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Abstract

In this paper we present a CLP based method for the direct implementation of

HPSG, a grammar formalism employing strongly typed feature structures and prin-

ciples to constrain them. We interpret uni�cation of typed feature structures under

the restrictions of principled constraints as constraint solving in the CLP paradigm.

The aim of our implementation method is to operationalize the declarative grammar

speci�cation without having to account for processing aspects, i.e. to clearly separate

grammar and processing model. To achieve this goal we employ a lazy instantiation

technique which maintains well-typedness of feature structures at every instantiation

stage. This method is complemented with a delay mechanism enabling the constraints

arising from grammar principles to cope with uninstantiated structures. Applicabil-

ity conditions of grammar principles may be speci�ed conditionally, viewing them as

licensing conditions on every node of a feature structure. This also allows for the

reformulation of disjunctive constraints into a conjunction of conditional constraints,

thereby reducing the search space.

1 Introduction

The development of linguistic theories during the past decade exhibits a distinctive trend

towards declarativeness of the grammar. The view of a language as the strings that are

generated by a set of rules is replaced by a view that de�nes a language by giving general

principles that constrain the set of linguistic structures. The standard example for this

change is the advent of the Principles and Parameters Approach to syntax (Chomsky 1981)

replacing earlier Transformational Grammar.

This shift in linguistics has also inuenced the development of computational linguis-

tics. Principle-based grammar formalisms lend themselves better to process-neutral for-

mulation, thus the use of the same grammar for parsing and generation was encouraged

(cf. e.g. Strzalkowski 1991). But the abandonment of a rule-based backbone of the gram-

mar (e.g. a context-free skeleton) also means the abandonment of a host of well-studies

techniques for implementing processing modules for the grammars, which poses a prob-

lem for the implementation of a principle-based theory using the grammatical principles
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directly. Generate-and-test strategies su�er from the huge search space of possible struc-

tures. Therefore many parsers for principle-based grammars reintroduce a covering phrase

structure grammar to restrict the search space (cf. Berwick 1991).

This reintroduction clearly contradicts the intentions and theoretical considerations

underlying those types of grammar. An implementation in accord with the grammatical

theory implemented surely would be preferable, much more so as grammar engineering for

increasingly large grammars becomes an issue (cf. Erbach and Uszkoreit 1990). Here, a

theoretical gap between the grammar constructed by the grammar writer and the grammar

used by the grammar implementor represents a source of serious problems.

A solution to these problems lies in the extension of grammars (and grammar imple-

mentations) with an operational core that handles the basic operations in concordance

with the grammatical speci�cation, which amounts to an object-oriented approach in that

the grammar object also provides methods for its manipulation.

To show that this is a viable approach we present a grammar processing system em-

phasizing techniques that form part of the grammar engine core. With this system an

implementation of Head Driven Phrase Structure Grammar (HPSG, Pollard and Sag 1987,

Pollard and Sag in press) is given. HPSG as a grammar formalism embodies the type of

grammar based on general principles or constraints. Furthermore, it exhibits another pre-

dominant approach in computational linguistics not quite independent from the principle-

based approach, namely the use of feature structures to describe linguistic entities and the

use of uni�cation as the primary operation of combination.

In our system we have tried to relieve the parser and generator modules as much as

possible from general grammar speci�c operations. As suggested by declarativeness, uni�-

cation, and constraints, we use Constraint Logic Programming (CLP) as a basic implemen-

tation technique viewing the principles of grammar as constraints on feature structures.

To shift the workload away from the implementation of parsers and generators (which can

then be viewed as query solvers), and to maintain the declarative spirit of the grammar,

the operational processes have to be constructed in a direction-neutral way. Together with

the nessecity to deal with a vast search space, this leads us to the key technique which

we employ in di�erent facettes: elaborated delay mechanisms which enable declarative

statements of grammatical principles directly being used by the processing components

without incurring the penalty of, for example, in�nite looping when encountering hitherto

uninstantiated variables.

The delay mechanisms we present here postpone decisions until enough information is

available for a choice instead of immediately opening up di�erent paths for all possible

choices: lazy instantiation in combination with type inference to e�ciently unify typed

feature structures (which form the core of the HPSG formalism); and a coroutining tech-

nique to enable the use of complex constraints on feature structures to directly implement

the grammatical principles of HPSG. The approach taken is not restricted to HPSG but

pertains to the whole family of grammar formalisms that employ general constraints over

typed feature structures.

In section 2 we give a short overview of HPSG, section 3 describes typed feature struc-

tures from a CLP view and the lazy instantiation technique, in section 4 the principles of
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grammar are recast as constraints, and the coroutining technique for principle application

is introduced, and section 5 compares our approach to other implementations.

2 Head Driven Phrase Structure Grammar

Head Driven Phrase Structure Grammar (Pollard and Sag 1987, Pollard and Sag in press)

is a uni�cation based grammar formalism modeling linguistic objects by means of typed

feature structures. It di�ers from other uni�cation based theories (such as LFG, cf. Kaplan

and Bresnan 1982) in that it does not use feature structures as an additional device aug-

menting traditional phrase structure rules. Instead, HPSG uses (universal and language-

speci�c) Principles to constrain the feature structure admissible for a particular grammar.

This principle based approach to grammar is something HPSG has in common with Gov-

ernment and Binding Theory. Language is described by the interaction of parametrized

principles of grammatical wellformedness, and highly speci�ed lexical entries. However,

HPSG di�ers in various important aspects from GB. The most prominent di�erence is

that HPSG does not rely on con�gurational notions de�ned in terms of tree structure and

explicitly denies derivational notions such as movement. Unbounded dependency phenom-

ena are handled using structure sharing instead.

The theory has undergone some revisions and extensions since Pollard and Sag 1987.

In our exposition we will follow the version of HPSG set up in Pollard and Sag in press.

2.1 Linguistic Aspects

In HPSG, the fundamental objects of linguistic analysis are signs modeled by typed feature

structures, which in turn are represented as attribute-value matrices. The basic attributes

for signs include phon for phonological information and synsem for syntactic and seman-

tic information. synsem in turn is highly structured including local and nonlocal val-

ues. local features comprise content containing semantic information, and the category

complex including the head features and the subcat list to model subcategorization

information nonloc features are used to model nonlocal dependency constructions like

topicalization, questions and relative clauses.

As an example how a lexical sign (a word) is represented in HPSG we show the (some-

what simpli�ed) attribute value matrix of the verb walks.

1

1

The example is taken from Pollard and Sag in press
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In the attribute-value matrices we use here the angle brackets indicate lists. This

notational convention abbreviates the actual representation for lists. In fact, nonempty

lists are represented as feature structures with attributes first containing the head of the

list and rest containing the tail (cf. Shieber 1986). The type of a structure is indicated

at the bottom of the opening square bracket (some types being omitted for space reasons).

Structure sharing is indicated by boxed integers.

walks subcategorizes for a nominative NP, the subject, which is encoded by the single

member of the subcat list. This member has to be a saturated sign, i.e. a sign whose

subcat value is the empty list, with its head feature of type noun). The semantic index

of the subject �lls the walker role of the relation walk in the semantic contents.

Phrases, also being subtypes of sign, inherit the features described above and addition-

ally introduce a daughters (dtrs) attribute taking values of type constituent-structure,

one of its subtypes|head-complement-structure|we will consider in more detail. Via the

dtrs attribute the type sign becomes recursive in that some values inside this attribute

are constrained to be signs themselves. This is the way phrase structure is represented in

HPSG. What kind of phrases are admissible is stated in terms of principles constraining

the feature structures of type phrase.

The type of phrases built up by saturating the valencies or argument positions of a

head has a dtrs attribute of type head-complement-structure with two slots: head-dtr,

containing the sign being the head of the phrase, and comp-dtrs, a list of signs being

the arguments. What head-complement phrases are grammatical is determined by the

head specifying what arguments are admissible interacting with the general principles

(including the Immediate Dominance Principle, which serves the purpose phrase structure

rules have been designed for, but which is stated just the same way as the other principles

of grammar).

To sketch how principles and lexical entries interact in HPSG, we will describe two

essential principles, the Head Feature Principle and the Subcategorization Principle and

show the derivation of a simple sentence using these two principles and the lexical entry

above.

The Head Feature Principle states that in every headed phrase the head value of
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the phrase is token identical with the head value of the head daughter. In Pollard and

Sag in press this principle is stated as follows:

Head Feature Principle The head value of any headed phrase is structure-shared with

the head value of the head daughter.

This principle on the admissibility of a certain subtype of phrase (a headed phrase) was

formulated as an implicational constraint in Pollard and Sag 1987:

[
dtrs head-struc

phrase

]

=)

�

synsemjlocjcatjhead 1

dtrsjhead-dtrjsynsemjlocjcatjhead 1

phrase

�

The Subcategorization Principle ensures that exactly those arguments the head

subcategorizes for appear as complement daughters.

Subcategorization Principle In a headed phrase (i.e. a phrasal sign whose dtrs value

is of sort head-struc, the subcat value of the head daughter is the concatenation of

the phrase's subcat list with the list (in order of increasing obliqueness) of synsem

values of the complement daughters.

This principle exhibits complex functional constraints (list-append and an operator

collecting the values reachable along a path from a list of feature structures), which ex-

tend the usual feature structure uni�cation formalisms, but must also be dealt with when

implementing HPSG.

Now we can see the e�ects of the interaction of the principles described so far with lexical

entries by inspecting the (simpli�ed, ignoring content) feature structure representing the

phrase Kim walks:
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The coindexing tag 1 results from the Head Feature Principle, the empty subcat list

on the phrase level and the coindexing of the �rst element of the subcat list of the head

daughter and the synsem value of the complement daughter is accomplished by the Subcat

Principle.
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2.2 Formal Aspects

As has become apparent from the discussion above, there are formal requirements as-

sociated with the feature structures representing linguistic objects. First of all, feature

structures are strongly typed , that means, every feature structure must be associated with

a type. Secondly, every type restricts its associated feature structure in that only certain

features are allowed and the values of these features must have a certain type. Finally,

these appropriateness and value restrictions are inherited along the type hierarchy thus

leading to an inheritence-based polymorphism which is also well-known in object oriented

programming.

The advantages of using typed instead of plain feature structures are obvious. Uni�-

cation failure can often be detected early inspecting only the types and without creating

expensive copies during structural uni�cation. Furthermore, types in many cases allow a

more natural and e�cient encoding of linguistic information as it would be the case with

untyped structures.

The formal characteristics of the feature structures used in HPSG have been sketched

in Pollard and Sag in press and formally de�ned in Carpenter et al. 1991 and Carpenter

1992b. We will briey review them here for ease of reference.

Types and Feature Structures

A Type Schema is de�ned as a �nite consistently complete partial order of the types T

by subsumption together with a �nite set of features F and a partial function Approp :

F � T �! T such that

1. for every feature f there is a most general type � such that Approp(f; �) is de�ned

and

2. if Approp(f; �) is de�ned and � subsumes � then f is also appropriate for � and

Approp(f; �) subsumes Approp(f; � ).

The practical importance of this de�nition is, that it allows to specify which slots are

permissible for each type and to restrict the type of their values. Features must be uniquely

introduced and are inherited by the subtypes of the introducing type. Inherited features

may be further restricted, but only monotonously.

A Feature Structure is de�ned in the usual way as a rooted, connected, directed

graph with vertices labeled by types and arcs labeled by features. A feature structure F

subsumes a feature structure F

0

, written F v F

0

, if there exists a total mapping h from

the nodes of F onto the nodes of F

0

such that the root of F is mapped onto the root of F

0

,

for every node q 2 F the type of q subsumes the type of h(q), and if the edge q

1

f

�! q

2

is

in F then the edge h(q

1

)

f

�! h(q

2

) is in F

0

.

A Uni�er for a pair of feature structures F and F

0

is any feature structure F

00

such

that F v G and F

0

v G i� F

00

v G. Unique uni�ers exist for pairs of consistent feature

structures up to alphabetic variance (see Carpenter et al. 1991).
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Well typed Uni�cation

A notion which distinguishes the feature structures proposed for HPSG from other formal-

izations of typed feature structures (e.g. Smolka 1988) is the notion of Well-Typing. A

feature structure is well-typed, if every feature that appears in it is appropriate and takes

an appropriate value (according to the de�nition of appropriateness above). A feature

structure F is said to be typeable if there is a feature structure F

0

such that F v F

0

and

F

0

is well-typed.

HPSG requires feature structures to be well-typed, so there is a need to compute well-

typed feature structures from arbitrary ones (excluding those which are not typable). This

Type Inference procedure (TypeInf ) can be de�ned, relying on the unique introduction of

features and the monotonicity properties of Approp. The steps to be performed iteratively

until a closure is reached are to

� unify the type of a node with the most general type appropriate for one of the features

present at that node, and to

� unify the value of a feature with the appropriate type restriction.

An important property of TypeInf is the monotonous behavior with respect to uni�cation.

Uni�cation and Type Inference can be arbitrary interleaved due to the fact that

TypeInf(TypeInf(F

1

) t TypeInf(F

2

)) = TypeInf(F

1

t F

2

)

Thus Well-Typed Uni�cation of a pair of well-typed feature structures F

1

and F

2

can

be shown to be TypeInf(F

1

t F

2

) (see Carpenter et al. 1991).

3 A CLP View of Typed Feature Structures

Constraint logic programming (Ja�ar and Lassez 1987) has been developed during the

past few years as a generalization of Logic Programming by replacing uni�cation by the

more general notion of constraint solving over a suitable algebra. A realization of an

instance of a CLP scheme within a logic programming language has to cope with the

problem that constraint solving|being a generalization of uni�cation|cannot be handled

by syntactic uni�cation alone. The di�culties arise from from the fact that uni�cation in

logic programming languages such as Prolog is de�ned syntactically over Herbrand-terms.

This prevents for example syntactically distinct but (in the sense of the underlying theory)

semantically equivalent terms to be uni�ed (as for, e.g., `1+3' and `4'). The situation when

unifying typed feature structures is quite similar. Consider two types (say A and B) having

a greatest lower bound C. Although these two types are uni�able, yieding C, syntactic

uni�cation might fail or produce incorrect results. Thus constraint solving mechanisms are

the adequate means, when the application domain contains relations other than syntactic

equality. Constraint solvers may be embedded into a logic programming language by either

writing a metainterpreter or making use of a system which allows for the implementation

of uni�cation extensions, the approach adopted here.
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3.1 A Prolog System with Extensible Uni�cation

Semantic uni�cation as a means to extend logic programming languages can be realized in

di�erent ways. We will shortly sketch the approach to semantic uni�cation underlying the

CLP system being used as the basis for our HPSG implementation.

DMCAI CLP

2

(Holzbaur 1990, Holzbaur 1992) is a Prolog system, whose uni�cation

mechanism is extended in such a way that the user may introduce interpreted terms and

specify their meaning with regard to uni�cation through Prolog predicates. The basic

mechanism to achieve this behavior is the use of attributed variables (Huitouze 1990).

These variables are an additional data-type allowing variables to be quali�ed by arbitrary

user-de�ned attributes. Attributed variables behave like ordinary Prolog variables with two

notable exceptions: when an attributed variable is to be uni�ed with a non-variable term

or another attributed variable the uni�cation extensions come into play. For either case the

user has to supply a predicate, which explicitly speci�es how the attributes interact and

how they have to be interpreted with respect to the semantics of the application domain.

Uni�cation succeeds only if this combination|or veri�cation|of the attributes involved

is successful.

The following predicates (which the user has to supply) are called by the Prolog kernel

when attributed variables are about to be uni�ed:

combine attributes(C1,C2)

is called, when two attributed variables are to be uni�ed and should compute the re-

sulting attribute according to the underlying theory. The attribute of a variable may

be updated, thus achieving the functionality of destructive updates required by many

CLP instances. However, changes in the attribute of a variable are backtrackable in

case of failure later on.

verify attribute(C,T)

is called, when an attributed variable is to be uni�ed with a non-variable term.

These constraint solving clauses provide a means to integrate constraint solvers into

logic programming languages in a declarative and e�cient way. Declarativeness is achieved,

because the equality theory can stated simply by predicates. E�ciency is preserved, be-

cause the interaction between syntactic and extended uni�cation is coded in the Prolog

kernel, dispensing with the need of having a metainterpreter managing this interaction.

3.2 Feature Structures as Constraints on Variables

The implementation of typed feature structures in our system makes use of the CLP fa-

cilities provided by the enhanced Prolog system described above. Feature structures are

implemented by the attribute fs(Type,Dag), where Dag is a list of feature-value pairs.

2

DMCAI CLP is an enhanced version of SICStus Prolog and available by anonymous ftp from

ftp.ai.univie.ac.at
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Well-typed uni�cation of two feature structures is implemented via the constraint solv-

ing clause combine-attributes described above, taking the Type Hierarchy and feature

appropriateness into account, whose implementation we will turn to below.

The Type Hierarchy

Before any typed feature structures can be used the type hierarchy has to be de�ned. The

lattice of types, top being the most general type, is de�ned via the operator ..>/2. Part

of the type hierarchy is shown below.

top ..> sign.

sign ..> word.

sign ..> phrase.

phrase ..> headed_phrase.

However, traversing the lattice de�ned that way every time two types need to be uni�ed

would be expensive. Therefore, the most often needed predicates on types, such as deter-

mining the greatest lower bound of two types, are compiled away and reduced to simple

table lookup at run time.

Appropriateness and Inheritance

Instead of de�ning Approp directly, our implementation takes the approach to specify only

the introduction (or further restriction) of features. The operator ==>/2 is de�ned for

that purpose, associating a type with a list of feature:value pairs, the value being the most

general type that feature is permitted to have. These appropriateness restrictions on a type

are inherited by all its subtypes, which can add new features or value restrict inherited

features. Types not introducing any new feature must be distinguished from atomic types,

which are not allowed to take any features. Therefore they introduce the empty list.

As an example we give the appropriateness declarations for the part of the type lattice

shown above:

top ==> [].

sign ==> [phon: phon, % introduce features

synsem: synsem].

word ==> []. % inherit only

phrase ==> [dtrs: const_struc]. % add feature dtrs

headed_phrase ==> [dtrs: headed_struc]. % value restrict dtrs

Again, as with the lattice traversing predicates, this rather static information does not

warrant expensive traversal at run time. Therefore the often used predicates necessary for

ensuring well-typedness are compiled out of the appropriateness declaration:

introduced in(Feature,Type) maps every feature to the type introducing it

9



type features(Type,Features) maps every nonatomic type onto a list of feature:type

pairs, such that every feature appropriate for that type appears in this list with the

type its value is restricted to.

Thus at run time there is no need to check for inherited features or search the type lattice

for the most general type allowing for a particular feature.

Lazy Instantiation and Type Inference

Since only well-typed feature structures are admissible in HPSG well-typedness of features

structures should be assured as soon as possible. Therefore any time a node of a feature

structure (represented as an attributed Prolog variable) is instantiated or a�ected by uni-

�cation, a type inference step is interleaved to maintain well-typedness. This interleaving

is possible due to the monotonicity properties of TypeInf (cf. section 2.2).

However, type inference never instantiates feature structures, it only restricts the type

of a structure or the type of a value for some feature. Instantiation of feature structures

occurs only when explicitly forced by the use of an instantiation expression (such as a

path equation). These instantiation expressions are issued by processes such as parsers

or generators, lexicon lookup routines, and by the principles of grammar in case their

applicability has been established (see below). Uninstantiated nodes of a feature structure

are represented also via attributed variables but instead of having a list of feature:value

pairs they are marked with the atom uninstantiated.

This lazy instantiation scheme o�ers several advantages:

� Recursive types (such as the phrase type above which is recursive via its dtrs at-

tribute) must be instantiated lazily to avoid in�nite loops. If a lazy instantiation

scheme is adopted as the general strategy, such recursive types do not require any

special treatment.

� E�ciency gains may result when postponing \default"-initializations of feature struc-

tures according to the type scheme. In many cases type information alone is su�cient

to eliminate branches in the search space. Instantiating the whole structure would

be wasted e�ort in such cases.

Since type inference monotonously restricts feature structures, an incremental version

of TypeInf can be de�ned. Such a version of TypeInf is implemented in accordance with

the lazy instantiation scheme. In its incremental version, type inference is composed of 3

subfunctions, according to the cases that may arise during instantiation (and uni�cation)

of feature structures:

a. If a type is added to (i.e. uni�ed into) an uninstantiated node no type inferencing is

performed at the moment (since no features to be checked are present).

b. If a type is added to (i.e. uni�ed into) an instantiated node, and uni�cation of

the types yields a type other than the one already present at the node in question,
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then the arcs of that node have to be updated to reect the appropriateness con-

ditions of the restricted type. This is done by determining the admissible features

via type features/2 and unifying the list of feature:type pairs obtained with the

node in question (possibly leading to further type inference steps if the value of some

feature is restricted further).

c. If a feature is added to a node, then �rstly the type introducing that feature is

determined (via introduced in/2) and uni�ed with the type of that node. If this

uni�cation succeeds, step b. above is performed.

Thus, if a node is instantiated, then (1) every feature appropriate for the nodes type is

present and (2) the value of every feature is restricted to the appropriate type (although

the values may be uninstantiated).

Instantiation Operators

To achieve the instantiation behavior described above and to provide an interface to at-

tributed variables, instantiation operators have been de�ned (along with the necessary

clauses).

X::=Type

creates X as an attributed variable representing an uninstatiated feature structure

of type Type, or, if X is already an attributed variable, uni�es the feature structure

represented by X with Type.

X::Path===Y

instantiates all values (if not already present) along Path (where Path is F1:F2:...:Fn)

within the feature structure X unifying the value found at the end of Path with Y.

Y may be either a type or a Prolog variable serving as coreference tag for structure

sharing. This latter variant is used to state constraints such as the Head Feature

Principle.

The interaction between instantiation and type inference is illustrated in the following

example. The path expression

X::synsem:loc:cat:head===verb

gives rise to the feature structure:
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2

6

6

6

6

4

loc

2

6

4

cat

�

head verb

subcat synsemlist

cat

�

cont cont

loc

3

7

5

nonloc nonloc

synsem

3

7

7

7

7

5

sign

3

7

7

7

7

7

7

5
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First, the attributed variable X is created with type top Type inference then restricts the

type of X to sign, since the feature synsem is introduced by that type and inserts all

features appropriate for type sign. Instantiation proceeds then along the speci�ed path,

restricting the node at the end of the path with type verb. At each level the appropriate

features are inserted together with appropriately restricted, but otherwise uninstantiated

values.

Well-typed Uni�cation

Uni�cation of feature structures now takes place when Prolog uni�es two variables with

an fs attribute. Well-typed uni�cation as described above serves as the \equality theory"

for this CLP instance. The attribute of the (Prolog) uni�ed varible is rewritten with the

result of unifying and well-typing the feature structures represented by the two \input"

attributes. This attribute rewriting is coded in the clauses for combine attributes/2 and

performs essentially the following operations:

� The result type is the uni�cation of the input types.

� If both input feature structures are uninstantiated, leave the output feature structure

also uninstantiated.

� If the result type equals one of the input types just merge the instantiated input lists

of feature:value pairs yielding the result feature structure.

� Otherwise instantiate a feature structure containing the appropriate features for the

result type with appropriately restricted values (type inference step b.). Then merge

the instantiated feature:value pairs of the input structures into the instantiated tem-

plate yielding the result.

Recursion is handled automatically by the same constraint solving mechanism, when the

Prolog variables serving as values of a feature are uni�ed.

That well-typedness is preserved by the uni�cation steps described above can be easily

veri�ed. If both nodes are uninstantiated no type inferencing has to be performed due to

the lazy incremental nature of the type inferencing scheme employed. If type uni�cation

yields a type already present, then uni�cation of the feature:value pairs su�ces, since all

well-typing restrictions must already be present having well-typed input structures. Only

when uni�cation restricts both input types the change in the appropriateness conditions

has to be accounted for by instantiating the most general feature structure appropriate for

the result type (i.e. the list of appropriate feature:value pairs) and unifying both input

structures into that list.

By the implementation described above we have achieved an operational basis for rep-

resenting feature structures. A description language for feature structures close to HPSG is

available via the instantiation operators. Feature structures are instantiated lazily but their

well-typedness as far as they are instantiated is guaranteed at every instantiation stage.

A simple and perspicious interface between processes operating on feature structures and
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feature structure uni�cation is provided by the implementation of feature structures as con-

straints on Prolog variables. Feature structure uni�cation is simply triggered by unifying

the Prolog variables representing them.

But well-typedness is not the whole story when implementing HPSG. Wellformed

(in the sense of the grammar being implemented) structures are far more constrained,

having also to obey all principles of grammar. To incorporate them into the framework

described, additional provisions have to be made, especially to support the interaction of

lazy instantiation and principles constraining (possibly uninstantiated) substructures.

4 Principles of Grammar as Constraints on Feature

Structures

What form the principles of a grammar take is crucial for their implementation. Pollard

and Sag 1987 allow general implicative and negative constraints in the form of conditional

feature structures, in Pollard and Sag in press principles are given only in verbal form.

Recent work on formalizing the basis of HPSG models them as constraints attached to

types (Pollard and Moshier 1990, Carpenter et al. 1991).

Constraints take the form of feature logical formulas which must be satis�ed by the

feature structure they are applied to. The well-formed formulas of that feature logic in

the style of Rounds and Kaspar 1986 as de�ned in Carpenter et al. 1991 along with their

satisfaction conditions are given below:

F j= � if the root node of F is assigned a type at least as speci�c as �

F j= � : � if the value of F at path � is de�ned and satis�es �

F j= �

:

= �

0

if paths � and �

0

lead to the same node in F

F j= � ^  if F j= � and F j=  

F j= � _  if F j= � or F j=  

Minimal satis�ers exist for all feature logic formulas � (see Carpenter et al. 1991).

A Constraint System associates each type with a feature logical formula, whereby

each type inherits all the constraints imposed on its supertypes. The Solution of a formula

 with respect to a constraint system � is a feature structure F satisfying  and each

substructure of F satis�es all the constraints of � inherited by the type of its root node.

Every Minimal Solution of  can be obtained by applying a rewriting process to

a minimal well-typed satis�er of  . Rewriting is done by arbitrarily choosing a node

within the feature structure, unifying that node with a nondeterministically chosen minimal

satis�er of the constraints inherited by the type of that node, and well-typing the resulting

feature structure by an interleaved type inferencing step. (for a proof of the Solution

Theorem see Carpenter et al. 1991).

The signi�cance of this result is, that from arbitrary feature logic formulas (which

may be seen as partially instantiated feature structures) all fully instantiated, well-typed

feature-structures obeying the principles of grammar can be found by a constructive rewrit-

ing process. That means, if one speci�es only the phon value of a sign, this rewriting
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produces a parse for that string, or, if only the semantic content is speci�ed, rewriting

behaves like a generator. However, a breadth �rst enumeration of the rewriting search

space is an ine�cient method to obtain every solution. Fortunately, the operations of

uni�cation, type inference and rewriting are order-independent and may be arbitrarily in-

terleaved. This fact allows for including the constraint rewriting operation into the lazy

instantiation scheme, facilitating the implementation of other search strategies.

4.1 Implementing the Principles

Feature logical formulas as the device to state constraints on feature structures are im-

plemented by means of the instantiation expressions introduced in section 3.2, as far path

expressions and type restrictions are concerned. Path equations have to be expressed by

means of Prolog variables serving as coreference tags, the role of the locical connectives ^

and _ is taken over by the Prolog operators \," and \;". For example, let � be the feature

logic formula

phrase ^ synsem : loc : cat : head

:

= dtrs : head dtr : synsem : loc : cat : head

and F the minimal feature structure such that F j= �, then in our system these facts are

written as:

F::=phrase,

F::synsem:loc:cat:head===H,

F::dtrs:head_dtr:synsem:loc:cat:head===H

In fact, being implemented as Prolog clauses, the path expressions incrementally instan-

tiate the minimal satis�er of the formula they stand for. Complex constraints employing

path equations and logical connectives are interpreted as a Prolog program triggering the

uni�cation of the feature structures made up by the simple path expressions. This simple

interface between feature logical formulas and well-typed uni�cation of feature structures

is made possible by the implementation of feature structures as an attribute of Prolog

variables together with extensible (Prolog) uni�cation provided by DMCAI CLP.

Grammar principles are now implemented as constraints on feature structures speci�ed

by means of feature logical formulas. But instead of relying solely on types to de�ne the

applicability of constraints, our system takes a slightly di�erent approach. Although types

play the most important role in stating the conditions when rewriting has to take place,

additional devices to narrow these conditions are provided. This does not mean, that

our implementation fully resembles the conditional feature structures of Pollard and Sag

1987. The only di�erence to the formalization of principles by means of constraint systems

attached to types is the possibility to require a certain typing of embedded structures as a

prerequiste to applying the constraint. The same e�ect could be obtained by a more �ne

grained type hierarchy together with suitable appropriateness conditions, so the theoretical

results of Carpenter et al. 1991 carry over to our approach. However, it may be convenient

for the grammar writer not to overload the type hierarchy and to rely on this explicit

subtyping. A more important aspect of these additional conditions is their use in speci�ng

the wait conditions for the delay mechanism described below.
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Because type information alone is not su�cient to determine which constraints have

to be applied to a particular node due to the more general format of the constraints in

our implementation, we adopt a licensing view of the principles. Every node of a feature

structure has to be licensed by all principles of grammar.

A node is licensed by a principle if

� either the feature structure F rooted in that node satis�es the applicability conditions

of the principle and the constraints expressed by the principle are instantiated and

uni�ed into F .

� or the feature structure F rooted in that node is incompatible with the applicability

conditions of the principle.

The interesting case is, when a feature structure does not satisfy the applicability condi-

tions of the principle but is compatible with them. Thus applicability of the principle can

be decided only later, when further instantiation or uni�cation steps have restricted the

(sub)structure rooted at that node. In precisely this case the application (or the abandon-

ing) of the constraint has to be delayed. The mechanisms in which way this delaying is

implemented will be described in section 4.2.

This licensing view also a�ects the strategy how these constraints are processed in a way

that complies well with the lazy incremental instantiation of feature structures. Having

to look up the constraints associated with a node's type any time the type of the node is

restricted during uni�cation involves either to have to rewrite with all inherited constraints

or to do some bookkeeping on which constraints have already been applied. In contrast, in

our implementation the set of constraints is applied to a node at the time of its instantiation,

i.e. only once. Applicable constraints are applied immediately, irrelevant constraints are

dropped, and possibly relevant constraints are delayed. Inheritance of constraints along

the type hierarchy is achieved automatically by this method.

As an example, how principles of grammar are stated in our system we give the Head

Feature Principle of HPSG

head_feature_principle(X) :-

X::=headed_phrase

===>

X::synsem:loc:cat:head ===Head,

X::dtrs:head_dtr:synsem:loc:cat:head===Head.

Principles are written as Prolog clauses, where the body of the clause consists of pre-

conditions and constraints separated by the operator ===>. The preconditions may contain

only conjunctively connected path expressions, the constraint part may contain arbitrary

Prolog code, which is executed when the antecedent of the conditional is satis�ed by the

feature structure X, dropped, if the preconditions are incompatible with X, and delayed

otherwise. This behavior is achieved by using term expansion/2 (see below). Failure of a

principle stated in this form occurs only if feature structure X satis�es the preconditions but

the constraint part fails, or (trivially) if X is not a feature structure. Inapplicable or delayed

principles succeed always (at the time they are applied|of course, delayed constraints may

fail later on when inappropriate instantiations are attempted).
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The set of principles that a grammar requires to license each node is de�ned by the gram-

mar writer via apply principles/1 which is called with every node during instantiation.

3

Thus every node of a feature structure may safely be assumed to be appropriately con-

strained. Not only well-typedness (in the incremental sense de�ned above) of nodes (i.e.

of the feature structures rooted therein) is guaranteed automatically but also their well-

formedness (in the sense of being appropriatey constrained by the principles of grammar,

dissallowing instantiation of substructures within their scope not compliant with them).

4.2 A Coroutining Technique for Principle Application

To achieve the licensing and delaying behavior of the principles stated as conditionals

as it is described above, clauses employing the ===> operator have to be given a special

interpretation at load time (calling the path expressions of the antecedent in the usual way

would just instantiate them). This interpretation is achieved via term expansion/2 and

does the following:

� The preconditions (which are required to be type restricting path expressions) are

wrapped into a call to preconditions/2, which interprets these conditions at run

time.

� Path expressions are interpreted by going down the path in the feature structure and

at the end checking the type of the node reached against the type required. The path

expression is

satis�ed by the feature structure if the path is fully instantiated and the type of the

node the path is leading to is at least as speci�c as the type required;

satis�able if the path is not fully instantiated but the feature continuing the path is

appropriate for the type of the uninstantiated node discontinuing the path

or if the type of the target node is more general than the type required;

incompatible in case of inapproprate features in the path or incompatible type of the

target node.

� preconditions/2 encodes the result of this subsumption check in its second argu-

ment, a list. If the list is empty, all preconditions are satis�ed, in case of satis�able

conditions, the uninstantiated or too general nodes (i.e. the attributed variables rep-

resenting them) are collected in this result list.

4

In case of conditions incompatible

with the feature structure preconditions/2 fails.

Precisely, these conditional clauses are translated in the following way:

3

A hierarchical grouping of the principles according to the type of the nodes they apply to may be used

to massively reduce the amount of preconditions checking required during node instantiation.

4

In fact only the �rst variable needs to be collected, since at the moment only conjunctive preconditions

are supported
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term_expansion((G :- PreConds ===> Actions), Z) :-

Z=(G :- ( preconditions(PreConds, L) -> % check conditions

( L == [] -> Actions % satisfied -> apply constraints

; block_goal(L,G) ) % satisfiable -> delay

; true)). % incompatible -> succeed

The actual delaying mechanism is implemented via block goal(VarList,Goal), which

stores Goal with each variable in VarList. The idea behind implementing this kind of

principle application delaying is to annotate the variables that are \responsible" for the

unabiliy to decide on the antecedent of the principle that has to be applied.

5

To allow for the annotation of feature structures with goals the fs-attribute has also to

account for such delayed constraints. Thus feature structures are �nally represented by the

attribute fs(X,Type,Dag,DelayedGoals).

6

The thawing of a delayed goal is attempted

every time uni�cation a�ects the node this goal is attached to. Because the node might

now have been restricted enough to satisfy the applicability conditions or to contradict

them, the delayed goal has to be called again. If the delayed goal is unable to decide on

its applicability again, it reinserts itself at an appropriate node in the feature structure,

waiting to be triggered again.

Since a new attempt to satisfy a delayed constraint has to be triggered by uni�cation

of feature structures, the mechanism handling the attribute rewriting corresponding to

feature structure uni�cation is also responsible for thawing the delayed goals. Thus we can

give now the �nal version of combine attributes/2:

7

combine_attributes( fs(X1,T1,Dag1,P1), fs(X2,T2,Dag2,P2)) :-

well_typed_unify_fs(T1, Dag1, T2, Dag2, T3, Dag3),

(X1 == X2 -> true % beware of circularity

; detach_attribute(X1), % remove attribute

X1=X2, % unify Prolog vars

update_attribute(X1, fs(X1, T3, Dag3,[])), % rewrite attribute

start_goals(P1), start_goals(P2) % apply pending constraints

).

The attribute is rewritten with an empty goals list, start goals/1 successively calls

the delayed goals of both input structures. Principles that cannot be applied due to

insu�cient speci�cation of the resulting feature structure themselves take care of inserting

themselves at the appropriate place using the mechanism described above for interpreting

their preconditions.

The licensing view of grammar principles and the coroutining technique developed

enable these conditional constraints to cope with situations where no immediate decision

5

This mechanism bears some similarity with the block declaration of SICStus Prolog, which allows to

specify delay conditions via argument patterns. But while with block only a distinction between vars and

nonvars is possible, our method allows for subsumption checks along arbitrary paths of feature structures.

6

The variable X is a reference to the Prolog variable the attribute is attached to.

7

detach attribute/1 and update attribute/2 are builtin predicates in DMCAI CLP for manipulat-

ing attributed variables
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on their applicability can be made. This allows for applying the grammar principles at

instantiation time without having to expand the feature structure early, thus conforming

well with the lazy incremental instantiation scheme. Thus feature structures may always be

regarded as well-formed, since their well-typedness and their compliance with the grammar

principles is guaranteed in the sense that they are not uni�able with an ill-formed feature

structure. This incremental conception of well-formedness is independent from the degree

of instantiation of the feature structure and makes it possible to exploit the bene�ts of

vaguely speci�ed (e.g. only partially instantiated) feature structures instead of forcing

instantiation or subtyping leading to ambiguity, thus helping in reducing backtracking

when processing such feature structures.

4.3 Relational Dependencies

Up to now, only constraints involving equality and type restriction have been discussed, but

some principles of HPSG involve relational constraints (such as append) expressible only by

recursive de�nitions. These relational constraints can be integrated straightforwardly into

the framework presented here without introducing any further mechanisms. The reasons

for the ease this integration may be accomplished are:

� Prolog variables representing feature structures can be used by programs like ordinary

variables without loosing their special properties (as, e.g., maintaining well-typedness

etc.). Thus the interface between feature structures and programs manipulating them

is as simple as possible.

� The syntax to state conditional constraints as described in section 4.1 is only re-

stricted for the antecedent part of the conditional, the constraint itself may be an

arbitrary Prolog program. Thus also relational dependencies can be stated.

� The delay mechanism is not con�ned to unary grammar principles. Also predicates

with more than one argument may make use of the delay mechanism using the

conditional constraint syntax, as long as

1. their arguments (or at least the arguments involved in the preconditions) are

feature structures, and

2. the predicate is de�ned by a single clause.

A crucial requirement when integrating relational dependencies into the lazy instantiating

feature formalism is the ability of those relations to cope with insu�ciently instantiated

arguments. Consider for example the standard de�nition for append/3.

append([],L,L).

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

When called with uninstantiated �rst and third argument, append/3 serves as a gener-

ator for arbitrary long lists and traps the program that did such an unfortunate call in an
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in�nite loop. Such a behavior is unacceptable in a framework that aims on independence

of a particular processing sequence and therefore provides no means to avoid such traps

by relying on procedural considerations. As a consequence, also the execution of relations

has to be delayed until their arguments are su�ciently instantiated to decide on the result

(at least partially).

The conditional syntax used in de�ning the grammar principles provides the means to

specify the delay conditions also for these recursive relations, as in the following example,

de�ning a typed version of append for feature structure lists:

8

fs_append(X,Y,Z) :-

X::=list,Y::=list,Z::=list, % argument typing

fs_empty_append(X,Y,Z),

fs_nonempty_append(X,Y,Z).

fs_empty_append(X,Y,Z) :-

X::=elist

===> Y = Z.

fs_nonempty_append(X,Y,Z) :-

X::=nelist

===> X::first===F, Z::first===F,

X::rest===XRest, Z::rest===ZRest,

fs_append(XRest,Y,ZRest).

The argument typing causes fs append/3 to fail on improper arguments. Once this

test is passed, the two specialized clauses are applied in parallel and wait until it can be

determined which of the two constraints has to be enforced. Thus the advantages of the

conditional de�nition are twofold. First, the disjunctive relation append can now be written

as conjunction of two specialized cases applying conditionally. Second, in�nite loops due

to uninstantiated variables can never occur.

This scheme to specify relational constraints on feature structures as exempli�ed above

allows to cope with only partial instantiated structures. Moreover it allows for replacing

disjunctive constraints by a conjunction of specialized conditional constraints. Whereas

the delay mechanism is inevitable to avoid in�nite recursion, it helps also|together with

the reformulation of disjunctive into conjunctive speci�cations|to reduce the search space

by avoiding to introduce choice points and waiting instead until the choice becomes deter-

ministic.

5 Comparison to other approaches

Recently some other systems employing typed feature formalisms|and thus well-suited to

process HPSG|have been developed.

The TFS system (Emele and Zajac 1990, Emele 1991) is a LISP implementation of a

typed feature uni�cation formalism with inheritance. Types can be de�ned by formulas

8

The type list subsumes elist(the empty list) and nelist(the type of nonempty lists, with the appropriate

attributes first and rest)
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comprising types, feature structures and the logical connectives ^, _ and :-, the last one

used for (potentially recursive) de�nite clause style de�nitions of types. Partially speci�ed

typed feature structures are expanded by a deductive type checking mechanism in a top

down fashion. Type checking uni�es a feature structure with its type de�nition, recursively

proceeding with embedded substructures. Disjunctive type de�nitions are explored via

backtracking.

A system developed especially for parsing of HPSG|also written in LISP|is the one

by Franz 1990. It implements the notion of well-typedness and attaches (possibly rela-

tional) constraints to types. The system highly relies on disjunctive speci�cations leading

to performance problems. Parsing is performed by expanding a partially speci�ed fea-

ture structure to one that satis�es all constraints of grammar. Satisfaction of disjunctive

constraints involves a choice between alternatives, all possible choices at a given state are

collected in an agenda. The next step is chosen by heuristics.

HPSG-PL (Kodri�c et al. 1992) is a workbench written in Prolog for developing and

parsing HPSG grammars in the style of Pollard and Sag 1987. Types are speci�ed using a

template-likemechanism, thereby providing means to explicitly specify inheritance. Gram-

mar principles are attached to types the same way as other type speci�cations and may

refer to a set of prede�ned functional (vs. relational) constraints. These prede�ned func-

tions also include a delay mechanism to cope with uninstantiated arguments, a behavior

not provided for other devices of the system (such as path expressions which produce an

error if their destination is uninstantiated). The system contains a chart parser operating

on ID-rules (which thus have to be speci�ed di�erently than the other grammar principles).

ALE (Carpenter 1992a) is a attribute logic formalism written in Prolog based on

strongly typed feature structures with inheritance. These structures can be manipulated

by means of a de�nite logic programming language built into ALE closely related to both

Prolog and LOGIN (A��t-Kaci and Nasr 1986. Principles of grammar have to be stated

using this constraint language, being processed as in Prolog depth-�rst, left to right. The

principles related to phrase structure have to be given a special rule status (such as in

HPSG-PL) to make them usable for the built-in chart parser. Application of the other

grammar principles is speci�ed by these rules and triggered by their invocation.

When contrasting these systems with the method presented here, the following points

can be made: All the systems above (with the exception of TFS) are biased in the direction

of parsing. Their control strategy is �xed (with the exception of Franz's system, where

experimentation with the agenda ordering function is encouraged) and can be only inu-

enced by taking into account the way, in which grammar speci�cations are processed by

the system. This leads to amalgamating declarative grammar speci�cation with procedural

aspects and furthermore biases the grammar as a whole in one processing direction. This

constrasts with our approach that draws a clear distinction between grammar speci�ca-

tion and the processing model. However, grammar speci�cation is operational in actively

constraining the variables representing feature structures but, using the lazy instantia-

tion scheme and the delay mechanism, does not bias the instantiation process. The delay

mechanism is available throughout the system and not restricted to special functions (as in

HPSG-PL, the other systems do not o�er such a facility). A further aspect of our system
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(shared with TMS and Franz's implementation) is that it does not rely on special rules fac-

tored out of the principles, but instead allows for a uniform representation of all grammar

principles in the spirit of HPSG. Furthermore, by conditional formulation of principles the

numbers of disjunctions in the grammar can be drastically reduced (see the fs append/3

example above, thus performance problems due to the large number of disjunctions (such

as in Franz's system) do not arise.

A formalism including a general delay mechanism is the Constraint Logic Grammar

(CLG) formalism (Balari et al. 1990, Damas et al. 1991, and Damas and Varile 1992). It

employs strongly typed feature structures and a constraint language operating on them,

associating partial speci�ed feature structures with constraints. Constraint resolution is

carried out by rewriting, delaying constraints which cannot be decided at the moment.

However, when comparing our approach to the implementation of HPSG in CLG(2) (Balari

et al. 1990) our approach bene�ts from what could be called indexing. Every variable is

related to exactly those constraints that are relevant for this variable and to no other con-

straint whatsoever. So rewriting can be done just at the right point in time, namely when

the variable is augmented by an additional constraint or instantiated during uni�cation,

and rewriting need only consider the relevant, small subset of all constraints. CLG(2)

just augments predicates operation on feature structures with two arguments for the list

of constraints at clause entry and exit, and \applies a rewriting process to the whole list

from time to time".

6 Conclusion

The methods for implementing HPSG developed in this paper aim at a clear distinction

between grammar and processing model (e.g. parser, generator). Since di�erent search

strategies are required for parsing and generation this distinction avoids (hidden) encod-

ing of procedural aspects into the grammar. However, the declarative speci�cation of a

grammar is not static data, the connection of feature logic formulas to feature structures

via the instantiation operators makes it an operational basis for processing. This instan-

tiation of feature structures works in a lazy incremental way, structures are only built on

demand. Nevertheless, all structures built can be regarded as well-typed according to the

type scheme and well-formed in the sense of obeying all principles of grammar. To achieve

this behavior, the notion of well-typedness is interpreted in an incremental way, and type

inference steps are interleaved with uni�cation and instantiation.

To guarantee well-formedness of feature-structure, principles of grammar are viewed as

licensing conditions on feature structures and applied to every node at instantiation time.

A delay mechanism allowing principles to operate on uninstantiated feature structures

without eagerly instantiating them has been implemented. A conditional syntax for spec-

ifying principles has been introduced which allows to state their applicability conditions.

Delay occurs, if a node fails to meet the preconditions at the moment but has the potential

to meet them later. Relational constrains may also make use of the delay mechanism using

the same conditional syntax.
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A further advantage of conditional constraints is the possibility to reformulate dis-

junctive constraints by a conjunction of conditional constraints as has been exempli�ed.

This reformulation can be done in many cases, thus minimizing the need for disjunctive

constraints being a source of ine�ciency.

On the implementation side the use of a Prolog system with extensible uni�cation

(DMCAI CLP) has helped a lot in specifying the rewrite operations on feature structures

in a clear and declarative way. Feature structures are implemented as attributes of Prolog

variables. The rewrite operations to achive well-typed uni�cation and principled constraint

application are performed via the extended uni�cation mechanism when two variables

representing feature structures are uni�ed. The delay mechanism has been integrated into

this attribute rewriting clauses. Thus the use of a CLP system dispenses with the need

of having a metainterpreter managing this interaction and also lead to e�ciency gains,

because the interaction between syntactic and extended uni�cation is coded in the Prolog

kernel. A further advantage of the use of attributed variables to represent feature structures

is the simple interface they provide to processing modules. Unifying two feature structures

can be performed simply by unifying the Prolog variables representing them, success of this

uni�cation yields also a rewritten feature structure, its well-typedness and well-formedness

being guaranteed.

The techniques described have been employed in the implementation of a HPSG gram-

mar for German (Heinz and Matiasek to appear) being used in a natural language consult-

ing system. They are, however, not con�ned to HPSG and applicable for implementing

any strongly typed feature formalism employing principled constraints.
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