
Formal Neural Network Speci�cation

and its Implications on Standardization

Georg Dor�ner, Herbert Wiklicky, Erich Prem

Austrian Research Institue for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

georg@ai.univie.ac.at

Abstract

This paper introduces a formal framework for describing and spec-

ifying neural networks and discusses several important issues with im-

plications for neural network standardization. In particular, a neural

network de�nition and two tools for graphical description and formal

speci�cation are introduced. Issues such as the theoretical impossi-

bility of canonical description, or the need for complete speci�cation

(including global algorithms) are discussed. Several examples, making

use of the developed tools, illustrate these discussions. In sumamry,

this paper aims at contributing to the important endeavour of neural

network standardization both practically and theoretically.

1 Introduction

The goal of this paper is to discuss several issues concerning the formal spec-

i�cation and standardization of neural networks and to set a framework for

it. As such it is an outcome of the project \NEUFODI - Neural Networks

for Forecasting and Diagnosis Applications" which has been part of the Eu-

ropean ESPRIT

1

research programme. The baseline behind the de�nition of

that project was a great dissatisfaction with the lack of systematic catalogues

or comparisons between the variety of neural network types introduced in lit-

erature. Especially for the practitioner it was virtually impossible to take an

arbitrary network descritpion and to determine what it has in common with,

or what it distinguishes from any other arbitrary network. This is further-

more reected in the non-systematic terminology one can �nd throughout

1

ESPRIT stands for \European Strategic Programme for Research in Information Tech-

nology" and is sponsored by the Commission of the European Community

1

literature. Among others one �nds backpropagation networks, Hop�eld net-

works, selforganizing feature maps, and radial basis function networks. The

�rst is named after a learning rule, the second after its author, the third

after what it achieves (and how), the fourth after what it contains. From

reading the original publications there is no easy and straight-forward way

to e�ectively compare these four network paradigms. This is even true for

experienced practitioners, let alone for the newcomer.

In this context, the goal of a major workpackage in NEUFODI was to

de�ne a framework for systematic and unambiguous description of neural

networks so as to permit an e�ective comparison between di�erent models

and also to identify routes for future extensions. As a second goal, unam-

biguous speci�cation of neural networks, in particular of novel network types,

was aimed at. Two description and speci�cation tools have been developed

as the outcome of that workpackage: NGraph { a graphical description tool

{, and NSpec { a formal speci�cation language. During the design of this

framework several important issues with consequences for standardization of

neural network description and terminology have been identi�ed:

� Non-ambiguous and canonical description of all neural networks is im-

possible. Therefore, to permit unequivocal comparison of network mod-

els, one certain point of view or description aspect has to be chosen out

of a large number of possible ones. By specifying a translation from

one description to another, results from comparison can in many cases

be transfered from one framework into another.

� Speci�cation of neural network paradigms involves more than just ar-

chitecture and learning rules. First of all, neural networks have to

be viewed as being embedded into the environment it is performing in.

For instance, categories like `supervised learning' can only be explained

when taking the type of feedback from the environment into account.

Secondly, every neural network has a process associated with it speci-

fying details such as the order in which layers are updated, or at what

time teaching input is presented. Many network descriptions in cur-

rent literature lack the description of these processes thus presenting

the described networks in a not entirely reproducible way.

� When speaking about similar or di�erent network paradigms,models, or

types one needs to carefully de�ne what the basis of distinction is (e.g.

is backpropagation with momentum term in an MLP a new network

type or a variation of standard backprop? What about selforganizing

feature maps vs. LVQ?). We suggest a hierarchical view from the most

general framework to the actual implementation.

With these issues in mind, the description and speci�cation framework

was de�ned from the most general view. It provides the basic elements for

2

standardized description of neural networks, the details of which have to be

chosen in each case. For the same reason, no su�cient but only necessary def-

initions are given, since at the current state of research it appears premature

to exclude any single formalism describable in the framework from being a

neural network. In other words, the framework was designed to include most

of the neural networks known today, but not to explicitly exclude any model

or paradigm (such as, perhaps, cellular automata).

This paper is divided into three parts. First we introduce the de�nition

of a neural network and the developed description framework, including the

two tools NGraph and NSpec. Then we discuss the issue of unambiguous

comparison of di�erent network types and the consequences for standardiza-

tion (including an example). Finally, we discuss the issue of speci�cation

of novel network types, especially with respect to issues such as patents or

copyrights.

2 A Framework for Neural Networks

In this section we describe the formal framework for neural networks de-

veloped within NEUFODI. As mentioned above, the de�nition of a neural

network was designed to be wide enough to include most existing network

types, but not necessarily to explicitly exclude anything usually not called a

`neural network.'

2.1 A tripartite model

The main idea behind the general framework for describing neural networks

is that they cannot be viewed in isolation, but only as being embedded in

the environment they are performing in. Therefore the approach for the de-

scription of neural network paradigms covers the following three sub-systems

or entities (see [Wiklicky et al., 1992a]):

� the Environment in which the neural network operates.

� the I/O-Component including pre- and post-processing.

� the Core, that is the neural network itself.

We introduce the environment and the I/O component of a neural net-

work as separate entities which are relevant for a complete description and

classi�cation of any connectionist system. These three basic entities are con-

ceptually integrated by relating their features and characteristics through

heuristics or analytical results concerning the overall performance of the

whole system.

3

Among previous attempts to develop a framework for neural networks

(e.g. [Fiesler and Caul�eld, 1992], [Bottou and Gallinari, 1990], [Bottou and

Gallinari, 1992] [Golden, 1988]) most de�nitions of neural networks identify

the complete system with what here is called the core of a neural network.

Therefore these approaches exclude the inuence and characteristics of the

two other entities. It is only in [Rumelhart and McClelland, 1986] where we

can �nd a somehow similar approach. There a distinction between the neural

network, i.e. the core, and the environment in which it is operating, can be

found. We also decided to investigate the I/O component as a separate entity,

since pre- and post-processing techniques, or in their most basic form the used

coding techniques, play an important role for the overall performance of a

neural network system.

There are several important examples of neural networks or their major

aspects where this tripartite framework is necessary for a complete descrip-

tion:

� The distinction whether a neural network learning rule is supervised

or unsupervised can only be made if it can be decided whether the

environment supplies the target or not.

� This is even more true for neural networks for control, which can only

be described in full (e.g. when and how a reinforcement signal comes in)

if the environment is included. This relates to the above statement that

a neural network paradigm is only completely speci�ed if the process

determining the order of updates and the points in time of pattern

presentation is also described (see also section 4).

� The description and analysis of how a neural network explores similari-

ties among the data can only be reliably given if the preprocessing and

coding schemes are known.

� In many cases pre- and postprocessing critically determine the size or

perhaps the architecture of a neural network.

Details about the environment and I/O component of a neural network

can be found elsewhere ([Wiklicky et al., 1992b], to be published). In the

following sections we nevertheless concentrate on the core aspects of neral

networks, unless stated otherwise.

2.2 A Conceptual Framework for the Core Compo-

nent

The following should be seen as some kind of \working de�nition" of a neu-

ral network core (or henceforth neural network, for short) suitable for our

4

purposes. Compared to the models for a neural network cited above, our

approach is trying to �nd a way in between an implementation oriented {

and probably too vague {, and a theoretical { but perhaps too restricted

{ conceptual model. Thus, in contrast to some more biologically inspired

approaches (cf. [Marcad�e et al., 1990]) or purely formal ones like the ones

mentioned above we tried to de�ne neural networks in an \open" way.

The basic structure elements of a neural network core are

modules (systems) which interact through interfaces by ex-

changing informations via signals or events.

These modules are attributed with data structures and pro-

cesses (algorithms) and are organized on di�erent hierarchi-

cal levels.

The most basic elements which are not aggregates are units

and links (connections). The hierarchy levels are established

through the de�nition of aggregates by combining a set of lower

level elements. The constituents of aggregates not necessarily

have to be of the same type (i.e. aggregates can be homogenous

or inhomogenous).

Aggregates, besides having their own attributes, i.e. data and

processes, also impose some kind of internal structure on their

plain set of forming elements.

This \working de�nition" of a neural network as a type of parallel com-

puting device is purely based on structural criteria. Some important aspects

of neural networks like learning, self-organization etc. are not explicitly men-

tioned, but we will comment on these issues below.

Our de�nition obviously introduces a clear static hierarchy for the com-

putational elements. But note that such a hierarchical structure is also given

in a natural way for processes operating in such a network. The same way

static elements (e.g. units) are combined to form larger entities (e.g. layers)

processes can be combined into more complex ones. This is done along or

through signals. For example: if we have a process operating on one unit

which sends a signal to another unit which in turn starts or triggers some

process operating on the second unit, then these two processes together form

a combined process which is \glued" together by the transmitted signal. As

it is known from more general theories of (parallel) processes (e.g. [Milner,

1980] or [Hoare, 1985]) we can also introduce other forms of combination of

processes, such as parallel execution. An example for this kind of process

combination is the interpretation of the synchronous update of all units in a

layer as one process step.

In addition to the above working de�nition, an important aspect of neu-

ral networks is that on a global level we should have at least two processes,

5

formed by combining lower level processes: encoding (or learning) and de-

coding (or evaluation). These two processes operate antagonistically result-

ing in a self-organization of the whole system. While the evaluation process

in general is parameterized by a set of variables, usually called \weights," it

changes another set of variables, usually called \activations." On one hand

the encoding process changes the parameters which code the evaluation pro-

cess, i.e. the weight variables; how these values are changed during learning,

on the other hand is determined or parameterized by the activation values (or

by some error values which for a given environment deterministcally depend

on the computed activations).

2.2.1 Some more details on the \working de�nition"

In the following the main components of the neural network working de�ni-

tion are described in more detail. By doing this, we also explain why this

approach presented above was chosen.

Modules: Modules as well as the interfaces between them are modeled in a

way inspired heavily from techniques originating in object oriented program-

ming [Meyer, 1988]. The elements of a neural network actually are objects

in the sense of this programming approach. object oriented programming {

perhaps in an extended version which is better suited for concurrency or par-

allelism, such as Actor models, [Agha, 1986] { indeed seems to be the most

obvious and natural programming framework for neural networks (see [Derot

et al., 1989]). In this respect, we are not proposing a totally new conceptual

approach but building on an already commonly used one. The locality of

computation, which is explicitly required, for example, in the Hecht-Nielsen

de�nition [Simpson, 1990], although not always purely realizable, gives a

simple and natural principle for data encapsulation and information hiding.

Each element knows about any other element only by the exchangable signals.

The inner structure of such a neural element is kept hidden. In addition, the

explicit speci�cation of well-de�ned interfaces by describing the emitted and

received (data) signals also supports those key principles of object oriented

programming [Meyer, 1988, pp 18].

Types of Elements: Another aspect of our \working de�nition" related

to object oriented programming is that we introduce neural element types as

abstract data types. Every instantation of a neural element is of a certain

type.

What is very typical for object oriented programming are so called in-

heritance systems. Many types or classes of objects are speci�ed as spe-

cializations of other types or classes. This supports reusability of existing

elements.

6

A derived class { in our case, for instance, a variation of an existing unit

type { can be speci�ed by declaring new attributes (data, functions, signals).

This introduces a second type of hierarchy (besides the concrete architectural

hierarchy through the establishment of aggregates), namely an inheritance

hierarchy, through introducing derived element types. This allows a much

better structure on the set of all neural elements for classi�cation.

Interfaces: Establishing a connection between modules is done by the

speci�cation of the input to each module. This means that the state of

one module has an inuence on the transition function of another one. Thus

the dynamics of a module depends on the dynamics of others. One could

also say that one element of a neural network core reacts to a signal which

it receives from another element.

Thus, an interface is always directly related to a procedural attribute

of a neural element (e.g. its transition function). Its function reacts to the

attribute values of another element and changes the values of the attributes

of the neural element it is attached to.

Aggregates: Collections of more basic elements allow a modularization

and hierarchical organization of a neural network architecture. On one hand

this is of practical use. Aggregates generalize the well known layer concept

which makes it easier to describe or specify in a single statement the execution

of identical (parallel) processes on a whole set of elements.

On the other hand, they are also of theoretical interest as they allow

a higher level information hiding for \semi-global" processes which violate

the strict locality principle of Hecht-Nielsen [Simpson, 1990]. An example is

the computation of the \total square sum error" or the determination of the

winner unit in a Winner Take All (WTA) layer.

Besides being a neural element having \private" attributes attached to

it and communicating via signals with other (high and low level) neural

elements, aggregates have three speci�c, additional characteristics;

Set: An aggregate is a set of more basic elements. Thus for aggregates op-

erations like union, intersection but also membership etc., are available

in concrete implementations.

Size: An aggregate has a certain size, i.e. the number of elements it con-

tains. As this size might vary either in di�erent realizations of a certain

paradigm, or dynamically within the lifetime of a concrete architecture,

one has to interpret any aggregate type as a parameterized type.

Selection: A �nal aspect of an aggregate is the possibility of selection. This

means that mechanisms have to exist as to how to identify a certain

7

element, e.g. the nearest neighbors of a unit in a paradigm like Ko-

honen's topological feature maps ([Kohonen, 1982]). We need this for

the formulation of semi-global algorithms as well as for specifying the

group-wise connection in more complicated cases.

Signals and Events: A signal in general has a source and a target. It can

also carry information. Every signal is related to a certain event, i.e. some

point in time when it is emitted. On could also distinguish another event,

namely when the signal is received. By doing this, delayed (or timed) signals

can be introduced.

In any case, signals implement the dynamical structure described above.

They have three purposes. First, they allow the exchange of information or

data between di�erent elements. Secondly, the timing of signals induces a

speci�c timing of the processes which send or receive signals (for achieving

this they do not even have to carry information, therefore we also permit

\void" signals, which we just call events). And thirdly, they allow the gluing

together of sub-processes which are attached to di�erent elements to create

a more global sequential process as described above.

Processes: The framework includes local processes as well as global and

semi-global processes built up from more elementary ones. We described

such a combination or gluing method already above.

True neural networks should always have at least two global processes:

encoding and decoding. We can even extend our structural de�nition by

the following requirement: eural networks, in general, contain at least two

processes which inuence one another (self-organization).

There exist some prominent \non-learning" distributed systems, i.e. sys-

tems with only one of these two processes (e.g. evaluation), which we there-

fore can separate from neural networks, among these are cellular automata

[Goles and Martinez, 1990] or [To�oli and Margolus, 1987] or sorting net-

works [Knuth, 1983]. For reasons given above, however, it might not be

advisable to strictly exclude them from being neural networks. Note, for

instance, that also some mechanisms commonly accepted as neural networks

paradigms, such as linear associative memories ([Hecht-Nielsen, 1990]) or

Hop�eld networks have only one dynamic process, whereas the other one is

degenerated and can be realized as a one-step algorithm. Thus we introduce

these additional requirements not as inextricable parts of the framework, but

as often desired addendums.

Attributes and States: It is important to distinguish between processes

on the one hand and procedures or functions on the other. Whereas the

former are the actual dynamic entities, the latter only reect certain algo-

8

rithmic recipes. The relation between processes and functional or procedural

attributes is established by the fact that the execution of a procedure creates

a process. When a procedure depends on a certain event or signal its exe-

cution has to be postponed. Thus signals control the execution of functions

and therefore in particular the dynamical structure of processes.

Concerning the (data) types of element attributes we can make the follow-

ing general specialization which again exhibits the di�erence between \true"

neural networks and some close relatives: he elements of a neural network

only have numeric data attributes. This is mainly in contrast to genetic

algorithms [Goldberg, 1989] where in most cases the coding of the genome

is of type string. In some way this separation is not too satisfying since it

leads to deep representational discussions such as whether there really is a

di�erence between a string attribute and a numeric attribute, and which one

this is.

Units and Links: A design problem still left open is the following: Shall

we introduce separate link objects or not? It is important to note that the

interfaces as de�ned above are not necessarily identical with the links in a

network (therefore the more neutral term \interface"). Interfaces connect

elements possibly including links (see example below).

We could argue in favor of link objects with the help of the above distinc-

tion between an encoding and a recall mechanism. Whereas units parame-

terize the latter process, links would parameterize the former. In this sense

weights play a dual role to activations (the one is changed during encoding,

the other one during recall) which is better reected in putting them into

di�erent elements. Thus keeping them separate in di�erent neural elements

(modeules) appears natural.

As we tried to follow a kind of object oriented design approach we tried

to combine data and procedural attributes such that only local procedures,

i.e. procedures attached to the same element, are allowed to change the at-

tribute values of a certain element. In addition, we tried to keep such at-

tribute groups as independent and small as possible and prefer a model where

one element is \reading" only from a small set of neighbors. Conventional

\weighted" links obviously constitute such a group of attributes (the learning

function is such a locally operating transition-function).

Finally, one could argue that with symmetric connection, like in Boltz-

mann machines, it is impossible to decide in an obvious way with which unit

some weight-link shall be associated.

Nevertheless, some designers might like to interpret weights as sub-elements

of units or neurons [Marcad�e et al., 1990]. The general framework proposed

here permits both views, at the same time providing for the possibility of

mapping the two into each other. This can be done by merging the at-

9

tributes of a connection with the attributes of its neighboring unit module

(see section 3).

2.3 Two description and speci�cation tools

In this section two concrete description tools following the above working

de�nition will be described.

2.3.1 NGraph

A description tool based on the de�nition given above { a graphical language

named NGraph { was developed in the initial phase of NEUFODI. The basic

idea is quite simple and can be stated like this:

Take di�erent icons, i.e. graphical entities or objects, which represent

di�erent types or classes of neural entities. The interdependence between the

neural entities is expressed by the (graphical) relation of the corresponding

icons.

By this we get a \sketch" of a neural network, of concrete architectures

or of general paradigms (compare section 4). This description technique is

very closely related to the blueprints of architects or engineers. There is

also some kind of relation to classical software design methods (cf. [Hatley

and Pirbhai, 1987] etc.) On the other hand NGraph tries to give some more

uniformity to the diagrams already used for describing neural networks.

An important aspect of NGraph is that it reects the fact that di�erent

neural entities can have the same type. This \typing" has several conse-

quences: (1) Elements of an identical type are represented through the same

icon. (2) New types can be expressed by extending, varying or attributing

the icons of a base type. (3) One can tell by the shape of an icon whether,

for example, an element is a unit or a link.

As neural networks commonly are quite \homogenous" parallel algo-

rithms, i.e. only a few di�erent basic types of atomic elements (and aggre-

gates) are used, not too many di�erent icons have to be invented. And as

various paradigms di�er not in their basic element types but in their \global"

structure one can think of a standardization of basic icons which are then

used in the description of di�erent paradigms or networks.

Icons for Neural Elements For representing neural elements, i.e. mod-

ules and interfaces or connections, we will use only geometrical objects which

have an interior:

Neural elements, i.e. modules and interfaces, are represented by icons with

an interior. These icons can have an internal segmentation, pattern or color.

10

The silhouette of icons representing modules has to be made up from

curves (splines). Straight lines can be used only as additional borderline or

in the inner segmentation.

The silhouette of icons representing interfaces is made up only from

straight lines. Curves (splines) are allowed only in their interior segmenta-

tion.

When a new icon (corresponding to a new type of neural entity) is in-

troduced, which can be done by any user of the description tool (any neural

network designer), only a few rules have to obeyed. To make an icon iden-

ti�able or unique one can use several \classical" techniques, like: attaching

a unique name as a label, or using di�erent border lines (e.g. line patterns,

thickness, color etc.), interior pattern or interior color.

Meta-icons and Connections Usually the relevant informations describ-

ing the type and attributes of the neural element which is represented by a

certain icon should be put in its interior or very close to its borderline.

Quite often there is not enough room to put all relevant information

related to some element or icon in its interior or next to it. In these cases

one needs a meta-symbol indicating that such information is put somewhere

else. For this purpose we use a line-icon (either a straight line or a spline)

with a dot on one side.

In some cases it makes a description diagram or sketch more readable if a

certain element of a neural network is represented not only by one graphical

icon but several. To identify some icons as representing the same neural

element or object we use the following icon: A line-icon (either a straight line

or a spline) with a dot on each side. An example would be the easy depiction

of full intra-layer connections by \unfolding" the layer into a feedforward

network with two layers.

A third meta-icon related to the two above is used to sketch a change

of topology (or of another feature) of a module. It is a line-icon (either a

straight line or a spline) with a dot on one side and an arrow head on the

other. The transformation it indicates is such that the situation described

near the dot-end of this icon becomes the situation pictured near the arrow

end.

Icons which represent neural network elements can be combined to rep-

resent a connection between them, i.e. to represent some kind of inuence of

the state of one object onto the state of another. There a three prototypical

cases: explicate connection, connecting by concatenation and connecting by

overlap.

To represent a speci�c type of connection one again can label connection

icons by di�erent attributes, or use special kinds of lines (pattern, thickness,

color etc.) to represent a certain connection type.

11

float: weight

learn()

float: net
float: act
float: bias
float: delta

float: net
float: act
float: bias
float: delta

activate()
getnet()
learn()
getdelta()

activate()
getnet()
learn()
getdelta()

Figure 1: Error Back Propagation

To reect the dynamical structure of a neural network core one needs to

have some tool to describe when and how procedures have to be executed.

We represent this \control signal connection" by a dashed line-icon with an

arrow head indicating the direction.

When, as a reaction to an event triggered by another object, not only a

procedure is executed but also the state of another object is changed, one

can say that a data signal was sent. For this we use an full line-icon with an

arrow head. This kind signals could be labeled by the involved event and the

sent data. Control signals could be interpreted as data signals with empty

data, thus the dashed version for representing them.

Attributes and Events Data elements are speci�ed in a pseudo-code no-

tation of the following format: data-type : data-name = data-value,

where the value part often is missing when specifying a data attribute of a

neural element. When labeling data connections (information ows) only the

name part might be provided if anything else is obvious from the context.

Figure 1 shows an example by depicting the attributes of two units and their

link in an backpropagation network, as well as their dependencies.

For a procedure we use the following notation: proc-name (proc-param)

= proc-body The function body { normally omitted when specifying a pro-

cedure only as a procedural attribute { iswritten in a C-like syntax or using

mathematical symbols.

Procedures are triggered either by an implicit or an explicit event. A

procedure thus depends on a certain event and itself can trigger other events

needed by other units.

We suggest the following notation for events: < event-name > If a pro-

cedure is triggered by some events or if it creates events we describe this in

the following way: jevents >proc-name respectively proc-name< eventsj

12

where events is a sequence of events. If these events are separated by com-

mas (\,") this indicates an \and" combination of the corresponding condi-

tions, if a semi-colon is used (\;") an \or" operation is indicated.

There are some additional features of the graphical design tool which

cannot be explained here due to the limitations in space (for those details

see [Wiklicky, 1992]). Fig. 2 in section 4 shows an example depicting a

backpropagation network, showing the use of events and signals, as well as

of meta-icons.

2.3.2 NSpec

Graphical description of neural networks, as exercised with the help of NGraph

can be extremely helpful and easy to understand. However, many important

aspects cannot be speci�ed by graphical means to a satisfying degree. For

instance, the depiction of algorithms (e.g. learning rules) as well dependen-

cies along the inheritance hierarchy, is extremely di�cult if not impossible.

Therefore, in a subsequent phase of NEUFODI, a formal speci�cation lan-

guage for neural networks, called NSpec, was developed. While NGraph was

envisionedmainly for description of neural networks in an easy-to-understand

way, NSpec was designed to be suitable for formal detailed speci�cation.

One of the basic principles of NSpec is object oriented design (see also

above). To stay as close as possible to the basic conceptual de�nition of a

neural network, the following basic entities were introduced:

� Data Attributes: Local Variables, Signals.

� Functional Attributes: Functions and Procedures, Processes.

� Elements: Attributes, Structure of Aggregates.

� Interfaces between elements.

Further speci�c features of NSpec are: hierarchical topological structur-

ing of elements, signals and events to implement concurrency, and assertion

techniques to specify abstract requirements. Basically, a notation very rem-

iniscent of C++ ([Stroustrup, 1987]) was chosen. This was done to make

NSpec more readable and acceptable, since a large number of neural network

researchers are pro�cient in C or C++. It should be emphasized, however,

that NSpec is not intended as a programming language but as a formal tool

for speci�cation. Some aspects therefore go beyond C++ or any other pro-

gramming language. For more details we refer to [Wiklicky et al., 1992b] or

[Wiklicky, 1992] where a complete syntax de�nition of NSpec is given.

Basic structure In NSpec we distinguish between atomic elements, e.g.

units or links, and aggregates (see above). To describe an atomic element one

simply has to specify all its attributes, such as functions and data structures.

13

Each attribute is de�ned, together with their types, in a way very similar

to variable and procedure de�nition in C. Moreover, functions and procedures

attached to a module are de�ned like object-oriented methods in C++ with

the name <object-name>::<func-name>. Inheritance of modules can be

expressed by an is <object-name> statement. Declaration or de�nition

bodies are embraced by curly brackets.

Signal exchange and concurrency To describe the concurrency aspects

of neural networks we use a kind of signal exchange model to express it.

Signals are usually attached to neural network elements. From the point

of view of a certain element there are two kinds of signals: incoming and

outgoing signals. In particular, signals possess a certain (data) type which

speci�es the possible values which may be transmitted via a particular signal

channel. To represent pure control signals (also call events), the data type

void is also admissible.

Signals in general are declared like simple data variables, in particular

it is also possible to de�ne whole sets of signals. For specifying processes

we need expressions to indicate the sending and receiving of a signal. For

this a similar (reverse) notation is used. Some elements are connected by

identifying some incoming and outgoing signals.

� Incoming signal: data-type <signal|

� Receive a signal: |signal>;

� Outgoing signal: data-type |signal>

� Send a signal: <signal|;

Abstract Speci�cation Most of the constructs of NSpec which are re-

lated to conventional (concurrent) programming seem to su�ce for describing

neural networks. But for a more abstract analysis one is often interested in

formulations where a neural network algorithm is not described as a concrete

process, but instead only the desired result is stated. For example, we could

be confronted with the problem of formalizing a statement like \select the

winning unit", without knowing how to realize such a selection process.

The speci�cation statements about the characteristics are formulated ac-

cording to a syntax which resembles very much predicate calculus in logic

(which therefore also is the basis for the semantics of these statements). Spec-

i�cation, in particular, are based on certain predicates describing the char-

acteristics of neural network entities. For example a winner-take-all (WTA)

layer might be speci�ed in abstract way, using an assert statement, as fol-

lows.

elem unit is { float act; };

14

elem wta_layer is set of unit assert {

exists T in time :

exists w in wta_layer :

forall l in wta_layer :

{ at t <! T : w.act >= l.act } and

{ at t >! T : w.act == 1.0 and l.act == 0.0}

};

The last part of the following section makes use of NSpec and thus pro-

vides the reader with a much more extensive example of its application in

speci�cation.

3 Comparison and Standardization

After having de�ned an overall description and speci�cation framework for

neural networks, we now discuss some important issues concerning the use of

such a framework. The �rst is the comparison between di�erent networks.

For practitioners who apply neural networks to their problems a compar-

ative appraisal of di�erent network types or paradigms is of vital importance.

In particular, they need to know

� what distinguishes network type X from network type Y, which would

justify a switch from one to the other in case of unsuccessful application

of X. For instance, how are radial basis function networks ([D.S. Broom-

head, 1988], [Moody and Darken, 1988]) di�erent from multilayer per-

ceptrons such that the former could be employedmore successfully than

the latter.

� what are the commonalities of network types X and Y so as to permit

an aspect of X (e.g. a learning rule) to be applied to Y. For instance, a

comparative description should make clear that gradient descent learn-

ing (usually applied to multilayer perceptrons) can also be applied to

radial basis function networks (see, for instance, [A.J. Robinson, 1988]).

� what dimensions of di�erent neural network types can be combined

so as to develop new and more powerful types. For instance, the de-

scription should make clear that selforganizing feature maps could be

enhanced with hidden layers so as to make the mapping capabilities

from the input to the map with respect to similarity constraints more

general.

Of course, a standardized description can provide only half of the neces-

sary knowledge to permit these kinds of reasoning. With each dimension of

description, ideally theorems or rules would have to be attached as to what

15

consequence a variation of that dimension would have on practical applica-

tions. For instance, to decide whether to apply gradient descent learning to

radial basis function networks one needed to know in what cases it would be

successful, or what inuence the di�erence between RBFNs and MLPs has

on gradient descent (such as the observation that if RBFNs are not initial-

ized properly, gradient descent will not �nd a solution due to the spatially

constrained decision regions of each RBFN hidden unit). Nevertheless, a

formalized description will be a necessary prerequisite for the overall goal of

arriving at a comparative overview of neural networks.

One major spin-o� of the whole endeavor described in this paper should

already have come clear from this discussion. A general description frame-

work of neural networks eases the way for novel developments (such as the

mentioned RBFNs with gradient descent or feature maps with hidden units),

since it frees the �eld from the categorical thinking in terms of the most

popular paradigms (inasmuch, for instance, backpropagation appears to be

inextricably tied to multilayer perceptrons for so many).

3.1 The Impossibility of Uniqueness of Description

One major aspect considerably impeding the whole task of description and

standardization of neural networks is the fact that the de�nition of a unique

and canonical description of networks with respect to all interesting aspects

is impossible. In other words, it is not possible to �nd a standard of de-

scription such that all relevant similarities and di�erences between networks

are uniquely expressed. The reason for this is simple. Every neural network

contains algorithms (such as the learning rule, or the process de�ning the

overall order of updates) and the problem of equivalence of algorithms is un-

decidable. As a consequence, one can always �nd a description which makes

two arbitrary network types more similar to each other than to any other

type. In other words, there is no absolute point for any neural network type

in the space of possible types.

This issue has already become evident in the above discussion about

whether links should be described as separate objects or not. Another il-

lustrative example is the following. Suppose one wanted to decide whether

competitive learning (e.g. in [Grossberg, 1976]) is more similar to Hop�eld

networks or to perceptrons. One important dimension might be whether each

network is recurrent or not. One possible description of the competitive layer

in CL could be:

elem wta_layer

is array of unit {

get_winner <|> (|);

};

16

proc wta_layer::get_winner <|> (|)

is {

set of int won; // the set of winner indices

float max; // the maximum activation so far

won = wta_layer[1];

max = wta_layer[1].act;

for (i = 2; i =< #wta_layer; i++) {

if (wta_layer[i] >! max) {

// a new maximum found

won = [wta_layer[i]];

max = wta_layer[i].act;

} else {

// probably at least as good?

if (wta_layer[i] == max) {

won += i;

}

}

}

wta_layer.<loser|; // all elements loose first

wta_layer[won].<winner|; // but some can recover

};

In this description, a process, called \get-winner" is associated with the

layer, which itself is not recurrent. Thus, according to this dimension, the

network would be more similar to a perceptron than to a Hop�eld network.

Logical extensions would be networks like counterpropagation (where the

competitive layer is the hidden layer of an MLP-type network, [Hecht-Nielsen,

1987]) or CL with hidden units.

On the other hand, an equally justi�able description would be this:

elem wta_unit

is unit {

float <output|; // current activation signal

array of float |input>; // activation of others

ask <|output> (act|);

answer <input|> (act|act);

};

17

proc wta_unit::ask <|output> (act|)

is {

<output| = act;

};

proc wta_unit::answer <input|> (act|act)

is {

for (i=1; i =< #input; i++) {

if (act <! |input[i]>) {

// we have lost

act = 0.0;

return; // exit!

}

}

// we did not lose, so we are among the winners

act = 1.0;

};

with connections de�ned as follows

conn default (wta_unit u, wta_unit v)

is {

conn u.<output| to v.|input>[];

};

Thus, we can de�ne a WTA layer as a set of wta_units which are fully

connected with each other (but not with themselves).

conn full (array of unit layer)

is {

wta_unit u;

pardo (u in layer) {

conn u, layer - u by default;

}

};

elem wta_layer

is set of unit {

conn self by full;

};

In other words, WTA is realized through interconnections via which units

can ask other units whether they are more higly activated or not. The main

18

di�erence to the above description is that the process leading to WTA is not

de�ned globally for the whole layer but is achieved through interactions be-

tween single units via interfaces (connections). Of course another such view

(perhaps even more common) is to have \regular" connections for activa-

tion spreading with large negative weights so as to achieve high competition

(leading to one winner remaining active).

In this description, the layer is clearly recurrent and directly compara-

ble to the one layer in a Hop�eld network, which would thus be the more

similar of the two. A logical extension could be \soft competitive learning"

([G. Dor�ner, 1993b]), where not only the winner remains active, or \mutiple

winner CL", where there can be more than one winner.

The question which of the two descriptions is more canonical or the under-

lying one cannot be answered. Both descriptions have to be equally accepted,

the choice as to which is more appropriate depends on the context. Therefore,

any comparative description has to be de�ned with certain presuppositions.

In other words, standardized description will need to be de�ned by deciding

upon one out of many possible forms of description, depending on the re-

quirements of a certain background. Thus, standardization can only provide

for one possible view of neural networks, which { if agreed upon { can serve

as a seed for other views for researchers with di�erent requirements. Novel

views can then be introduced by de�ning how dimensions of the original stan-

dard map onto dimensions of the new standard, thus leaving the framework

intact and the deviations tractable. Such a mapping, however, need not be

bijective (??), in that every network in one view has a direct analogon in the

other view.

Coming back to the above example, it could be decided that the stan-

dardized view of CL is the second one (depicting it as being recurrent). In

this view, CL would share recurrency with the Hop�eld network. If, for in-

stance for reasons of implementation, the other view becomes preferable, it

can be introduced by de�ning the mapping

Layer in Framework1: connections always lead to one single active unit

<->

Layer in Framework2: process `get-winner'

One can see that this mapping works for these two cases, but not nec-

essarily for any generalizations in either framework. For instance, there are

competitive layers which cannot be described as winner-take-all. On the

other hand, processes might be introduced in framework 2 (e.g. 'Let the �ve

most active units �re maximally') which might not be translatable into a

layer with recurrent connections.

19

3.2 An example: A comparative description of feed-

forward networks

In this section we describe a more elaborated example, illustrating the use of

the description framework, as well as the issues raised above. We present a

possible standard for describing the family of non-recurrent (i.e. feedforward)

neural networks, for example, multilayer perceptrons (MLP) and radial basis

function networks (RBFN). Only units and links are de�ned here, the larger

structure of the network, very similar in all cases, was omitted for simplicity.

3.2.1 View 1: Propagation rules and activation functions

We begin by describing hidden units:

elem ff-unit

{

float net;

float act;

float bias;

set of float <input|;

float |output>;

float activation (float x);

forward <input|output> (bias|net,act);

init <insamples|> (|bias);

};

elem bp-unit

is ff-unit

{

float delta;

float error;

set of float <indelta|;

float |outdelta>

float derivative (float x);

backward <indelta|outdelta> (net,bias|error);

learn <|> (delta,bias|bias);

};

20

This description speci�es that each feedforward unit possesses three lo-

cal variables, namely the net input (net), the activation (act), and a bias.

Furthermore, a set of input data and a output value are de�ned. Finally,

one function (activation function) and two processes (forward propagation

of ativations, and initialization) are associated with the unit. Introducing

the initialization process stresses the fact that the weights of all feedforward

networks, not only of radial basis function networks, can be initialized on the

basis of training samples ([Smyth, 1992], [G. Dor�ner, 1993a]).

From this unit, a specialization bp-unit is de�ned which possesses ad-

ditional variables, functions and processes to permit error back propagation

and gradient descent learning.

The involved processes are of the following simple kind:

proc ff-unit::forward <input|output> (bias|net,act)

is {

net = sum(|input>);

<output| = act = activation(net,bias);

};

proc bp-unit::backward <indelta|outdelta>

(net,bias|error)

is {

error = sum(|indelta>);

<outdelta| = delta

= error * derivative(net,bias);

};

proc bp-unit::learn <|> (delta,bias|bias)

is {

bias = eta*delta + bias;

};

The involved functions can have di�erent forms. It is only necessary that

derivative is the �rst derivative of the activation function activation.

Only those functions and processes are de�ned at this point that are com-

mon to all feedforward networks. The remaining ones will be de�ned with

particular specializations below.

Output units are a little bit di�erent, since they may also receive a certain

target signal which determines their error directly. This signal is provided

by the environment.

elem ff-out-unit

is ff-unit

{

21

float <target|;

backward <target|outdelta> (net,bias|error);

};

elem bp-out-unit

is ff-out-unit

{};

proc bp-out-unit::backward <target|outdelta>

(net,bias|error)

is {

error = |target> - act;

<outdelta| = delta

= error * derivative(net+bias);

};

In this standard description we introduce links as separate objects. Like

above, we distinguish between standard feedforward links, and links with

the additional functionalities for gradient descent (backpropagation). The

major parts of learning and initialization (speci�ed in detail below) happens

in these links, which otherwise serve for propagating and weighting signals

between units.

elem ff-link

{

float weight;

float <input|;

float |output>;

forward <input|output> (weight|);

init <insamples|> (|weight);

};

elem bp-link

is ff-link

{

float <indelta|;

float |outdelta>;

backward <indelta|outdelta> (weight|);

learn <input,delta|> (weight|weight);

};

22

proc bp-link::learn<input,indelta|> (weight|weight)

is {

weight = eta*<input|*<indelta| + weight;

};

From this general de�nition of a feedforward neural network, several spe-

cializations (or, since some attributes are speci�ed for the �rst time, instanti-

ations) can be derived. The two most well known are multilayer perceptrons

with backpropagation, and radial basis function networks:

Multilayer Perceptron (MLP):

elem mlp-unit

is bp-unit

{}

elem mlp-link

is bp-link

{}

func mlp-unit::activation(float x, float b)

is { return 1/(1+exp(x+b)) }

func mlp-unit::derivation(float x, float b)

is { return (activation(x,b)*(1-activation(x,b)) }

proc mlp-link::forward <input|output> (weight|)

is {

<output| = weight * |input>;

}

proc mlp-link::backward <indelta|outdelta> (weight|)

is {

<outdelta| = weight* |indelta>;

}

Radial Basis Function Network (RBFN):

elem rbfn-unit

is ff-unit

23

{}

elem rbfn-link

is ff-link

{}

func rbfn-unit::activation(float x, float b)

is { return exp (-x*x) }

proc rbfn-link::forward <input|output> (weight|)

is {

<output| = (weight - |input>) * (weight - |input>);

}

proc rbfn-link::init <insample|> (|weight)

is {

weight = |insample>;

}

But as the description strongly suggests, other instantiations would equally

be possible { and as it turns out, both of them are viable (see [A.J. Robinson,

1988], [Smyth, 1992], [G. Dor�ner, 1993a]):

MLP with initialization:

elem mlp-link::init <insample+, insample-|> (|weight)

is {

weight = |insample+> - |insample->;

}

elem mlp-unit::init <insamples+, insamples-|> (|bias)

is {

bias = 0.5 * sum (insamples+[i]*insamples+[i]

- insamples-[i]*insamples-[i]);

}

RBFN with gradient descent:

elem rbfn-link1

is bp-link

{}

24

func rbfn-link1::derivation (float x)

is { return -2 * x * exp(-x*x) }

proc rbfn-link1::backward <indelta,input|outdelta> (weight|)

is {

<outdelta| = (weight - |input>) * |indelta>;

}

The �rst is an extension to mlp-unit introducing an initialization pro-

cedure in direct analogy to the radial basis function network (in this case,

the weights and the bias are set based on a pair of positive and negative

data sample, such that the hyperplane forms a Voronoi tesselation of the two

points - see [Smyth, 1992]). The second is a variation of rbfn-unit includ-

ing gradient descent learning (see [A.J. Robinson, 1988]). We see from this

example, that the chosen view presents MLPs and RBFNs as rather similar,

di�ering mainly through di�erent forward propagation processes and activa-

tion functions. This view gives riuse to easy extensions and combinations.

3.2.2 View 2: Basis functions

Feedfoward networks can also be represented from a di�erent point of view,

namely by viewing them as approximators based on weighted sums of basis

functions ([D.S. Broomhead, 1988]). In this view, there would be no separate

link objects, and propagation rule and activation function would be combined

into one basis function:

elem ff-unit1

{

float act;

array of float params;

float bias;

set of float <input|;

float |output>;

float basis(array of float x, array of float p);

forward <input|output> (bias|net,act);

init <insamples|> (|bias);

};

elem rbfn-unit2

is ff-unit1

{}

25

proc rbfn-unit2::forward <input|output> (param|act)

is { <output| = act = basis(<input|,params); }

func rbfn-unit2::basis (array of float x, array of float p)

is { return exp (- ||x - p||^2)) }

Here, both net input and activation function are combined into one basis

function over vectors. In the case of RBFNs its a Gaussian of the Euclidean

distance of the two vectors (input values and parameters params). MLP

units could be de�ned similary using the sigmoid of the dot product instead.

This view now suggests other similarities than the previous ones, such as

to ourier series if expressed as a neural network. F From this we see the

inuence a chosen view on standardization can have.

3.2.3 Summary

In this section we have discussed the importance of formal comparison be-

tween neural networks, namely for pointing out essential di�erences and for

easing novel neural network developments. We have also discussed the im-

possibility of canonical neural network description and the need for choosing

one particular view for speci�cations. An example has illustrated these is-

sues and also has demonstrated the viability of NSpec for speci�cation and

comparison.

4 Speci�cation of neural networks

Another �eld where a standardized framework is of crucial importance is

speci�cation of novel neural networks. By this we mean the unambiguous

description of a newly de�ned paradigm or type such as to make results repro-

ducible, and to de�ne the important di�erences to other previously published

ones. This should be done for one of at least two reasons; either for clean sci-

enti�c conduct in introducing novel results, or for clear decisions concerning

copyright or patents.

2

A description framework like the one introduced above

can be considered as the basis for speci�cation (hence the name \speci�cation

language").

Tow issues are of special importance in this context. One concerns the

question as to what constitutes a separate network type or paradigm and

2

by discussing this issue we do not want to imply that we do not have any moral doubts

or reservations about patents of neural network algorithms or architectures, which, in our

opinion, can considerably encroach on free scienti�c exchange of ideas

26

not just a variation of the same type or paradigm. The second one concerns

the complete picture of a neural network, as de�ned above. To specify a

network with all respects means to also include the role of the environment,

and processes controling the interaction between layers, and also between the

network and the environment. The follwing two sections discuss these issues.

4.1 Paradigms and Concrete Networks

In our context \paradigm" will mean some kind of an abstract model or ideal

archetype representing a whole class of neural networks, like for example Feed

Forward Networks or Boltzmann Machines, and not any concrete realization

of such a conceptual model.

It is important to realize that the aim of developing a speci�cation of

neural networks is very di�erent from designing a programming language for

neural networks. Many di�erent approaches for this problem already exist,

but they are \merely" well de�ned tools for building neural network com-

puter programs. Usually the set of expressible systems, meaning the possible

networks that can be described by these languages is very limited. Another

problem is that they need to be languages for machines and are therefore hard

to work with for humans. Although programming languages, together with

their compilers, are exact de�nitions of neural networks they cannot normally

express the main aspects of a paradigm. I.e. in developing a network speci�-

cation method we are not really interested in running the developed nets. We

want to describe and compare di�erent networks and paradigms. Therefore,

we also need to clarify the relation between the two. Both paradigm and

network are expected to be completely formally described. The description

of a network must be clearly derivable from the paradigm description.

In the same way as we can think of classes of neural networks, i.e. of neural

network core paradigms, we can also think of certain classes of environments.

By abstracting from concrete problems or tasks we arrive at relevant problem

classes, e.g. from speech data to time sequences of a certain type. The

same should also be true|maybe in a somehow modi�ed way|for the I/O

component of neural networks. As a result of this consideration we �nd

that for all three aspects of neural networks (see section 2) several distinct

levels of concretization exist. In our framework for arti�cial neural networks

we distinguish di�erent levels of abstraction in which a smaller or greater

number of values of parameters or structure elements have been �xed. For

example: in a conceptual model of the core of neural networks we �nd at

least the following levels of abstraction:

0. The State of a neural network (e.g. initial state).

1. The implemented Network (e.g. a hardware realization of a network).

27

2. A concrete Architecture (e.g. a 4-2-4 feed forward network).

3. An abstract Paradigm (e.g. Back-Propagation).

4. A general Framework for the core (e.g. the one in section 2).

A similar scheme can be set up for the other basic entities. In a theory

of the environment component of neural networks the following levels can be

distinguished:

0. A concrete Pattern for a neural network (e.g. a digital satellite picture).

1. The Collection of patterns actually realized (e.g. time sequence).

2. A concrete Application (e.g. consumption forecasting).

3. An abstract Environment Model (e.g. Markov chains).

4. A general Framework of the environment (e.g. the one in section 2).

It is not a trivial issue to establish such clearly de�ned and separated

levels of conretization. Additional criteria may be used to establish an even

�ner structure. For example, one could argue that in the case of a framework

for the core of neural networks one should have an additional conceptual level

between paradigms and architectures which would correspond to the concept

of feed forward networks using back propagation. For more details on this

discussion, see [Prem, 1991].

The important point in these considerations lies in the observation that

there are such di�erent levels and that there is indeed a clear conceptual

di�erence between the problem of describing and classifying neural network

paradigms and of specifying and maybe also implementing concrete neural

network architectures in a concrete computer environment. It is exactly

this distinction which is the main di�erence between the approach we were

following in NEUFODI and most other known approaches (like for example

in the other neural network related ESPRIT projects Pygmalion or Galatea

project), which concentrated in particular on the description of a concrete

implementation of a neural network. In this sense, NEUFODI has been more

concerned with the exact description and classi�cation of paradigms and

general concepts than in developing yet another programming language for

neural networks.

For copyright and patent issues it is necessary to develop more abstract

mechanisms to decide if something is just a variation of another known mech-

anism or not. Thus to overcome the wide-spread \Look and Feel" around

di�erent paradigms introduced in literature, more abstract speci�cation tech-

niques would be of scienti�c and commercial interest. NSpec in this respect

also intends to serve as a basis for this kind of question.

28

4.2 Complete speci�cation

Besides the structural de�nition, algorithmic aspects of neural networks are

very important in developing an adequate speci�caton technique. As opposed

to their classical way of being depicted as a graph-like structure, neural

networks cannot be fully accounted for by describing them as static objects.

Not only are there relevant dynamic processes during a network's life cycle

which can change the overall architecture, but also the algorithmic part of

any learning rule must be clearly de�ned so as to enable an implementation

of a speci�ed network paradigm. An example for the �rst case (changing the

architecture) is the creation or deletion of new units during learning. In fact,

the whole network operation is controlled by algorithms and it sometimes is

not clear as to whether a speci�c part of a paradigm is implemented through

its structure or by means of an algorithmic replacement of this structure.

An example is given in �g.2, specifying the dynamics of backpropagation.

The complete learning algorithm is not given by specifying the formulas

alone, but also by specifying the order in which layers get updated and at

which points the formulas are applied. In NGraph this is depicted by an

event/signal ow diagram. For instance, the fact that the weights leading

to the hidden layer are changed after error back propagation is expressed by

the signal <learn2> the hidden layer has to wait for before it itself emits the

signal <update> to the link objects.

4.3 Summary

To summarize, a neural network paradigm must be described by taking the

core neural network, the environment and the I/O components all into ac-

count. Besides these aspects, di�erent levels of concretization exist which

all may independently be worth describing. In addition, a clear speci�cation

method must possess the possibility of expressing algorithms in addition to

all elements of a neural network. Combining these elements of a neural net-

work yields a complete description to any desired level of detail. The example

has also demonstrated the viablity of NGraph to depict complete learning

processes.

5 Conclusion

In this paper we have introduced a framework for formal description and

speci�cation of neural networks, developed within the European (ESPRIT)

project NEUFODI. Two tools, one for graphical description (NGraph), one

for formal speci�cation (NSpec) were briey described, and subsequently used

in examples. In the context of this framework, several important issues con-

cerning speci�cation and standardization of neural networks were discussed.

29

bp-layer: input_layer

bp-layer: output_layer

bp-layer: hidden_layer

|done> output <learn;stop|

input <eval|

<eval1>

<eval2>

|learn> target <learn1|

|eval> act <- input <eval1|

|eval1> getnet()
 activate() <eval2|

|eval2> getnet()
 activate()
 act -> output <done|

|learn1> getdelta() <learn2|

|learn2> getdelta() <update|

<learn2>

<update>

|update> learn() <stop|

|update> learn() <stop|

|update> learn() <stop|

|update> learn() <stop|

float: eta

Figure 2: The dynamics of a 3-Layer Perceptron

30

First, the impossibility of canonical description, such that all similarities be-

tween network types are clearly visible, was discussed. A consequence is that

for standardization always one out of many possible views have to be chosen.

An extensive annotated example, describing and comparing di�erent feedfor-

ward networks from two views, was presented. It illustrated the helpfulness

of formal comparison for easy new developments.

Secondly, two issues of speci�cation were discussed. The �rst concerned

the clear de�nition of what a neural network paradigm is, as opposed to a

variation of another type. We proposed to apply a conceptual hierarchy,

ranging from the most general framework down to an actually implemented

network and its state, in solving the problem. The second issue delat with

completeness of speci�cation including global algorithms and processes (e.g.

the order of layer updates, and the times of pattern presentations), something

often overlooked in literature. The general framework introduced earlier,

and the the two tools NGraph and NSpec, support the speci�cation of those

important procedural aspects of neural networks.

By introducing these issues and describing the approach chosen within

NEUFODI we aimed at contributing to the important �eld of neural network

standardization. We stronlgy believe that standardization is badly needed

in a �eld of great terminological confusions and so many \reinventions of the

wheel."

Acknowledgment

This work was done as part of the Esprit-II Project No.5433: NEUFODI {

Neural Networks for Forecasting and Diagnosis Applications. The partners

involved in this project are: Austrian Research Institute for Arti�cial Intelli-

gence (Vienna), Babbage Institute for Knowledge and Information Technol-

ogy (Ghent), Elorduy, Sancho y CIA, S.A. (Bilbao), Labein (Bilbao), and

Lyonnaise des Eaux (Compi�egne). The Austrian contribution is supported

by a grant from the Austrian Industrial Research Promotion Fund, Project

No. 2/282.

We particularly thank Prof. Robert Trappl for his generous support for

the work of the neural network group.

References

[Agha, 1986] Gul A. Agha. ACTORS: A Model of Concurrent Computa-

tion in Distributed Systems. MIT Press, Cambridge, Massachusetts {

London, England, 1986.

31

[A.J. Robinson, 1988] F. Fallside A.J. Robinson, M. Niranjan. Generalisinf

the Nodes of the Error Propagation Networks. Technical Report, Cam-

bridge University, Engineering Dept., 1988.

[Anderson and Rosenfeld, 1988] James A. Anderson and Edward Rosenfeld,

editors. Neurocomputing. Volume 1: Foundations of Research, MIT

Press, Cambridge, Massachusetts { London, England, 1988.

[Bottou and Gallinari, 1990] L�eon Bottou and Patrick Gallinari. A frame-

work for the cooperation of learning algorithms. In Advances in Neural

Information Processing Systems 3 [Lippmann et al., 1991], pages 781{

788, Denver, 1990.

[Bottou and Gallinari, 1992] L�eon Bottou and Patrick Gallinari. A uni�ed

formalism for neural net training algorithms. In Proceedings of the In-

ternational Joint Conference on Neural Networks, pages IV{7 { IV{12,

Baltimore, 1992.

[Derot et al., 1989] Benoit Derot, Philippe Escande, and Catherine Mouli-

noux. Nacre: A neuron-oriented programming environment. In Pro-

ceedings of Neuro-Nimes '89, pages 183{200, Nimes, France, 1989.

[D.S. Broomhead, 1988] D. Lowe D.S. Broomhead. Multivariable functional

interpolation and adaptive networks. Complex Systems, 2:321{355,

1988.

[Fiesler and Caul�eld, 1992] Emile Fiesler and H. John Caul�eld. Neural

Network Formalism. Technical Report (posted on neuroprose), Insti-

tut Dalla Molle d'Intelligence Arti�cell Perceptive (IDIAP), Martigny,

Suisse, 1992.

[G. Dor�ner, 1993a] G.Porenta G. Dor�ner. On using feedforward neural

networks for clinical diagnostic tasks. submitted for publication, 1993.

[G. Dor�ner, 1993b] T. Schoenauer G. Dor�ner. Unsupervised learning of

simple speech production based on soft categorization. Eeckman, Bower

(eds.): Computation and Neural Systems 92, 1993.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Op-

timization, and Machine Learning. Addison{Wesley, Reading, Mas-

sachusetts, 1989.

[Golden, 1988] R.M. Golden. A uni�ed framework for connectionist systems.

Biological Cybernetics, 59:109{120, 1988.

32

[Goles and Martinez, 1990] Eric Goles and Servet Martinez. Neural and Au-

tomata Networks. Volume 58 of Mathematics and Its Applications,

Kluwer Academic Publisher, Dordrecht, 1990.

[Grossberg, 1976] Stephen Grossberg. Adaptive pattern classi�cation and

universal recording: I. Parallel development and coding of neural feature

detectors. [Anderson and Rosenfeld, 1988] and Biological Cybernetics,

23:121{134, 1976.

[Hatley and Pirbhai, 1987] Derek J. Hatley and Imtiaz A. Pirbhai. Strate-

gies for Real-Time System Speci�cation. Dorset House Publishing, New

York, 1987.

[Hecht-Nielsen, 1987] Robert Hecht-Nielsen. Counterpropagation networks.

In Proceedings of the IEEE International Conference on Neural Net-

works, pages II{19 { II{32, San Diego, 1987.

[Hecht-Nielsen, 1990] Robert Hecht-Nielsen. Neurocomputing. Addison{

Wesley, Reading, Massachusetts, 1990.

[Hoare, 1985] Charles Anthony Richard Hoare. Communicating Sequential

Processes. Prentice Hall, Englewood Cli�s, NJ, 1985.

[Knuth, 1983] Donald E. Knuth. The Art of Computer Programming |

Sorting and Searching. Volume 3, Addison-Wesley, Reading, Mas-

sachusetts, 1983.

[Kohonen, 1982] Teuvo Kohonen. Self-organized formation of topologically

correct feature maps. [Anderson and Rosenfeld, 1988] and Biological

Cybernetics, 43:59{69, 1982.

[Lippmann et al., 1991] Richard P. Lippmann, John E. Moody, and David S.

Touretzky, editors. Advances in Neural Information Processing Systems

3, Morgan Kaufmann, San Mateo, CA., 1991.

[Marcad�e et al., 1990] Erik Marcad�e, Fr�ed�eric Canut, Nicolas Revault, and

Catherine Moulinoux. N: A Language Dedicated to Neural Algorithm

Design. Technical Report D-110-2, PYGMALION (Esprit Project

No.2059), 1990.

[Meyer, 1988] Bertrand Meyer. Object-Oriented Software Construction. In-

ternational Series in Computer Science, Prentice Hall, New York { Lon-

don, 1988.

[Milner, 1980] Robin Milner, editor. A Calculus of Communicating Sys-

tems. Volume 92 of Lecture Notes in Computer Science, Springer-Verlag,

Berlin { New York, 1980.

33

[Moody and Darken, 1988] John Moody and Christian Darken. Learning

with localized receptive �elds. In Proceedings of the 1988 Connectionist

Models Summer School [Touretzky et al., 1989], pages 133{143, 1988.

[Prem, 1991] Erich Prem. A Description Framework for Solving the \Theory

Problem" in Connectionism. Master's thesis, Universit�at Wien, 1991.

[Rumelhart and McClelland, 1986] David E. Rumelhart and James L. Mc-

Clelland. Parallel Distributed Processing. Volume 1: Foundations, MIT

Press, Cambridge, Massachusetts { London, England, 1986.

[Simpson, 1990] Patrick K. Simpson. Arti�cial Neural Systems. Pergamon

Press, New York, 1990.

[Smyth, 1992] S. Gavin Smyth. Designing multilayer perceptrons from

nearest-neighbor systems. IEEE Transactions on Neural Networks,

2(3):329{333, 1992.

[Stroustrup, 1987] Bjarne Stroustrup. The C++ Programming Language.

Addison Wesley, Reading, Massachusetts, 1987.

[To�oli and Margolus, 1987] Tommaso To�oli and Norman Margolus. Cel-

lular Automata Machines { A new environment for modelling. MIT

Press, Cambridge, Massachusetts { London, England, 1987.

[Touretzky et al., 1989] David S. Touretzky, Geo�rey E. Hinton, and Ter-

rence J. Sejnowski, editors. Connectionist Models { Summer School

1988, Morgan Kaufmann, San Mateo, CA., 1989.

[Wiklicky, 1992] Herbert Wiklicky. Synthesis and Analysis of Neural Net-

works | On a Framework for Arti�cial Neural Networks. PhD thesis,

University of Vienna { Technical University of Vienna, September 1992.

[Wiklicky et al., 1992a] Herbert Wiklicky, Thierry Den�ux, Javier Olarte,

Santiago Rementeria, and Veerle Walravens. A tripartite framework

for arti�cial neural networks. In International Conference on Arti�cial

Neural Networks, September 1992.

[Wiklicky et al., 1992b] Herbert Wiklicky, Veerle Walravens, Santiago Re-

menteria, Alberto Lafuente, Javier Olarte, St�ephane Canu, and Thierry

Den�ux. A Framework for Arti�cial Neural Networks. Technical Re-

port Deliverable D1, NEUFODI (Esprit-II Project No.5433), August

1992.

34

