

2

1

This is a super-set of Quinlan's determinate literals, but it causes the same problems as

described in [Quinlan, 1991].

2

This has actually happened several times, and is evident in the result with 50% Noise (i.e.

random classi�cation) in table 2, where Fossil did not learn a single clause in any of the 10

training sets.

4



If a clause that cannot be further extended still covers negative examples,

Fossil follows a simple strategy: If the clause covers more positive than negative

examples, it is retained, and the examples that are covered will be removed from

the tuple set. If the clause covers more negative than positive examples, it will

not be added to the concept description, and only the positive examples that

would have been covered by this clause will be removed. This is in contrast to

Foil, where learning stops entirely as soon as a clause is found that covers less

than 80% positive examples. In that case Foil leaves the remaining positive

examples uncovered, while Fossil further thries to �nd clauses that cover some

of them. The fact that the learned clauses always have to cover more positive

than negative examples guarantees that the algorithm used in Fossil can never

produce a bigger error on the training set than the method used in Foil. It was

mainly this improvement that lead to a relatively good performance of Fossil

at tests on the mesh data (see section 4.5).

4 Experimental Evaluation

4.1 Setup of the Experiments

For the experiments in this paper we have used the domain of recognizing illegal

chess positions in the KRK end game [Muggleton et al., 1989]. The goal is to

learn the concept of an illegal white-to-move position with only white king, white

rook and black king on the board. The goal predicate is illegal(A,B,C,D,E,F)

where the parameters correspond to the row and �le coordinates of the pieces in

the above order. Background knowledge consists of the predicates X < Y, X = Y

and adjacent(X,Y)

3

. A more elaborate description of this domain and a correct

domain theory can be found in the Appendix. Typing constraints were used to

speed up the search and recursion was not allowed for e�ciency reasons.

Class noise in the training instances was generated according to the Classi-

�cation Noise Process described in [Angluin and Laird, 1988]. In this model a

noise level of � means that the sign of each example is reversed with a prob-

ability of �. Note that this di�ers from most of the results in the ILP liter-

ature, where a noise level of � means that, with a probability of �, the sign

of each example is randomly chosen. Thus a noise level of � in our experi-

ments is roughly equivalent to a noise level of 2� in the results reported in

[Lavra�c and D�zeroski, 1992, D�zeroski and Bratko, 1992b]. Noise was added in-

crementally, i.e. instances which had a reversed sign at a noise level �

1

also had

a reversed sign at a noise level �

2

> �

1

. Similarly, training sets with n examples

were fully contained in training sets with m > n examples.

In all experiments the induced rules were tested against sets of 5000 randomly

chosen instances. It also proved useful to record the number of clauses in the

3

Our de�nition of adjacent actually was adjacent or equal.

5



induced concept and the average number of literals per clause to measure the

complexity of the learned concept description.

4.2 Finding a good Cuto� Value

The �rst series of experiments aimed at determining an appropriate value for this

parameter for further experimentation. 10 training sets of 100 instances each were

used at three di�erent noise levels (5%, 10% and 20%). 6 di�erent settings for

the cuto� parameter C were used. The results averaged over the 10 runs are

reported in table 1 and plottet in �gure 1.

Cuto�

Noise 0.0 0.1 0.2 0.25 0.3 0.4

Accuracy 93.05 93.05 93.32 93.58 95.57 93.86

5% Clauses 6.3 6.3 6.2 5.8 4.2 2.7

Lits/Clause 2.25 2.25 2.25 2.19 2.02 1.87

Accuracy 87.77 87.77 90.0 93.44 93.52 83.18

10% Clauses 8.2 8.2 6.3 4.5 3.8 1.8

Lits/Clause 2.74 2.74 2.52 2.24 2.24 1.53

Accuracy 80.21 80.21 85.21 86.87 87.00 72.48

20% Clauses 11.4 11.4 6.0 4.1 3.2 0.7

Lits/Clause 3.09 3.09 2.80 2.76 2.67 0.85

Table 1: Experiments with di�erent settings for the Cuto� .

The following observations can be made from these graphs:

� A good setting for C in this domain seems to be somewhere around 0.3

for all three noise levels. Coincidentially, the learned concepts are of about

equal complexity at this point.

� The curve for the predictive accuracy is U-shaped, similar to some results

from Decision Tree learning (see e.g. [Breiman et al., 1984]).

� There is a transition from over�tting the noise to over-generalizing the

rules. A low setting of C has a tendency to �t the noise, because most of

the literals will have a correlation above the threshold.

4

Conversely, a too

optimistic setting of C results in over-generalization as too few literals have

a correlation above the threshold.

� The complexity of the learned concepts monotonically decreases with an

increase of the cuto� parameter.

4

A setting of C = 0 results in learning a 100% correct rule for explaining the training set.
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Figure 1: Experiments with di�erent settings for the Cuto� .
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� The inuence of a bad choice of the cuto� is more signi�cant in data con-

taining a larger amount of noise.

� Lowering the setting of the cuto� below 0.1 doesn't seem to change the

result.

4.3 Comparison with Foil

We performed two experiments to compare Fossil's performance to the per-

formance of Foil. In the �rst series we compared the behavior of the two

systems with 10 training sets of 100 instances each at di�erent noise lev-

els, which has been the standard procedure for evaluating many ILP sys-

tems [Quinlan, 1990, D�zeroski and Lavra�c, 1991, D�zeroski and Bratko, 1992b,

Muggleton et al., 1989]. In the second experiment we evaluated both programs at

a constant noise level of 10%, but with an increasing number of training instances.

According to the results of the previous experiments we set C = 0:3 and never

changed this setting.

Comparison at di�erent noise levels

In this experiment we compared Foil4 to Fossil at di�erent noise levels. In

order to have a fair comparison to Fossil where backtracking is not implemented,

we used two versions of Foil, regular Foil4 and a new version, Foil-NBT,

where Foil4's extensive mechanisms of backtracking and regrowing of clauses

were not allowed. Surprisingly this version performed better than the original

Foil4 in noisy data as can be seen from the results of table 2.

Di�erent Noise

Noise Levels 0% 5% 10% 15% 20% 25% 30% 50%

Accuracy 98.32 95.26 92.12 90.26 85.21 79.83 71.53 53.00

Foil4 # Clauses 3.5 4.2 5.4 5.9 5.7 6.6 8.0 7.9

Lits/Clause 1.64 1.98 2.41 2.47 2.66 2.98 3.03 3.45

Accuracy 98.11 95.00 92.98 91.76 87.12 79.42 76.32 55.33

Foil-NBT # Clauses 3.5 4.1 4.2 4.2 4.5 5.4 5.0 5.2

Lits/Clause 1.64 1.98 2.34 2.48 2.67 2.80 2.79 3.08

Accuracy 98.54 95.57 93.52 92.83 87.00 81.63 70.59 (67.07)

Fossil (0.3) # Clauses 3.7 4.3 3.8 4.2 3.2 2.7 0.7 0.0

Lits/Clause 1.62 2.02 2.24 2.29 2.67 2.69 0.85 0.0

Table 2: A Comparison of Foil and Fossil on di�erent levels of noise.

An analysis of the result shows that Fossil performs best in most of the tests,

but no signi�cant di�erence between Foil-NBT and Fossil can be found. A
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comparison of the average number of induced clauses and of the average literals

per clause shows evidence that Fossil over-generalized at the high noise levels.

A lower value of the cuto� parameter may result in better performance in the

case of 30% noise, although it is unlikely that a useful theory would be learned.

An interesting detail is that Fossil did not learn anything at a noise level of

50%, i.e. with totally random data. Thus the cuto� mechanism seems to be a

primitive, but e�cient means of distinguishing noise from useful information.

On the other hand, Foil4 seems to perform worse than both Foil-NBT and

Fossil. The complexity of the concepts learned by Foil4 increases with the

amount of noise in the data, which is clear evidence for over-�tting noise in the

data. The next experiment was designed to con�rm this hypothesis.

Comparison at di�erent training set sizes

In this series of experiments we compared Foil without backtracking to Fossil

at di�erent training set sizes, each having 10% noise. We decided to use Foil-

NBT instead of Foil4, because it performed better in the previous series of tests.

Besides, the version without backtracking naturally runs faster, which proved to

be important. However, we have done a few sample runs with Foil4 to con�rm

that its results would not be qualitatively di�erent from those of Foil-NBT.

Again, we used 10 di�erent training sets and averaged the results. The out-

comes of these experiments are summarized in table 3 and �gure 2 (the Minimal

Error curves will be explained in section 5).

Di�erent Training Set Training Set Size

Sizes (10% Noise) 100 250 500 750 1000 2000

Accuracy 92.98 90.97 92.63 93.58 94.02 |

Foil-NBT Clauses 4.2 7.7 11.5 16.7 22.0 |

Lits/Clause 2.34 3.31 3.61 3.89 4.15 |

Accuracy 93.52 92.68 92.79 96.33 98.05 98.41

Fossil (0.3) Clauses 3.8 3.7 3.1 3.0 3.0 3.0

Lits/Clause 2.24 3.01 2.63 1.94 1.5 1.4

Table 3: A Comparison of Foil and Fossil with di�erent training set sizes

The most important �nding is that Foil clearly �ts the noise, while Fos-

sil avoids this and learns a slightly over-general, but much more useful theory

instead. Foil's �tting the noise has several disadvantages:

Accuracy: The more examples there are in the noisy training set, the more spe-

cialized are the various clauses in the concept description, which decreases

the predictive ability of each clause learned by Foil.

5

5

This Problem is known as the Small Disjuncts Problem [Holte et al., 1989] and has re-
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illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F.

illegal(A,B,C,D,E,F) :- adjacent(A,E), adjacent(B,F).

Figure 3: An approximate theory that is 98.45% correct.

E�ciency: Foil grows an increasing number of clauses with an increasing num-

ber of literals. Also, several of the literals chosen to �t the noise introduce

new variables, which leads to an explosion of the size of the tuple set. In

fact, the C implementation of Foil could complete none of the ten experi-

ments with 2000 training examples within 500 minutes of CPU time, while

the PROLOG implementation of Fossil only needed about 15 minutes of

CPU time for each of the training sets, running on the same machine.

Understandability: It is a widely acknowledged principle that the more com-

plex a concept de�nition is, the less understandable it will be, in particular

when both de�nitions describe the same data set. While the descriptions

induced by Foil for the large training sets were totally incomprehensible

to the author, Fossil converged towards the simple, approximate theory

of �gure 3.

6

In fact, in 8 of 10 training sets with 2000 examples exactly

this theory was learned, while in the other two the literal A \== C had

been added to the �rst clause, which still gives a 97.98% correct theory (see

Appendix).

What seems to be responsible for the drastic increase in the complexity of

the learned clauses is that Foil's stopping criterion [Quinlan, 1990] is dependent

on the size of the training set. In the KRK domain it performs very well on

sample sizes of 100 training examples. The more this number increases, the more

bits are allowed for the theory to explain the data. However, more examples do

not necessarily originate from a more complex theory. In fact, Foil very often

chooses the same literals as Fossil for the �rst clauses of its concept de�nition,

but then continues to add literals and clauses, where Fossil stops.

Fossil uses a statistical stopping criterion based on the assumption that

each literal in an explanation must have a signi�cant correlation with the set

of training examples. Statistical measures usually improve with the size of the

training sets and so does the quality of the rules induced by Fossil. While both

cently been addressed with an algorithm based on Foil using probabilistic concept descriptions

[Ali and Pazzani, 1993].

6

This theory correctly classi�es all but 4060 of the 262,144 possible domain examples

(98.45%). 2940 positions (1.12%)with WK and WR on the same squares and 1120 positions

(0.43%) where the WK is between WR and BK on the same row or �le are erroneously classi�ed

(see Appendix). (Remember that we have de�ned adjacent to mean adjacent or equal).
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Foil and Fossil successively improve their predictive accuracy with increasing

training set sizes, only Fossil converges towards a useful theory.

4.4 Comparison with mFoil

mFoil [D�zeroski and Bratko, 1992a] is an algorithm based on Foil that has

adapted several features from the CN2 learning algorithm, such as the use of the

Laplace and m-estimate as a search heuristic and the use of signi�cance testing

as a stopping criterion [Clark and Boswell, 1991]. These methods have proved

very e�ective for noise handling. In addition mFoil uses beam search (default

beam width 5) and can make use of mode and type information to reduce the

search space, features that are scheduled to be incorporated into Fossil in the

near future. In our experiments mFoil was used to its full capacity.

The values of the m parameter were increased until a maximum performance

was reached in the sets of 100 training examples. We then used the same values

for testing with 1000 training examples. The results can be found in table 4.

mFoil Fossil

0.01 Lap 8 16 32 0.3

100 89.77 89.84 93.03 93.06 91.46 93.52

1000 91.54 92.51 95.70 97.10 98.48 98.05

Table 4: Comparison with mFoil

Fossil seems to be at least equal at an example size of 100, unless a con-

siderably better theory has been missed somewhere around m = 16. However,

mFoil's strengths come to bear at an example size of 1000. The results reported

here are probably not yet the peak of its performance, as with m = 32 mFoil

has learned some theories with a predictive accuracy of above 99% which Fossil

has not achieved so far.

7

Increasing the m further might well improve the bad

theories learned, while keeping the good ones.

However, one of the points to make here is that a good value of the m pa-

rameter is not only dependent on the amount of noise (as can be seen from the

results given in [D�zeroski and Bratko, 1992a] and [D�zeroski and Bratko, 1992b]),

but also on the size of the example set. Also the values for a good m found in

our experiments di�er considerably from the ones reported in the above papers

(as does the classi�cation accuracy for both Foil and mFoil). Fossil's cuto�

parameter on the other hand seems to do reasonably good at di�erent levels of

noise and at di�erent training set sizes.

7

We hope that introducing beam search and using mode and type information will narrow

the gap.
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In addition, section 5 illustrates some preliminary results for �nding good

theories without having to specify a good value for the cuto� parameter.

4.5 Experiments with the Mesh Data

We also tested Fossil on the mesh data that have been frequently used

lately. We followed the same data and the same testing procedure described

in [D�zeroski and Bratko, 1992a]. The results given there with Fossil's results

�lled can be found in table 5.

# Foil mFoil Golem Fossil

0.10 0.05 0.00

A 55 17 22 17 19 23 24

B 42 5 12 9 11 13 15

C 28 7 9 5 4 6 6

D 57 0 6 11 10 16 10

E 96 5 10 10 2 32 29

� 278 34 59 52 46 90 84

% 100 12 21 19 17 32 30

Table 5: Experiments in the Mesh Domain

It should be noted, however, that Fossil's good performance in this domain

is mostly due to the new minimum precision criterion described at the end of

section 3, because mFoil and Foil both leave a signi�cant amount of positive

examples uncovered. The results of Fossil were achieved by learning a large

amount of very complex rules at low settings of the cuto�.

At higher cuto�s (like 0.3) no rules have been learned, which means that no

predicate in the background knowledge was considered to be particularily impor-

tant for the given classi�cation task. This shows that, although a good value for

the cuto� parameter does not seem to depend on the noise level in a domain,

it does depend on the explanatory power of the predicates in the background

knowledge. That the background knowledge given in the mesh domain is appar-

ently not very good for ILP programs can be seen from the bad results of all

programs tried on it. [D�zeroski and Bratko, 1992a] discuss some of the problems

current algorithms have with this domain and propose some improvements.

The next sections will introduce some ideas how Fossil can be used without

having to specify a parameter.
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C = 1:0

Concepts = ;

while (C > 0:0) do

NewConcept = Fossil(Examples)

C = MaxPrunedCorr(NewConcept)

Concepts = Concepts [NewConcept

return(Concepts)

Figure 4: Algorithm to generate all Concept De�nitions learnable by Fossil

5 Generating a series of concept descriptions

5.1 Algorithm

As we have seen in section 4.4, mFoil and Fossil have many similarities. How-

ever, a big disadvantage of mFoil seems to be that it is not so easy to �nd

the right m. The easiest approach is to try the standard settings used in the

literature and choose the m that results in the best theory according to an in-

dependent test set. However, with this approach one has no guarantee that

one does not miss a better theory with a di�erent m. The results given in

[D�zeroski and Bratko, 1992a] also indicate that the choice of a good m depends

on the amount of noise in the data, while our experiments in section 4.4 also

suggest a dependence on the size of the training set. Fossil, on the other hand,

achieved reasonable results with one setting of the cuto� parameter on di�erent

noise levels as well as di�erent training set sizes.

Another advantage of the cuto� stopping criterion is | besides its e�ciency

and stability | its close relation to the search heuristic. While Foil (encoding

length restriction) and mFoil (signi�cance test) have to do separate calculations

to determine when to stop learning, Fossil needs to do a mere comparison

between the heuristic value of the best candidate literal and the cuto� value.

This allows the design of a very simple algorithm that can generate all theories

that could be learned by Fossil with any setting of the Cuto� parameter (see

�gure 4).

The basic idea behind the algorithm given in �gure 4 is the following: Assume

that you are trying to learn a theory with a Cuto� of 1.0. Unless there is one

literal in the background knowledge that perfectly discriminates between positive

and negative examples, we will not �nd a literal with a correlation of 1.0 and

thus learn an empty theory. During this run we can remember the literal with

the maximum correlation. If we now set the new cuto� to exactly this maximum

value, at least one literal (the one that produced this maximum correlation) will

be added to the theory.

8

At this new setting of the cuto� parameter we learn a

8

However, as our experience with Fossil shows, this is very often not the only change.
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new theory and again remember the maximumcorrelation of the literals that have

been cut o�. Obviously, for all values between the old cuto� and this maximum

value, the same theory would have been learned and we can choose this value as

the cuto� for the next run. It can also be expected that the new theory will be

less general than the previous one. This process is repeated until we have the

most special theory (with a cuto� of 0.0).

5.2 An Example

In �gure 5 we see an example how Fossil generates a series of theories from

1000 noise free examples. It is interesting to see how it steadily improves until it

arrives at a 99.32% correct theory. At this point, clauses (1), (5) and (6) try to

form a theory of when a position with white rook and black king on the same �le

is correct. Clause (1) is correct, while clauses (5) and (6) only �t the examples in

the training set (for a correct theory see Appendix). Clause (2) on the other hand,

says that all positions with white rook and black king on the same rank are illegal,

which is too general. After the next step of re�nement, Fossil now discovers a

new rule (2) which is symmetric to rule (1). In this theory it \forgets" about the

already learned clauses (4) to (6) of the last theory, because the starting literals of

those rules do not have a high enough correlation under the new circumstances

(rule (2) has changed). This goes hand in hand with a decrease in predictive

accuracy. Lowering the cuto� once again, however, recovers all of this rules and

generates a pretty accurate theory, which completely explains all of the training

examples. Consequently no further re�nement is possible.

5.3 Experiments

We have used the simple algorithm of �gure 4 in the following way: The training

sets were randomly split into two sets of equal size, one for training, one for

testing. From the training set a series of theories was learned (all theories down

to a cuto� of 0.15

9

) and from these the one with the best predictive accuracy on

the test set was selected as the �nal theory. The results | labeled with Minimal

Error | can be found in �gure 2.

It can be seen that this naive and simple method performs better than Foil,

although it practically only learns from half of the training examples. However,

it is not as good as Fossil with a �xed cuto�. The fact that the minimal error

method only uses half of the training examples for learning can also be seen from

Usually several more literals that have a correlation value higher than the new cuto� will be

added, because adding a literal to the current concept de�nition will change the search space

for subsequent literals. An example can be found in the next section.

9

This restriction was only made because of e�ciency reasons. From our experience with

previous tests we know that theories below 0.15 are usually very specialized and can be expected

to give a high classi�cation error.
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C = 1.0000

illegal(A,B,C,D,E,F) :- fail.

67.04 % correct (0 % positive, 100 % negative)

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not X < A.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- C = E, A < Y, not B < F.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not Z < A).

88.42 % correct (65.53 % positive, 99.67 % negative)

97.60 % correct (93.39 % positive, 99.67 % negative)

99.36 % correct (98.48 % positive, 99.79 % negative)

99.32 % correct (98.60 % positive, 99.32% negative)

97.42 % correct (92.60 % positive, 99.79 % negative)

C = 0.5101

C = 0.4995

C = 0.3871

C = 0.3927

C = 0.3607

Figure 5: Series of Theories generated from 1000 noise free examples
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the graph, where Fossil's rather bad learning results at a size of 500 training

examples reappear in the curve for the Minimal Error method at a training size

of 1000 examples, although there is some improvement in the absolute numbers.

An analysis has also shown that the curves for classi�cation accuracy vs.

cuto� are shaped similar to �gure 1b, which suggests that some form of hill-

climbing can be used to search this series of theories without having to generate

all of them (see section 6). However, that a naive search for a local maximum

may go wrong can be seen from �gure 5

6 Further Research: Top-Down Pruning

While the naive approach of section 5 might be too crude to be applied in

this way, we do think that these preliminary results have some potential for

re�nement. In particular we see some relationship to pruning methods used e.g.

in [Brunk and Pazzani, 1991] or [Srinivasan et al., 1992]. The major di�erence,

however, is that we get a series of di�erent concept descriptions in a general to

speci�c order (top-down) as opposed to pruning methods the generate a most

speci�c theory �rst and then successively generalize it (bottom-up).

We believe that the top-down approach has several advantages:

� With increasing example set sizes and increasing noise levels, generating a

most speci�c starting theory for pruning becomes more and more expensive

(as can be seen from the results of Foil in section 4.3). Generating a

simple general theory is much less expensive. In the experiments described

in section 5, typically less than 5 theories have to be generated to �nd the

optimum and in particular the most speci�c and most expensive theories

need not be learned.

� E�ciency can be further increased, as a clever implementation doesn't have

to learn an entirely new theory. It can use the part of the last theory up to

the point where the cuto� of the literal with the maximum correlation has

occured.

� Pruning and learning are interleaved in this algorithm and can inuence

each other.

� In Decision Tree Learning several methods for selecting the best tree

from a series of trees pruned to a di�erent degree have been developed

[Mingers, 1989a]. We hope that we can adapt some of these methods for re-

lational learning and in particular make them \incremental", i.e. interleave

them with the learning process in a way that generates as few unnecessary

and expensive theories as possible.
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� A weakness of all these algorithms is that they have to use part of the

training set for pruning. Due to the robustness of the cuto� parameter we

see a chance that a right value for the cuto� might be determined experi-

mentally on parts of the learning set (e.g. with cross-validation) and that

this information can be used to infer a good value for the parameter for

learning from the entire set.

7 Conclusion

The system described in this paper uses a new search heuristic based on statistical

correlation along with a simple stopping criterion. We see the main advantages

of this approach in its

E�ciency: There is no separate calculation of a heuristic function for negated

literals and the amount of computing involved in calculating the stopping

criterion is reduced to a mere comparison.

Robustness: A good value of the cuto� parameter seems to be independent of

the amount of noise and the number of training examples. It is nevertheless

domain-dependent.

Simplicity: In sections 5 and 6 we have outlined some promising approaches how

the simplicity of the cuto� parameter and its close relation to the search

heuristic might be used to interleave learning and pruning in a novel way.

However, mFoil seems to do a little better in terms of classi�cation error

provided that one can �nd the optimal value of them-parameter. Here we believe

that implementing a simple beam search may help to narrow the gap.
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Appendix: The KRK domain

Introduction

The KRK domain was �rst used in [Muggleton et al., 1989]. Since then

it has become a standard test bed for Inductive Logic Programming algo-

rithms such as Foil [Quinlan, 1990], Golem [Muggleton and Feng, 1990], Li-

nus [Lavra�c et al., 1991], mFoil [D�zeroski and Bratko, 1992a], NM-Golem

[Bain, 1991], and Fossil. The goal is to distinguish legal from illegal positions

in a chess endgame with white king, white rook and black king on the board,

i.e. to �nd a correct de�nition of the predicate illegal(A,B,C,D,E,F), the six

arguments of which are the �le and row resp. coordinates of the three chess pieces

in the above order.

illegal( A, B, C, D, E, F) :- A == C, B == D.

% (1) WK and WR on same square.

illegal( A, B, C, D, E, F) :- C == E, D == F.

% (2) BK and WR on same square.

illegal( A, B, C, D, E, F) :- adjacent( A, E), adjacent( B, F).

% (3) WK and BK on adjacent (or equal) squares.

illegal( A, B, C, D, E, F) :- C == E, A \== C.

% (4) WR gives check and WK on different row

illegal( A, B, C, D, E, F) :- D == F, B \== D.

% (5) WR gives check and WK on different file

illegal( A, B, C, D, E, F) :- C == E, not between( B, D, F).

% (6) WR gives check and WK on same row

illegal( A, B, C, D, E, F) :- D == F, not between( A, C, E).

% (7) WR gives check and WK on same file

adjacent( X, Y) :- X is Y + 1.

adjacent( X, Y) :- X is Y.

adjacent( X, Y) :- X is Y - 1.

between( Z, X, Y) :- X < Z, Z < Y.

between( Z, X, Y) :- Y < Z, Z < X.

Figure 6: A correct theory

A Correct Domain Theory

A correct domain theory in PROLOG clauses is given in Figure 6.

Of course this is only one possibility of de�ning a theory of this domain. A

close examination of the rules e.g. reveals that rule (2) is redundant, as the cases

where the black king and the white rook are on the same square are already

covered by rules (1), (4) and (5): Either all three pieces are on the same square
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(1) or only the black king and the white rook are on the same square and the

white king is on a di�erent row (4) or on a di�erent �le (5). Nevertheless we stick

with this representation, because we feel it is more intuitive (and maybe easier

to analyze).

In some domain de�nitions in the literature, adjacent has been de�ned with-

out its second clause, thus complicating the de�nition of illegal. Also, very

often the de�nition of the between relation is not given. We will use the above

domain theory for a numerical analysis of the domain, because the basic structure

remains the same in other formulations of the theory.

However, in the examples used throughout this paper, the relation between

was not available in the background knowledge. Instead the relation < was pro-

vided. In that case rules (6) and (7) will unfold to several other rules, which will

only cover a couple of examples and thus are very hard to detect.

Number of positions: As each of the 6 variables can have 8 di�erent values

there are 8

6

= 262; 144(100%) di�erent instances in this domain.

3 Pieces on same square: Naturally, there are 64 (0.024%) possibilities for

having all three pieces on the same square, because there are 64 squares on a

chess board.

2 Pieces on same square: There are 64 squares for the �rst piece, 1 possible

square for the second piece and 63 di�erent squares for the third piece. So we

have altogether 64 � 1 � 63 = 4032(1:538%) possibilities.

Rule (1): From the above results follows that rule (1) of the domain theory

covers 64 + 4032 = 4096(1:563%) positions.

Rule (2): As the positions with all three pieces on one square are already

covered by rule (1) there are only 4032(1:538%) positions left for rule (2).

Adjacent Kings: Each of the 36 squares on rows 2 to 7 and �les b to g has

8 adjacent squares. This adds up to 36 � 8 = 288. The 4 corner squares have

3 adjacent squares each, another 4 � 3 = 12 possibilities. The other 24 border

squares have 5 adjacent squares each, i.e. 24 � 5 = 120. Altogether there are

288+12+120 = 420 possibilities for placing two adjacent kings on a chess board.

Rule (3): For each of the adjacent king positions there are 62 open squares

for placing the white rook. Including the cases where the kings are on identical

squares, which are also covered by this rule, we have rule (3) covers 420 � 62 +

4032 = 30; 072(11:472%) positions.
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Rules (4) and (5): For each position of the black king there are 7 possibilities

to place the white rook on the same �le/row. Depending on whether the black

king is in the corner, on the border �le/row, border row/�le or in the center, we

have 54, 53, 52 or 50 possible squares for the white king, not counting cases that

have already been covered by rule (3). Thus each of the rules (4) and (5) covers

7� (54 � 4 + 53 � 12 + 52 � 12 + 50 � 36) = 22; 932(8:748%) positions.

White King not between Black King and Rook: We assume that all three

pieces are on the same �le/row, that the two kings are not adjacent and that all

pieces are on di�erent squares. If the black king is immediately adjacent to the

white rook, there are 5 squares remaining for the white king under the above

assumption, except for the case where the black king is on the border, where we

have 6 possibilities. So we get 6 � 5 + 1 � 6 = 6 � 6 = 36 possible positions.

The same number results when we swap black king and white rook. If we now

increase the distance between black king and white rook by 1, we analogously

get 2� (5� 5) = 50 more positions. This is repeated until the distance between

black king and white rook is 5 squares, when only 1 possible square is left for the

white king. So we have a total of 2� (6

2

+5

2

+4

2

+3

2

+2

2

+1

2

) = 2� 91 = 182

positions.

Rules (6) and (7): As the above calculations are the same for each �le or row,

each of the two rules covers 8 � 182 = 1; 456(= 0:555%) positions.

Summing up: A summary of the results is given in table 6:

Rule Covered Percentage

(1) 4,096 1.563%

(2) 4,032 1.538%

(3) 30,072 11.472%

(4) 22,932 8.748%

(5) 22,932 8.748%

(6) 1,456 0.555%

(7) 1,456 0.555%

illegal 86,976 33.179%

legal 175,168 66.821%

total 262,144 100.000%

Table 6: Rule Coverage

Removing the redundant rule (2) would add most of its coverage to either

rule (4) or rule (5).

23



Approximate Theories

Sometimes ILP programs do not learn the complete theory, but instead learn an

approximation. Figure 7 gives an approximate theory which has been reported

in a similar form in [Quinlan, 1990], [Bain, 1991], [Srinivasan et al., 1992] and in

this report (�gure 3).

illegal( A, B, C, D, E, F) :- A == C, B == D.

% (a) same as (1).

illegal( A, B, C, D, E, F) :- adjacent( A, E), adjacent( B, F).

% (b) same as (3)

illegal( A, B, C, D, E, F) :- C == E.

% (c) generalization of (2), (4), (6).

illegal( A, B, C, D, E, F) :- D == F.

% (d) generalization of (2), (5), (7).

Figure 7: Approximate Theory A

Theories like this are in particular learned in the presence of noise or because

there are not enough training examples.

Theory A: The approximate theory of �gure 7 is an over-generalization of the

theory in �gure 6, in a way that all positions with white rook and black king on

the same row/�le are treated as illegal. It is wrong for all cases, where the white

king is between the white rook and the black king, thus blocking the check.

We already have covered the case where the white pieces are on the same

square and the cases where the two kings are adjacent will be handled by rule (b).

Assume that all three pieces are on the same �le/row. The maximum distance

between white rook and black king is when both are on opposite sides of the

�le/row. The white king then has 5 possible squares for blocking the check, i.e.

rules (c) or (d) resp. will consider 5 illegal positions as legal. We get another 5

cases when swapping white rook and black king. If the white rook and the black

king are moved towards each other, the number of squares for the white king

decreases, but there are more possibilities for putting the black king and the white

rook on the board. So e.g. there are 2 possibilities to put the black king and the

white rook on one �le/row with 5 squares inbetween. Each of them yields 4 valid

squares for the white king. Thus we get 2�(1�5+2�4+3�3+4�2+5�1) = 70

possibilities for each �le/row. Considering that there are 8 rows and 8 �les, rules

(c) and (d) together erroneously classify a total of 70�8�2 = 560�2 = 1; 120(=

0:427%) of all examples.

Theory B: In the presence of 10% noise Fossil converges towards theory A

except rule (1) is usually not found (see section 4). This is not surprising, because
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as we can see from table 6 an example exclusively covered by rule (1) only occurs

in 1.56% of the training data. The regularity in these examples can easily be

over-looked, when 10% of the examples are erroneously classi�ed. Besides, many

of the examples for rule (1) are covered by the three remaining rules, so that the

error for leaving out this rule is not that big, as we will see in the following.

Of the 4096 positions with white king and white rook on the same square,

1

8

th (= 512) have the black king on the same row. Another 512 have the black

king on the same �le. Subtracting the 64 positions where all three pieces are on

the same square, which we have counted twice now, we get 960 positions that

are covered by rules (c) and (d). In addition rule (b) covers positions where

the white rook and king are one square diagonal of the black king. This are

36�4+24�2+4�1 = 196 positions. So rules (b), (c) and (d) of theory A cover

196 + 960 = 1156 positions that would otherwise be covered by rule (a). This

means that in addition to the error of Theory A, dropping rule (a) misclassi�es

another 4; 096 � 1; 156 = 2; 940 positions. The total error of Theory B thus is

2940 + 1120 = 4060(= 98:451%).

Theory C: Another good approximation results when rules (c) and (d) are

replaced with rules (4) and (5). This means instead of generalizing rules (2) (4)

and (6) to rule (c) the most common of the three rules is chosen as a representa-

tive. The cases that are not correctly classi�ed by this approximation are those,

where the white king is on the same row as his rook and the enemy king, but is

not inbetween them, the black king thus being in check. We have already seen

that rule (2) is redundant, so the only cases that will be misclassi�ed by this

approximation are those that would originally have been covered by rules (6) and

(7), i.e. 1; 456 � 2 = 2; 912(= 1:111%).

Theory D: Theories B and C can also be interleaved, e.g. only rule (c) is

replaced by rule (4). In this case in addition to the 1; 456 errors made by missing

out rule (6), we have the 560 mistakes by overgeneralizing rules (2), (5) and (7)

to rule (c). This means we have a total error 560 + 1; 456 = 2; 016(= 0:769%).

Theory E: Of course, dropping rule (a) from Theory C yields another approx-

imation. This amounts to dropping rules (1), (2), (6) and (7) from the correct

theory of �gure 6. We have already seen that there are 420 + 64 = 484 possibil-

ities for placing the two kings on adjacent or identical squares. These cases are

still covered by rule (b), but the remaining 4096 � 484 = 3612 positions will be

erroneously considered as legal by this theory. In addition the 2; 912 mistakes

made by Theory D, this yields a total error of 2; 912 + 3; 612 = 6; 524(= 2:489%)

for Theory E.
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Theory Rules Error Accuracy

A (a), (b), (c), (d) 0.427% 99.573%

D (a), (b), (c), (5) or 0.769% 99.231%

(a), (b), (4), (d)

C (a), (b), (4), (5) 1.111% 98.889%

B (b), (c), (d) 1.549% 98.451%

F (b), (c), (5) or 2.019% 97.981%

(b), (4), (d)

E (b), (4), (5) 2.489% 97.511%

Table 7: Accuracy of Approximate Theories

Theory F: The last approximation we consider is dropping literal (a) from the

two possible Theories D. Let us assume we have the theory consisting of rules

(b), (c) and (5). Of the 4096 positions with white king and white rook on the

same square,

1

8

th (= 512) have the black king on the same �le. These instances

are now covered by rule (5). In addition rule (b) covers all positions with the

black king one square above or below this �le. Considering di�erent numbers

of neighboring squares we get 36 � 6 + 12 � 4 + 12 � 3 + 4 � 2 = 308 covered

positions. So 4096 � 512 � 308 = 3276 positions with white king and rook on

the same square are not covered by other rules. Also replacing rule (d) with (5)

misclassi�es 2,016 examples as we have seen above. So we get a total error of

2; 016 + 3; 276 = 5; 292(= 2:019%).

Summary: A summary of the approximation errors for approximate theories

ordered according to their approximation accuracy can be found in table 7.
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