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Abstract

Multilayer Perceptrons (MLP, Werbos 1974, Rumelhart et al. 1986) and Radial Basis Function Net-
works (RBFN, Broomhead & Lowe 1988, Moody & Darken 1989) probably are the most widely
used neural network models for practical applications. While the former belong to a group of “classi-
cal” neural networks (whose weighted sums are loosely inspired by biology), the latter have risen
only recently from an analogy to regression theory (Broomhead & Lowe 1988). On first sight, the
two models—except for being multilayer feedforward networks—do not seem to have much in
common. On second thought, however, MLPs and RBFNs share a variety of features, worthy of
viewing them in the same context and comparing them to each other with respect to their properties.
Consequently, a few attempts on arriving at a unified picture of a class of feedforward networks—
with MLPs and RBFNs as members—have been undertaken (Robinson et al. 1988, Maruyama et
al. 1992, Dorffner 1992, 1993). Most of these attempts have centered around the observation that
the function of a neural network unit can be divided into a propagation rule (“net input”) and an ac-
tivation or transfer function. The dot product (“weighted sum”) and the Euclidean distance are spe-
cial cases of propagation rules, whereas the sigmoid and Gaussian function are examples for activa-
tion functions. This paper introduces a novel neural network model based on a more general conic
section function as propagation rule, containing hyperplane (straight line) and hypersphere (circle)
as special cases, thus unifying the net inputs of MLPs and RBFNs with an easy-to-handle continuum
in between. A new learning rule—complementing the existing methods of gradient descent in
weight space and initialization—is introduced which enables the network to make a continuous deci-
sion between bounded and unbounded (infinite half-space) decision regions. The capabilities of
CSFNss are illustrated with several examples and compared with exisiting approaches. CSFNs are
viewed as a further step toward more efficient and optimal neural network solutions in practical ap-
plications.

1. Introduction

Multilayer Perceptrons and Radial Basis Function Networks are both variants of feedforward neural
networks, meaning that their connectivity does not contain cycles, and that they consist of groups
of units (layers) with connections linking only adjacent layers. In their simplest versions both neural
network types consist of three layers, an input, a “hidden,” and an output layer (see fig. 1.). Although
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Fig.1. A generic architecture for a feedforward neural network with one hidden
layer. x denotes activations (output values), y denotes “net inputs” (values
computed by the propagation rule). i is used as index for the input layer, j for the
hidden layer, k for the output layer. For simplification, throughout most of the
paper only one output unit whose target is binary is assumed. All results can easily
be generalized to multiple output units.

literature frequently depicts it differently, the two network types can best be compared when divid-
ing the function of each unit into two phases—the propagation rule (leading to the “net input” y of
the unit), and the activation function (computing the unit’s activation and/or output value x).! All
units of an MLP use the dot product between input and weight vectors as the propagation rule, and
a sigmoid as activation function, e.g.2
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[ is an index refering to the layer of the feedforward network. To avoid having to use this superscript
in the subsequent equations, we omit them and stick to the convention of letting index i only refer
to input units, j only to hidden units, and k to output units. In contrast to (1) and (2), the units of the
hidden layer of an RBFN use the Euclidean Distance between weight and input vectors as propaga-

1. We are somewhat following the terminology in Rumelhart & McClelland 1986, especially what “net input”
is concerned. For greater ease and clarity in the equations, however, we are using y for net inputs and x for ac-
tivations = output values of units.

2. The propagation rule here is depcited including a “threshold” 0, which — if adaptive — is equivalent to
assuming an additional bias unit with constant activation, as it is done by many.



tion rule, and a Gaussian as activation function, e.g.3
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(where r refers to ‘radius’ and defines the width of the region) while the output units basically are
the same as for the MLP, perhaps omitting the sigmoid (making the output layer a linear associator).
The main difference between the two units is that (1) leads to decision regions that cover a whole
half-space (e.g. half-plane in the case of 2 dimensions), while (3) results in bounded hyper-spherical
(e.g. circular) decision regions. The main property of the latter is that the receptive field of each unit
is local and restricted to only a small region in input space,* while the main property of the former
isits coverage of an infinite portion of the space. Both properties can be advantageous or disadvanta-
geous in terms of error in function approximation or generalization. It depends on the data distribu-
tion of a given application which of the two types of decision regions appears most appropriate. Thus
it depends on the application which type of region should be chosen.

This observation, on first sight, seems to be contradictory to well-known proofs about the ability
of both types of networks to be universal function approximators (Hornik et al. 1989, Cybenko 1989,
Hornik 1991, Kurkova 1992, Hartman et al. 1990). However, those proofs do not touch upon issues
of resources and efficiency directly (e.g. whether a reasonable number of hidden units is needed for
a desired approximation) or upon issues of learning (e.g. whether an algorithm exists that finds a
solution). In this paper we are more interested in such application-oriented issues and therefore in-
vestigate feedforward networks with respect to being efficient or effective in implementation. For
instance, for the practitioner it is not enough to know that theoretically a certain type of network (e.g.
an MLP) is sufficient to implement a desired mapping, if it can require an unpractically large number
of units or tremendous training times. Other types of networks which might not be more powerful
in the theoretic sense of approximation theory but which achieve generalization for some applica-
tions with less ressources or in less time are therefore desired.

Another important issue is what has been called “localized approximation” (Chui et al. 1992, Omo-
hundro 1989). In many practical implementations of neural networks on-line adaptivity is required,
1.e. the ability of adapting the network to changed conditions. If these changes occur in a localized
region of the input space, then ideally only a few number of hidden units should have to be retrained

3. We depict the simplest form of an RBF unit, leading to a spherical decision region with standard deviation
defined through . Many variations in literature exist, such as one permitting elliptoidical regions by introducing
an additional “weighting” (or standard deviation) parameter for each dimension in the propagation rule. The
subsequent analysis will not depend on which variation is chosen. In fact, the “CSFN” — to be introduced later
— can be generalized to include all those variations.

4. In the version indicated in (3), of course, the decision regions are nut truly finite, since the Gaussian extends
to infinity only converging toward 0. However, at a certain distance of the center the net input is negligible. Tru-
ly bounded variations can be found in Dorffner (1992) and in the CSFN, to be introduced later. We will talk
about all such spherical decision regions as “bounded.”



(see also Omohundro 1989). As the above sample distributions show, this does not necessarily mean
that the decision regions of each hidden unit must be bounded. If there is an infinite portion of the
input space containing only cases of one class then one MLP unit can cover that subspace and
changes in that region would affect only that one unit. The advantage, again, would be that localized
approximation would be achieved with much fewer units than if only localized receptive fields of
RBF units were used.

Apart from the type of decision regions MLPs and RBFNs implement, they usually differ in the type
of learning algorithm employed to arrive at the appropriate weights. MLPs are commonly trained
with a variation of gradient descent learning (usually called “backpropagation”, Werbos 1976, Ru-
melhart et al. 1986), while the two connection layers of RBFNs are commonly “trained” differently.
The input-to-hidden weights are usually set according to data points in the training set, and the hid-
den-to-output connections — forming a linear associator — are either set through inverting the lin-
ear mapping, or trained by using a delta rule (Broomhead & Lowe 1988, Moody & Darken 1989).
Again, advantages and disadvantages abound. Gradient descent over the entire weight space is
known to be extremely slow and tedious in many cases, but permits relatively subtle adaptations of
the weights to a desired mapping. Initialization as done in RBFNs is quick but relatively crude
(compare, e.g., Weymaere 1992). Furthermore common RBFNs have a guaranteed learning proce-
dure (Broomhead & Lowe 1988), while backpropagation can get stuck in local minima fairly easily.

In summary, one sees that both MLPs and RBFNs appear to complement each other in certain cases
and thus deserve a unified treatment in the same framework, or even a unification into a network
containing both. This paper aims at introducing an approach for the latter. Before we describe this
in detail, the following section gives an overview of previous attempts to a unfied treatment of MLPs
and RBFNs in literature.

2. Previous attempts on unification

The most straight-forward way of treating MLPs and RBFNs in a unified framework is to consider
the three main aspects propagation rule, transfer function, and learning (or “loading”, Judd 1990)
rule as three independent dimensions, permitting any arbitrary combination for single units. MLP
units are thus a special case as the combination dot-product/sigmoid/gradient-descent, while RBFN
units consist of the triple Euclidean-distance/Gaussian/initialization+delta. The fact that there are
many more possible combinations, or more instantiations of each dimension, easily leads to novel
types of network, or some kind of cross-fertilization between the two networks which are so fre-
quently depicted as if they are completely different. Of course, not all combinations of instances
along the three dimensions make sense but hardly any one can be rejected outrightly (Dorffner un-
published).

Important examples of such cross-fertilizations are the use of gradient descent for RBFNs (Dorffner
1992, Robinson et al. 1988, Weymaere 1992), or the use of initialization+delta for MLPs (Smyth
1992, Weymaere 1992, Dorffner 1993). The former is a viable way of fine-tuning the centers and/or
widths of RBFs, while the latter has proven to improve speed (Smyth 1992) or even performance
(Dorffner 1993) of MLPs (explained in more detail in section 4.).



Further extensions of the prototype networks MLP and RBEN can be achieved by alternative com-
binations of layers with different units, or by combining units of different type in one layer. For
instance, the viablity of two RBF layers in cascade (replacing the linear associator between hidden
and output layer of an RBFN with another Euclidean/Gaussian layer) has been shown (Robinson
et al. 1988, Dorffner 1992, Dorffner unpublished). Also the combination of MLP and RBF units in
one hidden layer can lead to improved results (Weymaere 1993). This latter extension is a way of
making MLPs and RBFNs complement each other with respect to decision regions, as suggested
above. A learning (or “optimization”) procedure is introduced that incrementally extends the hidden
layer by further MLP or RBF unit candidates until optimum performance with minimum network
complexity (defined as number of degrees-of-freedom) is achieved. This procedure achieves what
has been hinted upon in the previous section; it can include both bounded and unbounded decision
regions and thus be more flexible with regard to input distributions. However, this approach has sev-
eral disadvantages. Except for what is achieved by a prior cluster analysis, no guidance as to where
and when each type of decision region is more appropriate is given. Thus the incremental procedure
is rather ad hoc. Furthermore, the rule is non-local and computationally very expensive.

Several people have pointed out prinicpal equivalences of either the propagation rules or the transfer
functions of MLPs and RBFNs. Maruyama (1992) and Denoeux & Lengelle (1993) have shown that
by writing the term (3) of the Euclidean distance as
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and by assuming normalized input (|x| = 1) the propagation rule of the RBFN (Euclidean distance)
can in principle be mapped onto the propagation rule of an MLP unit (dot product x - w plus a

threshold, in this case H H + 1), with the exception of its sign. In Maruyama et al. 1992 itis shown

that any MLP unit can implement RBF units this way (in that for any RBFN an MLP with the same
number of units can be found that computes the same function), while RBF units can implement
MLP units only under certain conditions, mainly due to the missing extra threshold parameter, for
which a dummy extra input has to be introduced. The restriction of normalized input, however, can
be severe in many practical applications (see Dorffner 1992). Also in Maruyama et al. (1992), as
well as in Geva & Sitte (1992), ways of approximating Gaussians with sigmoids and vice versa are
shown. They are based on the observation that the bell shape of a Gaussian (or better still, the positive
half of it) resembles an inverted sigmoid.

An interesting way of viewing the propagation rules of MLP and RBFN and their decision regions
in the same light is pointed out in Omohundro (1988). He shows that by introducing an additional
dimension to the n-dimensional input space, and setting this n+ /-st unit identical to the sum of the
squares of the other n inputs, the resulting MLP units behave like RBF units with localized receptive
fields (i.e. decision regions) with respect to the original n dimensions. Thus, an infinite decision re-
gion can be mapped to a bounded one. This will be discussed in more detail below.



3. Conic Section Function Networks (CSFN)

The novel unification of MLPs and RBFNs introduced in this paper is based on the observation that
both straight line (the decision border of an MLP) and circle (the decision border of an RBFN) are
special cases of conic section functions. In between those two extremes there would be hyperbolas,
parabolas and ellipses® (see fig. 2.). They are all valid borders for decision regions, some of them

Fig.2. A (2-dimensional) input space and possible decision borders to discriminate differ-
ent class samples (depicted by little circles and squares). Straight line (hyperplane) and
circle (hypersphere) are the usual decision borders of MLPs and RBFNs. Intermediate
types of borders (e.g. ellipses or hyperbolas) would be conceivable as well.

unbounded and infinite, some of them bounded and local. The idea therefore is to generalize the
function of a unit to include all these decision regions in an easy way, building a continuum between
an MLP unit and an RBF unit. For the moment, we restrict ourselves to the propagation rule and
assume a threshold or Heaviside function of the form

L. ify;>0
10 ... otherwise

as activation function. Thus all decision regions discussed divide the space into a ‘1-’ and a ‘O-re-
gion.’

5. Even though the following analysis applies to arbitrary n-dimensional input spaces, for illustration purposes
it is often useful to refer to the two-dimensional case. We will therefore use both forms interchangably both re-
fering to the general n-dimensional case (unless otherwise specified or clear from the context). For the same
reason we will sometimes leave out the suffix “hyper-” when talking about decision regions and borders.

6. In generalizations of the simple RBFN (see footnote 3) ellipses are permitted. However, their axes must be
parallel to the coordinate axes, while in the continuum of fig. 2. more general ellipses occur.



One way of achieving the desired unification, of course, would be to introduce the complete second-
order polynomial as propagation rule. The resulting network would then be equal to the most general
second-order network (Lee et al. 1986, Taylor & Coombes 1993), as is done in Roy et al. (1993).

2
However, this would result in a very large number of degrees of freedom (% + n + 1 per unit for

n input dimensions) with no direct relationship to the weights introduced above. What we want
instead is a continuum that permits a direct transition between straight line and circle via the inter-
mediate conic section functions as in fig. 2. To visualize how this could be done we imagine a three-
dimensional space in which the two-dimensional input space is embedded (Fig. 3.). Consider the
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Fig. 3. A (three-dimensional) cone with tip S and opening angle 2w intersecting the
input plane along a circle, a parabola, or — when degrading itself into a plane (2w=r)
along a straight line. X+ and X— denote positive and negative class samples. These
variations can be achieved by varying the opening angle and leaving the tip S and the
point C fixed.

circle of an RBF unit centered around a positive input sample (leading to activation x=1), denoted
by X . If somewhere above this point, on a straight line perpendicular to the plane, we locate another
point we can view that point as the tip of a regular cone, also perpendicular to the plane, intersecting
it by forming the given circle. Depending on how high the tip S is put we obtain a certain opening



angle 2w. Assume that the height of S is equal to the radius of the circle; then w becomes 45 degrees.
Now, by leaving S and one point on the circle fixed, variations of w result in variations of the section
curve. By increasing w the circle turns into an ellipsis, then into a parabola, and a hyperbola. If @
becomes 90 degrees the cone degrades into a plane intersecting the original plane in a straight line,
forming a tangent of the circle we started with.

We see that by varying a single parameter (w) we get the full continuum between the two functions
formed by the propagation rule of MLP and RBF units. It is, of course, not the full spectrum of conic
section functions even in the two-dimensional case, but it covers bounded and unbounded decision
regions of varying size. The approach can easily be extended to more than two dimensions. Given
any n-dimensional MLP- or RBF-unit, we introduce one additional dimension and a regular n+ /-di-
mensional hypercone given by the opening angle 2w, intersecting the n-dimensional space in a hyp-
ersphere, a hyperplane, or shapes in between, analogous to the two-dimensional case.

The analytic version of the propagation rule can be derived by starting with the vector equation pro-
ducing a cone.

(x —s)a = cosw|x — | (6)

where s is the tip of the cone (defining vector), a is the unity vector defining the axis of the cone,

and x defines any point on the surface of the cone. w can be any value in the range [ — %, %]. This

equation expresses the fact that for each point on the surface of the cone the dot product between
the vector x—s and the normalized axis vector is equal to the distance between the point X and the
tip, times the cosine of the half opening angle (as given in the definition of a normalized dot product).
From this we get the following form.

n+1
Z(.xl - Si)ai = COSw

i=1

(7)

If we set the coordinate system such that n dimensions are identical to the n dimensions of the input
space, then by setting x, . ; = 0 the above form becomes the equation for the intersection between

the cone and the input space. For points within the cone the equation becomes an inequality with
a smaller right-hand side. Thus we can subtract the right-hand side from the left-hand side and use
the resulting form as the propagation rule, leading to net inputs larger than zero for points within
the cone (i.e. within intersection regions), and net inputs less than zero for points outside the cone.
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Xn+1 =0

where i and j are again indices refering to units in the input and hidden layer, respectively. One can
easily see that this formula contains two major parts, roughly corresponding to the MLP and the RBF
term of (1) and (3). For this we have to identify the a i (one for each connection between units i and

J) factors with the weights in an MLP, and the Sij factors with the weights, or better still, offsets or

center coordinates, of an RBFN. Contrary to Maruyama et al. 1992 the two sets of degrees-of-free-
dom are not identical but separate. This results in a doubling of resources by introducing two de-
grees-of-freedom per connection, certainly one major drawback of the CSFN when directly
compared to either MLP or RBFN. On the other hand this means a considerably smaller complexity
than the most general second order unit (see also later discussion). In addition to this, each hidden
unit can have its own w;. In general, the idea — which will be explicated in more detail later — is

the following: First a CSFN is initialized as being either an MLP or an RBFN. This fixes all a;; and
s;; values. These values are then clamped and only all w s (i.e. one for each hidden unit) are changed

to optimize the decision regions. Finally, all three sets of parameters might be fine-tuned.

Propagation rule (8) hides one important fact, namely the fact that all a;; also depend on w; since

the axis turns with respect to the input space and thus to the coordinate system when w; is changed.
This is the case since when varying w; we leave the tipe of the cone and one point C at the intersection

of the cone with the input space fixed. Fig. 4. redraws fig. 3. in frontal view such that both the input
plane and the plane of the degraded cone appear as a straight line. This latter plane — the degraded

coneatw = %plays aspecial role, since it contains the points in the cone that remain fixed (in partic-

ular, S and C). This plane and the input plane (or in the general case, the two n-dimensional hyper-
planes or hyperspaces) form an angle a. Theoretically this angle, or alternatively the “height” of the

cone tip above the input plane s,  ; ;, could be an additional degree-of-freedom when changing the

cone. For the sake of simplicity, however, we leave it fixed. Thus it will appear as a constant in the
following equations.

With the help of a and fig. 4. we can formalize the dependency of a;; on w;. Consider the case 2,

when the axis is somewhere between being perpendicular to the input plane and to the plane of the
degraded cone. The best way of approaching this is by considering the fact that in the case of the
degraded cone the CSFN unit should turn into an MLP unit. The decision border of that MLP unit
is the intersection of the plane of the degraded cone with the input plane, i.e. the line appearing as
point Cin fig. 4. In general the hyperplane of an MLP is defined through propagation rule (1), whose
weights can be visualized by a vector w which is orthonormal to the hyperplane, in this case to the
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Fig.4. Frontal view of the different cones in fig.3. a is a unity vector defining the axis.
The weakly drawn lines depict the silhouttes of cones at different opening angles 2.

line. Now one can see that the orthogonal projection of a;onto R", i.e. (a;) for 1 < i < n,isparallel

to w; From this observation, it is easily shown that

. 4
a; = wijsm(a)j -5 a]), l=i=<n 9)
= Wij(_ cos(a)j + aj)), 1 <i<sn
Ayt sm(a)j+a/>

Since according to (6) @; has to be a unity vector, this holds only if the corresponding weight vector
is normalized (ijH = 1).
Thus we could replace a;; by weights w;; and rewrite (8) as

y; = )TJ(— cos(a)j + aj)> + anJ-sin(a)j + aj) - ;jcosa)j (10)



where

y and ; denote the terms in the two major parts of the propagation rule (loosely called the “hyper-
plane-” and the “hypersphere part”) which are independent of w. We will use (8) and (10) inter-
changeably, the latter mainly when the dependence on w is crucial, the former for ease of writing.

Now it also becomes obvious how the two special cases—MLP and RBFN—are derived from (8).
The former is given if o = %, since then the second term of (8) is identical to 0. In that case (8)

reduces to

n+1

= > @ = spay (11)

i=1

n n+1

= inaij - Sijal-j

i=1 i=1

The first part is the weighted sum, while the second part is the threshold of the MLP unit. The scaling

of the weights w;; even in this case (with: — cos(E +a j) = sin(a -), see (9)), as compared to a

ij 2 j
“true” MLP with that hyperplane can be explained through the fact that the degraded cone is not
perpendicular to the input space. The RBFN unitis givenif w + a = %, since then all a;, for i=1

.. n, are identical to zero, a,, , | = 1, and (8) reduces to

(12)

This has the major shape of the propagation rule in (3), but differs in several interesting ways. First
of all, the sign is inverted such that large Euclidean distances lead to small net inputs. Secondly, a

11



constant (s%n +1) 1s added to the squared distance before the square root is applied. This term, even

though disturbing at first, does not change the major hyperspherical characteristic. Thirdly, the net
input is O at the decision border (the surface of the hypersphere) and negative outside. Thus, as op-
posed to the regular RBFN, these decision regions are “truly” finite and bounded. However, this is
not a relevant distinction, either. Both Sin+1 and sina ; together define the radius.

4. Initializing CSFNs

The essence of a CSFN is that the cone of each hidden unit can be adapted — or, as it will be called,
folded or unfolded — so as to make an automatic decision upon the most appropriate region bound-
ary. In particular, the network is made to decide between bounded and unbounded decision regions
based on the distribution of the data. We have seen, that basically this can be achieved by varying

the parameter @ between % (the MLP case) and a — %(the RBEFN case). The great advantage of

the above form of the propagation rule — as opposed to, say, the complete polynomial of second
order — is that there is a single additional parameter per unit to be varied to go through the continu-
ous spectrum between the two special cases. Thus for the adaptation of the decision regions the num-
ber of degrees of freedom is relatively small, which has considerable effect on the learning algo-
rithm. Of course, due to the small number of degrees of freedom, on the other hand, success of
automatic adaptation of the decision regions (henceforth called cone folding) depends on an ap-
propriate initialization of the fixed elements of the cone. In essence, these elements are the hyper-
plane and the hypersphere of the MLP and RBFN part, respectively. We therefore assume cone fold-
ing to set in after a conventional MLP or RBFN has been trained or initialized appropriately. Thus,
cone folding is used to improve or prune a network starting off as one of the two conventional types.

We begin by describing a CSFN that starts off as an MLP.

4.1. Starting with an initialized MLP

As introduced in Smyth (1992), Weymaere (1993), and Dorffner (1993), multilayer perceptrons can
be initialized by setting decision boundaries between data points or clusters, in analogy to the initial-
ization of RBFNs. One can start by picking positive and negative exemplars of each output class at
random, or by picking positive and negative centers after cluster analysis. Assume that we have a
pair of points X j+ and X;~, which are a positive and a negative exemplar (or cluster center) for a
desired output class, respectively. Then a hyperplane can be put on the mid-point of the line connect-
ing the two points, and orthogonal to this line, optimally seperating the two points. This is achieved
by setting the weights and the thresholds of a hidden unit according to Smyth (1992), Weymaere
(1993), or Dorffner (1992)

wy = X = X (13)



In terms of computational geometry, this procedure defines hyperplanes so as to form a Voronoi tes-
selation of the given training points. This is a direct analogy to initializing RBFNs by setting decision
regions (in this case hyperplanes instead of hyperspheres) based on training points (in this case pairs

(n—1)

instead of single points). Since the number of possible pairs is rather large (n 5

reduced by either picking pairs randomly or by pruning methods (Smyth 1992). This procedure fixes
the input-to-hidden weights. In a further analogy to RBFNs the hidden-to-output weights can be set
using a delta rule (for the linear associator between hidden and output layers), or the whole network
can be trained by regular backpropagation using the pre-set weights as (near-to-optimal) starting

) usually it is

points.

It can be shown that for many applications this initialization can lead to surprising results as
compared to backpropagation while being much more efficient what computing time and conver-
gence is concerned (Dorffner 1993). At the same time, since hyperplanes and positive training points
(or even cluster centers) have been devised, this initialization procedure lends itself perfectly as a
starting point for cone folding. For this, the a;-values are computed as in (9), using the weights in
(13). In a practical implementation it is advisable at this point to leave the weights after normaliza-
tion unchanged and compute the product at each update cycle, since the factor changes with w. The
s;; values (i = 1..n) are set identical to the coordinates of X * as the positive center. The additional

constant s, , | ; is computed according to

Surry = d(X;,36) ana, (14)

= yj.”(x = Xj+)tanaj

= [Z v_vl-fx,- - éj]tanaj

i=1

where d(X j+ , i]{’g]-) refers to the distance of the j-th positive sample X * to the hyperplane 6 ; of the
J-th MLP unit, which is identical to the propagation rule (net input) of the initialized MLP applied

to point X T, denoted by yJM(x). w jand 6 ;are weights and threshold from (13) after normalization:

w. -8,
ol
j Wj

4.2. Starting with a pretrained MLP

Assume aregular three-layer MLP (i.e. an MLP with one hidden layer) has been trained by backpro-
pagation according to Werbos 1976, Rumelhart et al. 1986. To initialize a corresponding CSFN one
must again start by setting the a- and s-values of all hidden units. Since all decision boundaries are

13
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hyperplanes we set  to >

. The a values are initialized as in section 4.1., this time using the weights
derived from training.

For initializing the s-values one has to choose a good class representative X * around which the deci-
sion boundary is to bend. This is, of course, not trivial. There are several possibilities:

— choose arandom training sample as X *. This strategy does not require much computation, but, of
course, will most likely lead to non-optimal results. Figure 5.shows the potential influence of

Fig. 5. An input space of positive (white circles) and negative class samples (black
squares). Assume a unit of a pre-trained MLP with the straight line as decision border.
For adapting the cone so as to change (optimize) the decision region a positive data point
has to be picked. If it is too far from the center of the class (point 1) a change in the deci-
sion border (hyperbola) tends to exclude true positives early on (dotted line). If it is too
close to the straight line, (point 2) the possible variations are too restrictive (dashed line).
Point 3 (cluster center or a point close-by) would be ideal in this case (bold line).

choosing a disadvantageous point. It turns out that optimum results can most likely be expected
from choosing cluster centers, or at least points close to one.

— If previously a cluster analysis has been performed, choose the closest cluster center as X *. This
promises much more success but can fail if the hyperplane has not succeeded to separate the prior
clusters.

— perform a cluster analysis after training on all correctly separated data points and choose the closest
cluster center. This strategy requires the most computation (since for each training point it has to be
first decided whether it is classified correctly by the given hyperplane) but promises the greatest
improvements since the likelihood of an appropriate center to bend the decision region around is
increased, as compared to the above two strategies.

In all cases an additional decision must be made as to whether the hidden unit is a positive or nega-
tive “detector.” In other words, after training a hidden unit might also have learned to positively re-



spond to the complementary class (all training pairs with negative or zero target output). This deci-
sion can be made easily by looking at the weight w); leading to the (k—th) output unit. If that weight

is positive, the hidden unit is a positive detector, and analogously for a negative weight.

After choosing a class representative X j+ the values s;; for i=1..n can be set identical to xl;.r CSpily

can be computed like in (14), replacing weights and thresholds gained from initialization by those
computed through the preceding training.

4.3. Starting with an RBFN
So far we have described the initialization of a CSFN which starts off with only hyperplanes as deci-

sion regions (w; = %). For those initializations, the adaptation of the cone can achieve the closing

of initially unbounded decision regions. The opposite case is to start off with a conventional RBFN
and permit the hyperspherical decision regions to open where appropriate. Given the propagation
rule of an RBFN (3), now the s;; (i=1..n) values can easily be derived by setting them identical to

w;;in (3).7 5,41 jis setidentical to the radius of the hypersphere given through the RBFN, multiplied

by tan a. Thus the hyperspherical part of the CSFN becomes identical to the hypersphere of the RBF
unit.

Similar to the previous case (starting with a pre-trained MLP), the hyperplane part is more difficult
to obtain appropriately. Here, a suitable hyperplane — which could be any hyperplane tangent to
the hypersphere of the RBF unit — must be chosen. A possible strategy would be the same used to
initialize an MLP (section 4.1.), i.e. by computing a Voronoi tesselation between positive and nega-
tive training samples. By doing this, however, the original radius of the hypersphere is ignored, since
the distance of the hyperplane from the data sample (and thus the true radius for the CSFN) is given
through the distance between the positive and negative sample. Two strategies are possible: Either
(a) shift the hyperplane on the connecting line to be tangent to the hypersphere of the originally given
RBEN. Or (b) use the new radius (half the connecting stretch) instead (fig. 6.). In both cases the a
values can be computed as in (9) and (13). In case (a) s,, ;| j is computed as in (14) and (13). In case

(b) the new s, ; ; is computed according to

Sn+1y = 1jtAna; (15)

where r; is the radius of the hypersphere of the given RBFN unit. Since a regular RBFN region —

as opposed to the hyperspherical part of the CSFN — is not truly bounded (see footnote 4), a certain
point at the Gaussian, usually multiples of the standard deviation, has to be chosen to define the ra-
dius. As discussed in footnote 3, many variations of algorithms to choose the actual size of the deci-
sion region exist (e.g. Weymaere & Martens 1991, Mel & Omohundro 1991, Leonard et al. 1992).
Thus it further depends on the chosen method, as to what the radius is to be used in (15).

7. Note that in (3) the center coordinates were also depicted as “weights” in a direct comparison with MLPs.

Now, in a CSFEN, the roles of the parameters in the two network types obtain a different, complementary role
(expressed as a and s values).



(a)

¢ &

Fig. 6. Two cases of choosing a hyperplane between two cluster centers of an RBFN.
If the clusters do not intersect (left) the hyperplane can simply be chosen as the Voro-
noi tesselation. If they do intersect, there are two choices (right) — either Voronoi
(case (a)) or a tangent to the positive cluster circle (case (b)). The size of the circles
is given through the RBFN initialization procedure.

5. Learning by adapting the cone (‘‘cone folding’’)

5.1. Gradient descent

No matter how the cone has been initialized, adapting the parameter w to fold or unfold the cone
in order to improve the corresponding decision regions can be done relatively easily. Consider figs.
3. and 4. Even though only the n-dimensional subspace is relevant for the network, the n+/-dimen-
sional cone can be taken as a decision criterion whether a point is either a false positive (FP, i.e. not
amember of the class classified as being a member) or a false negative (FN, i.e. a member classified
as not being a member). If every net input greater than zero is taken as positive, then according to
(8) every point within the cone is positive, while all points outside are negative. To push a FP outside
the cone, w simply has to be decreased to make the cone narrower. Analogously, to pull a FN inside
the cone w has to be increased to make the cone flatter, all within the limits set by the MLP and RBFN
ends of the spectrum.

A successful strategy to arrive at a learning rule to adapt w is to apply gradient descent so as to make
each unit an “optimal separator” of the training data. This can be interpreted in several ways. One
of them is to maximize a “goodness of separation.” This goodness should have a large value if as
many as possible negative points are far outside the unit’s decision region and at the same time as
many as possible positive points far inside. This loosely described property can be formally ex-
pressed by summing the distances between all positive points and the decision border (ideally all
positive) and subtracting the sum of the distances between the negative points and the border (ideally
all negative, if distance is defined as a directed measure). Now it turns out that the net input, even
though not identical (as in the MLP case), is proportional to such a distance measure. For this we
take alook at figure 7., which — similarly to fig. 4. — shows a cross-section of the cone with a plane
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containing the axis () and a data point X. 8 In this view, d is the desired distance to the decision bor-
der. Now recall that the net input was originally defined as (compare (6))
S

/ x d

Fig. 7. A geometrical interpretation of the net input y. It is given as the difference be-
tween two orthogonal projections ont the axis of the cone; namely the projections of SX
and SX’. This figure shows that y is approximately proportional to the distance d between
X and the decision border.

y = (x —s)a — cosw|x — s| (16)

This expression can be interpreted geometrically as the difference between the projection of the
strectch SX onto the axis and the projection of the stretch SX’, where X’ is the point on the surface
of the cone with the same distance to S as X. Now one can easily see that y is approximately propor-
tional to d, positive for points inside the cone, and negative for points outside, as desired. The closer
the point s to the decision border, the better is the approximation (i.e. close to the border the relation-
ship between d and y is approximately linear, farther away it is sub-linear). Since it is these points
which should be emphasized most (since they are the most critical ones with respect to separation),
y indeed can be used as an estimate for the distance in the goodness value g. Hence, we arrive at a
goodness of separation given by the following expression

n

8 = Z}y}— > Sig”(wjk) (17)

[t >0 {11 <o}

where [ is an index over all training patterns and 7’ « 1 the target value for the /-th pattern on output

unit k. w, is again the weight between the j-th hidden unit and the output unit k, whose sign expresses

8. Note that this cross-sectional plane — as opposed to the view in fig. 4. — in general is not orthogonal to the
plane (hyperspace) of the input data.



whether that hidden unit is a positive or negative “detector” (see section 4.2.). The advantage of us-
ing y instead of the true distance lies in the much greater ease of computation (see also below).

Now, maximizing g by changing w can be simply devised as a gradient descent rule by defining
Aw; <« —= (18)

which, by using (17) and the fact that y; is independent from w for all / # J, reduces to

ay; |
Aw; « a_a)] szgn(wjk) (19)

Some additional restrictions, however, are in place. First of all, w can only reasonably be changed

T T
2and2

ther a tiny ellipsoidic region, or a sub-space that tends to cover most of the input space. Secondly,
as a consequence, it is only reasonable to consider points which are on the relevant side of the hyper-

between the limits a, since outside this range the decision regions would degrade to ei-

plane part (the degraded cone at w = %). All points at the other side cannot be affected by changing

. This can easily be decided by looking at the sign of y in (10). Finally, it might be a good strategy
to exclude points from influencing the decision border which are too far away. This can be accounted
for by introducing a threshold 6, as an additional parameter. Given all this, we arrive at the learning
rule:

no ... if y; > 0 and wy > 0 and #;, = 0
or if yj<0and wjk<0and =1 (20)
Aw ={ — 70 ... if y; < 0and w; < 0and 1, = 1

orifyj<0andwjk<0andtk=1

0 ... otherwise

0, = )7jsin(a) +a) + s, c08(w + a) + yzjsina)j

J

w; ... otherwise

;.=

{wj + dw; ... if dw; > 0,
j



o j is the first derivative of y > as written in (10), 7, is the target of the k-th output unit, and 1) is a learn-
ing rate. The sign of w in (17) and (19) is explicitly accounted for by making a case distinction.

Learning rule (20) would only be correct if the update of w were done in a “batch mode” (compare
Rumelhart et al. 1986), i.e. only after all derivatives computed for all training data have been
summed up (i.e. the sumin (17)). Experience shows that updating w after each presentation of single
data points can also lead to satisfying results.

5.2. Maximally excluding false positives

Gradient descent as defined above might not be the optimal strategy. Like in many applications of
RBFNs, an alternative strategy might be to cover the positive samples through decision regions as
well as possible, excluding false positives. Such a strategy — henceforth called ‘remove FP” — can
easily be derived from (20) by only allowing changes in the case of false positives. Thus the learning
rule reduces to

no ... if y; > 0 and wy > 0 and 7, = 1 (21)

Aw; =4—n0 .. if y; <0 and wy <O and r, =1

0 ... otherwise

This applies only to CSFNs that start with unbounded regions (e.g. MLPs) that can be closed. For
CSFNss starting with bounded regions, this rule would have to be adapted appropriately.

5.3. Mixing training strategies

We have seen that cone folding is most appropriate for choosing optimal decision borders based on
a previously trained or initialized conventional network. However, since in (8) the two major parts
are essentially independent from each other, learning strategies like backpropagation (gradient de-
scent on the a or w—values, respectively) can also be applied after cone folding. The main purpose
could be fine-tuning of near-optimal decision regions. The effect is to slightly alter the hyperplane
part of the cone while leaving the tip fixed.

Another way of mixing strategies could be to use gradient descent for more than one set of degrees
of freedom (e.g. a and w, oreven a, s, and w). However, due to the computational complexity of such
a technique (which, even more than regular backpropagation, would be prone to get stuck in local
minima) it would again only be advisable to use it for fine-tuning. The major progress in improve-
ments should come from the relatively little complex process of cone folding.

6. Transfer functions

So far we have only considered the propagation rule of a CSFN, i.e. the rule replacing the dot product
in an MLP and the Euclidean distance in an RBFN. The second important part of the computation
in a neural network unit — the transfer function (see section 1.) — has been ignored, or better still,
has been implicitly assumed as being a threshold function.

Even though a CSFN unit equally includes both the MLP and the RBFN propagation rule, the main
overall characteristics is more similar to the MLP case. With this we mean that “better” input points
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— i.e. points which are farther away from the decision border — lead to larger net input y;. Therefore
1

I +e™ %’
lead to large responses for points that are “farther within or outside” the respective decision regions.
In the RBFN, inversion has to take place, since large responses are desired for small Euclidean dis-
tances (i.e. small net inputs). This inversion is already implicitly contained in the CSEN (see (12)).

a monotonically increasing transfer function, such as the sigmoid is most appropriate to

In the spirit of the above mentioned alternative combinations of the dimensions defining well-
known feedforward networks (see section 1.), a Gaussian could also be used as transfer function,
leading to linear, spherical or intermediate hyper-“ridges” as decision regions, which could be useful
for some given data sets. In summary, we see that — against implicit wide-spread belief — the type
of transfer function (e.g. sigmoid vs. Gaussian) is not so much tied to the general characteristics of
the propagation rule (e.g. hyperplane vs. hypersphere). In the case of a CSFEN, the sigmoid appears
most suitable, while the propagation rule includes both major decision regions. As a result, in the
unification of the two conventional networks presented here no approximation of one transfer func-
tion by the other has to be sought (as was done, for instance, in Maruyama et al. 1992, Geva & Sitte
1992).

Practical experience has shown that best results come from choosing a “steep sigmoid”, i.e. a sig-

moid , ﬁ in which y is scaled with large c so as to approach the function toward a heaviside

function.

7. Pruning

Given the larger number of parameters than in any of the conventional network types, methods to
reduce unnecessary complexity of a CSEN are desirable. There are two major ways how such prun-
ing can be achieved.

First of all, cone folding will not in every case lead to units with decision regions which are inter-

mediate between hyperspheres and hyperplanes. Therefore, for all units j whose w;is within an error

tolerance € of either % ora — %, the s values (a values) can be discarded turning those units esential-

ly into MLP (RBF) units. The result is a mixed hidden layer with units of three types (MLP, RBE,
intermediate) — compare Weymaere (1993).

Secondly, based on a suggestion in Smyth (1992), hidden units with redundant decision regions can
be discarded. A decision region is redundant if (within a certain tolerance) it is subsumed by another
decision region. In a CSFN this can, for instance, happen when among two bounded regions one
opens so as to include the second one. Two strategies to make such a decision can be conceived.

— probing on all training points whether two units are completely correlated with respect to the sign
or their net response. Of course, this strategy is open to errors for sparse training sets.

—computing analytically whether one decision region is subsumed by another. Given the large num-
ber of possible pairs and the effort involved in making each single decision, this strategy can be
very computation-intensive (however, it is error-safe).
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8. Examples

8.1. XOR

In a trivial way the effects of cone folding can be demonstrated with the famous XOR-problem.
Fig. 8. shows the four points of the problem, black dots indicating a target output of 1, white dots

decision bor-

ders —
after cone
folding 0,1) O (.

@ \ decision
borders

after initial-
1zation

(1,0)

Fig. 8. The four points of the XOR problem and the solution achieved by initialization
and subsequent cone folding. MLP Initialization according to (13) on the pairs
(0,0)/(1,0) and (1,1)(0,1), respectively, in both cases leads to the straight line as decision
border for two hidden units. They differ only in that for the first decision region the
positive half-space is below the line, while for the second one it is above. Cone folding,
in a few steps changes the lines to two hyperbolas (bold, with grey areas as positive re-
gions) leading to a solution of the problem.

atarget of 0. If a2-2-1 MLP is initialized according to the above method (13) by taking the two input
pairs (0,0)/(0,1) and (1,0)/(1,1) one twice obtains the straight line y=0.5, once with a positive region
above that line, once below. Of course, this is not a solution to the problem. However, if a corre-
sponding CSNF is inialized with (1,0) and (0,1) as the positive exemplar for hidden unit one and
two, respectively, learning rule (20) can quickly change the decision regions to obtain a solution.
For hidden unit one and its half-plane above the line the point (1,1) is an FP. Therefore, the corre-
sponding w is decreased and the line turns into a hyperbola. This is done until the point is pushed
outside that decision region (it could even happen in one step). The same happens for the other line
(which was identical with the first one to begin with. Thus cone folding very quickly changes the
decision regions so as to achieve the desired XOR output (see fig. 8.).
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8.2. A complex 2-dimensional problem

To illustrate and test the capabilities of cone folding in a CSFN, a two-dimensional data distribution
has been created (figure 9.). The points in this data set are divided into two classes (call them ‘class
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Fig. 9. A complex 2-dimensional data distribution with points from two classes (class
1, depicted as little black squares, and class 0, depicted as white circles). Input xj is
drawn along the horizontal axis (ranging from —2.5 to 2.5), and X, is drawn on the ver-
tical axis (also ranging from —2.5 to 2.5). The origin of the coordinate system is the
center o the depicted overall region. Large black squares depict cluster centers derived
from an ideal cluster analysis of all points in class 1, whereas grey squares depict clus-
ters of class O.

1’ — depicted as black squares — and ‘class 0’ — depicted as white circles). Class 1 was defined
by four Gaussian distributions (namely around the points (0.5,0.5), (0.8,-0.5), (-0.5,0.5), and (-0.8,
—0.5) with standard deviations of 0.3, 0.5, 0.35, and 0.4, respectively) and two even distributions
(defined by x; > 1.5and x; < — 1.3 where x, is the activation of the first input unit — depicted
on a horizontal axis in fig. 9.). Points of class 0 are evenly distributed elsewhere (i.e. for
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— 1.3 < x; =< 1.5and more than the standard deviation away from the positive Gaussian clusters).
400 such points have been randomly created as training set (fig. 9.) and 400 more as test set. For both
inputs only values between —2.5 and 2.5 have been computed (and depicted). Note, however, that

the definition of the data distribution applies to all points in RZand thus defines unbounded regions
in both classes.

Anidealized cluster analysis was assumed which identifies the clusters of the four Gaussian distribu-
tions and three equidistant points in each of the even distributions. Similarly, five cluster centers for
class 0 were chosen (also depicted in fig. 9.). Note that this is of course the optimal case which cannot
be guaranteed in real applications. This case was chosen to illustrate the effects of cone folding. We
will, however, discuss non-optimal cases below.

For the following experiments, 10 or 20 hidden units were chosen and the method of initializing the
CSFN based on an initialized MLP was applied (section 4.1.). In the case of 10 hidden units, for each
hidden unit one of the ten clusters of class 1 was chosen with the closest cluster of class 0 as the pair
X j+ and X;. In the case of 20 hidden units, each positive cluster center formed a pair with each of

its two closest negative clusters. The learning rate m) was set to 1, and the threshold 6,, was varied
between 0.1 and 1.0 (the latter meaning that w was changed every time). Each training step consisted
of the presentation of one randomly chosen input vector from the training set, update of hidden and
output units (regular MLP or CSFN) and one learning step with the following delta rule between
hidden and output layer (learning rate #=0.1, no transfer function at the output units):

Awy, = nxj<tk - ) (22)

where 1, is the target of the k-th output unit.

Figures 10., 11., and 12. show the results, plotted as learning curves (summed squared error over
training steps) for a CSFN with varying number of cone foldings, as compared to a regularly initial-
ized MLP (using the same cluster pairs for initialization). The dotted line on top always depicts the
regular MLP case. Thus, in each case the CSFN outperformed the MLP considerably (increasing
dash size in the learning curve indicates increasing number of cone foldings). It should be noted that
for each experiment — to be fair — the regular MLP was initialized and its hidden-to-output connec-
tions trained by the delta rule again. Thus, the dotted curves indicate several independent training
runs (the paramters varied in figs. 10. through 12. do not affect the MLP) with slight variations in
performance. Nevertheless, the worst result from the CSFN was always better than the best result
from the MLP. In all cases, regular backpropagation with randomly initialized weights was also per-
formed. In none of the experiments, however, it achieved performance below a summed squared
error of about 100.0, in the time constraint of 2000 training steps. This is due to the fact that the learn-
ing problem is hard given the complex data distribution. Thus both initialized MLP and CSFN con-
siderably outperformed regular backpropagation in terms of learning speed. It is interesting to note
that in the case of 10 hidden units the CSFN always starts off better than the MLP, while in the case
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Fig. 10. Learning curves (summed squared error over learning steps) of the ‘remove
FP’ strategy with varying number of cone folding steps and threshold 0. The dotted
line on top is the learning curve of regular MLP initialization + delta rule. Increasing
dash size indicates increasing number of cone foldings.
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Fig. 11. Learning curves (summed squared error over learning steps) of the gradient
descent strategy with varying number of cone folding steps and threshold 0. The
dotted line on top is the learning curve of regular MLP initialization + delta rule. In-
creasing dash size indicates increasing number of cone foldings.
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Fig. 12. Learning curves (summed squared error over learning steps) of the gradient de-
scent and ‘remove FP’ strategies for a network with 20 hidden units, with varying
number of cone folding steps and threshold 0. The dotted line on top is the learning
curve of regular MLP initialization + delta rule. Increasing dash size indicates increas-
ing number of cone foldings.

of 20 hidden units its performance is worse initially (which changes after a few 100 training steps,

though).

The figures show that convergence of cone folding (in terms of improvement) is reached very quick-
ly with sometimes even one or two cone foldings. This quick learning over as many parameters as
there are hidden units must be contrasted with the learning over all weights in the regular backpro-

pagation. The choice of 6, seems to be of little effect, at least in this learning problem.

Fig. 13. depicts the resulting decision regions of the best CSFN and the best MLP (the grey area cor-
responds to the region where the network responds with positive output (classifies the input as class
1). One can see that the CSFN indeed very closely captures the structure of the input space while
the MLP can give only a crude approximation. In particular, the two unbounded regions at the left
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Fig. 13. The final decision regions of a CSFN (left) and an initialized MLP learning
with the delta rule (right). Points with positive responses are highlighted as a grey area.

and right edges of the depicted sub-space (given through the above definition) are nicely discovered
by the CSFN, while the MLP would make more “incorrect” extrapolations. Of course, this need not
always be desirable or optimal in every application. But through the tendency to leave decision re-
gions unbounded in lack of evidence against it, and to close them if such evidence is encountered
the CSFN seems to be capable of more optimal extrapolation for many complex real-world prob-
lems. No doubt that the MLP can achieve the same decision region (see again Hornik 1991, Hornik
et al. 1989) but with more hidden units and perhaps more training data.

Fig. 14. depicts the change of the decision regions of two particular hidden units when cone folding
is done with the ‘remove FP’ strategy. On can see that indeed it closes over bounded regions of posi-
tive points and remains unbounded if no evidence of a false positive point in its decision region ex-
ists. This leads to the above generalizations to regions outside the depicted sub-space. In the case
of gradient descent (fig. 15.) decision regions stop changing when a balance between positives and
negatives (given to the goodness-of-separation in (17)) is reached. For this classification problem
this gives slightly worse results. However, in real applications it might never be the method of choice
since the ‘remove FP’ strategy can be too restrictive when the preceding cluster analysis did not cov-
er all input space equally.

An alternative to using cluster center (which — as can easily be seen — can be very disadvantageous
when cluster analysis fails to cover all the input space) is choosing random training samples for ini-
tialization. In the case of the two-dimensaional problem, 20 positive and 20 negative samples were
taken (distributed across the clusters according to the number of occurences) randomly and chosen
as pairs for initalizing a CSFN, again starting off as an MLP, with 20 hidden units. Fig. 16. shows
the results. One can clearly see that the gradient descent strategy can still outperform the initialized
MLP, while the ‘remove FP’ strategy does not lead to improvements at all. This is interesting with
at least two respects. First, it shows great promise for the CSFN for practical applications, even if
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Fig. 14. The changes in the decision regions (grey area for positive response) of
two hidden units — a unit restricting itselg to a bounded region (left), and a unit
remaining open since it encounters no evidence against an unbounded region
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Fig. 15. The final decision region of a unit learning with gradient descent over
. The folding of the cone stops when there is a balance between positive points
inside and negative ones outside (only for points on the “relevant side” of the
cone).

successful cluster analysis cannot be guaranteed. Here, cone folding does not lead to a perfect
approximation of the input distribution as in fig. 13. but instead to an optimization of all decision
regions with respect to separation. Secondly, it shows that the two strategies (gradient descent and
‘remove fpos‘) can complement each other. Data analysis or experimentation will help in finding
out which one to apply for a given application.

8.3. Detecting Coronary Artery Disease in heart scans

The above examples mainly served to prove and to illustrate the capabilities of CSFNs and cone fold-
ing. Apart from that, CSFNs have also been successfully employed to improve the results of several
real-world applications currently under development. One of them, (described in more detail in
Dorffner & Porenta 1993) is the detection of so-called coronary artery disease (CAD) in thal-
lium-201 scintigrams (scans) of the human heart. The input were several coarsely segmented scans
from different views and at different points in time, plus washout values. This resulted in an input
vector of 45 values, scaled as to roughly lie in the range [0 .. 1] (however, there were a number of
cases lying considerably outside). The target output was obtained by angiography (an invasive meth-
od) as gold standard. Different networks, namely MLPs with backpropagation, RBFNs, and CSFN's
—all of them with 15 hidden units and one output unit indicating presence of CAD — were trained.
Five (almost) independent different training set, which had the disadvantage of being rather small
and unbalanced, were used and thus lead to five different comparisons. The results showed that stan-
dard backpropagation was consistently outperformed, while in 3 out of 5 cases CSFNs lead to the
most improvements. Fig. 17. shows the results from two of the best of these cases, plotting a false
positive over false negative curve for the four different networks (MLP with backprop, initialized
MLP, RBEN, and CSEN). This type of curve is of vital importance in medical applications indicating
how well the system can detect pathological cases (‘“‘sensitivity’”’) while still maintaining a high rate
of correctly classified normal cases (“specificity”’). The results showed that CSFN could help in
making this curve flatter (meaning a higher sensitivity for high specificities), making this neural-
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Fig. 16. Learning curves (summed squared error over learning steps) of the gradient de-
scent and ‘remove FP’ strategies for a network with 20 hidden units, initialized by
single randomly chosen training points, with varying number of cone folding steps.
The dotted line on top of the above diagram is the learning curve of regular MLP ini-
tialization + delta rule. Increasing dash size indicates increasing number of cone fold-
ings.

network based detection clinically useful (previously, using only MLPs with backpropagation, the
results on the networks trained with the data from angiography, failed to be useful).

9. Discussion

As the examples have shown, a CSFN is indeed capable of making automatic decisions with respect
to bounded and unbounded decision regions. This way, it can better approximate the function given
by the desired classification. Since both MLPs and RBFNs have been proven to be universal approxi-
mators (Hornik et al. 1989, Hartman et al. 1990), the actual advantage of CSFNs can come from one
of the following aspects:
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Fig.17. Comparative results from applying four networks (MLPs with backprop
— white/diamonds, RBFNs — black, initialized MLPs — dark grey/crosses, and
CSFNs — light grey, triangles) to the problem of detecting CAD in heart scans.
The curves show sensitivity values (correct positives) on the vertical axis, and
specificity values (correct negatives) on the horizontal axis, both in percent. In
both cases, CSFN help to make the curve considerably flatter, as is desired in med-
ical diagnosis. For the above curve, CSFNs and MLPs were initialized by single
training point pairs, for the lower curve cluster centers were used.

— Learning to within the same error as a plain MLP can be quicker, since cone folding involves fewer
degrees of freedom in a smaller search space (the space of possible omegas).

— Learning to within the same error as a plain MLP or RBFN can be achieved by a smaller number of
hidden units, since decision regions are more complex.

— Generalization can be better since the adaptive shape of decision regions can better account for
peculiar shapes in the input space.

In this sense, CSFNs cannot be more powerful in the theoretic sense (in that they can approximate
more function classes than MLPs or RBFNs) but they might offer a number of advantages in practi-
cal applications concerning efficiency, speed, and generalization. Of course, given an application,
one cannot say whether CSFNs will lead to improvements or not. This points to a need for extensive
data analysis before CSFNs are applied. However, this need is even prevalent — although largely
overlooked by practitioners — when applying the standard networks MLP or RBFN. As we have
argued in the beginning, some data distributions might be more approrpiate for bounded decision
regions, others for undbounded ones. Furthermore, for initialization — which can be extremely
powerful also for the MLP, as has been shown — knowledge about clusters and their distribution
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is a must. Since it unifies all these frameworks, a CSEN has the potential to provide a decisive step
forward to more optimal neural network solutions with respect to a given application. Its special ap-
peal comes from the ability to make some of the decisions about decision regions automatically. Fur-
ther research on optimizing the procedure of finding good initializations will, however, still be need-
ed.

Another interesting aspect worth mentioning is the idea of localized adaptation (Chui et al. 1992,
Omohundro 1989), briefly discussed in section 2. The notion of ‘localized’ in this context need not
be refined to bounded decision regions. In the examples above we have seen that unbounded regions,
when covered by one or a few hidden units would also qualify as localized with respect to needed
changes. Thus CSFNs might have the capability of being more easily adaptible in changing environ-
ments. This will have to be evaluated in the future.

Apart from those practical aspects, CSFN provide for one coherent way of depicting the widely—
used MLPs and RBFNs in the same framework, as aimed at in the beginning of this paper. No nor-
malization of the input vectors has to be assumed (as in Maruyama et al. 1992, Denoeux & Lengelle
1993) to map the two networks onto each other. Instead of showing their principal equivalence,
CSFNs give a generalization containing both networks as special cases, each with their respective
advantages. It is interesting to take a look at an intuitive reason behind the required normalization
in Maruyama et al. 1992. When all input vectors are normalized to constant length, the inputs space
is restricted to a subspace of finite size (i.e. points on a hypersphere). It is obvious that every half-hy-
perspace in a finite space (which itself is no longer infinite but finite) can be approximated by hyper-
spheres reasonably well, while in an infinite space an infinite number of hyperspheres might be
needed to include all possible input points. Along those lines, someone might argue that “truly infi-
nite” decision regions are not needed (apart from the advantage of using fewer hidden units in many
cases). CSFNs can work with both types of decision regions in a potentially infinite (unnormalized)
input space. During cone folding a region can remain unbounded (or open itself) as long as there
is no counterexample lying on the main direction of opening (the axis of the intermediate hyperbo-
las). Thus they can generalize to any point in the infinite region, given the lack of contradictory evi-
dence in the training set.

This aspect is even more important since normalization often is not desirable or even possible in
practical applications (see also Dorffner 1992, Dorffner & Wiklicky 1992). Normalization can
change or even erase potentially relevant information in the input data. It can also compress relevant
regions into tiny transformed regions, possibly too small for being separated by a practically imple-
mented network (due to reasons of accuracy of data or algorithms).

An aspect with similar consequences is scaling of the input data. In many practical applications,
training data with strongly differing ranges are scaled so as to lie in equal intervals (usually [0..1]
or [-1..1]). If this can be done completely for all data, the input space would again be finite.” Howev-
er, in many applications the size of ranges (and therefore the scaling transformation) cannot be fore-
seen. Thus, scaling might still be useful, but data points can also lie outside of the intervals. This

9. In fact, the input space would already be finite before scaling, simply through the assumption that each in-
put dimension has a maximum and a minimum value.

32



is another example where truly infinite decision regions are needed (or can at least be a helpful con-
cept).

As mentioned in section 2., Omohundro (1989) has suggested another way of viewing hyperplanes
and hyperspheres as equivalent decision borders. He suggested to introduce an additional dimension
(just like it was done here) and to use the sum of the squares of the other n input dimensions as the
additional input. This can be interpreted geometrically as introducing a hyper—paraboloid (figure
18.) which intersects the hyperplane of the hidden unit. Now if one draws the projection of the inter-

\

decision border of n+1
(3) dimensional unit

decision border in original n (2)
dimensional input space

Fig. 18. A geometrical interpretation of Omohundro’s suggestion (redrawn from Omo-
hundro, 1988) of using an additional input dimension, which is identical to the sum of
squares of the other n dimensions. In the 2-dimensional case this creates a paraboloid
wich, when intersected by the plane of the original MLP unit (dashed ellipsis) and
projected onto the original space, transforms an infitie half-plane into a finite circular
region (dotted circle).

section onto the original n-dimensional space, every point that lies one one side of the hyperplane
comes to lie within the projected hypersphere, every point on the other side comes to lie outside. This
is how an infinite half-space is projected onto a finite hypersphere. The general idea behind this is
very reminiscent of the technique employed in this paper to arrive at a CSFN unit (although devel-
oped independently). However, there are important differences.
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First of all, the propagation rule of this Omohundro unit can bewritten as

n+1

i=1

n

n
— 2
= inwij + wn_HJin

i=1 i=1

which, adding an arbitrary constant as threshold, turns into the exact same form as used in Maruyama
et al. (1992) (equation (5)) to show the equivalence between MLP and RBFN. Therefore, the two
approaches can be viewed as identical.

Secondly, the Omohundro unit was not suggested as combining both types of decision regions (as
is done in the CSFN) but rather as mapping one of them onto the other (again in the same spirit as
in Maruyama et al., 1992, or Denoeux & Lengelle, 1993). Nevertheless, the propagation rule in (23)
could be extended to provide another such unification (Omohundro, Smolensky, personal commu-
nication). By introducing a scaling factor 8 i = W,41,;1n(23) one could make the influence of the

hyperspherical part variable.

By changing (3, the impact of the paraboloid is varied. If 3 ; = 0, only the hyperplane remains. The
major difference to the CSFN is that there is no smooth transition between the two cases but an abrupt
one. As long as 3 ; > 0 the resulting decision region in the original n-dimensional space is exactly
hyperspherical, only at 3 ; = Oitdegrades to being the linear halfspace. In other words, all decision
regions for 8 ; > 0 are bounded (albeit arbitrarily large, see fig. 19.). Also, the mappings between
errors, distances and the defining parameter (3 in this case, instead of w) is not as obvious as before.

Nevertheless, the network as suggested by Omohundro might be able to similar approximations as
the CSEN in selected applications.

A comparison with other approaches to include more than one type of decision regions in one hidden
layer (such as Weymaere 1993, Roy et al. 1993) reveals that the advantage of CSFNs 1s its localized
learning rule and lesser dependence on heuristic design algorithms. Nevertheless, a combination of
all these ideas might improve neural network based classifiers even further.

10. Conclusion

In this paper we have introduced a framework which unifies and generalizes the well-known con-
cepts of multilayer perceptrons (MLPs) and radial basis function networks (RBFNs). This frame-
work was introduced in the form of a novel network, called conic section function network (CSFN),
which was designed so as to form a continuum between the two special cases MLP and RBFN, what
their propagation rules are concerned. This continuum is controled by a single parameter which can
be changed (i.e. the cone can be “folded” or “unfolded”)automatically, depending on the training
data distribution, through simple learning rules. We have demonstrated the capabilities of CSFNs
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Fig.19. Different decision regions in the original n-dimensional space when varying 3
(Wn+1,4in (23)). All regions are circles except when 8 = 0 (compare with fig. 2.)

in several examples. The power comes from permitting both bounded and unbounded decision re-
gions on a continuous spectrum and thus from being able to approximate input distributions more
smoothly. In many cases this can have decisive advantages with respect to generalization, efficiency
and learning speed. Thus CSFNSs are a further step toward more optimized practical neural network
solutions.
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