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Abstract

Recently, a design-for-test (DFT) methodology for active analog �lters was pro-

posed with the primary goal in increased controllability and observability. We opera-

tionalize and extend the DFT methodology by using CLP(<) to model and diagnose

analog circuits. CLP(<) is a logic programming language with the capability to

solve systems of linear equations and inequalities. It is well suited to model pa-

rameter tolerances and to diagnose soft faults, i.e., deviations from nominal values.

The diagnostic algorithm uses di�erent DFT test modes and voltage measurements

at di�erent frequencies to compute a set of suspected components. Ranking of sus-

pected components is based on a measure of (normalized) standard deviations from

�

This is an extended version of the paper that appears in the Working notes Fourth Intl. Workshop on

Principles of Diagnosis, DX-93, pp. 105-120, University of Wales, Aberystwyth, September 6-8, 1993.

1



predicted mean values of component parameters. Presented case studies on a real

circuit show encouraging results in isolation of soft faults for a given low pass biquad

�lter.

1 Introduction

Fault diagnosis of analog circuits has been a research area for more than two decades

[

IEEE,

1979, Bandler and Salama, 1985

]

. Although numerous, the results are not satisfactory in

practice and, according to

[

Cavin and Hilbert, 1990

]

, a breakthrough is needed to develop

test strategies for analog and mixed analog/digital integrated circuits. Even the design of

analog circuits is a challenge due to the sensitivity with respect to component variations

and process technology. The number of input/output ports of an analog circuit is small

compared to that of a digital circuit, but the complexity arises due to continuous signal

values, and the inherent interactions between various circuit parameters. One has to

model parameters with tolerances and compute with intervals. As a consequence of non-

directional behavior of an analog circuit, any component can be responsible for a symptom.

All of these impede e�cient testing and diagnosis. As Soma

[

1990

]

pointed out: \: : : analog

diagnosis is still more of theoretical interest rather than experimental application."

In-circuit test and functional testing are established techniques for testing both analog

and digital circuits. However, guarded test con�guration as the basis of in-circuit test is

limited in its capacity to operate at high frequencies. Moreover, the technique becomes

very di�cult for complex circuits where hundreds of test pins and driver-sensor ampli�ers

are required

[

Slamani and Kaminska, 1992

]

. Consequently, functional testing of analog

circuits is preferred.

Two general methods of analog fault diagnosis are simulation before test (SBT) and

simulation after test (SAT)

[

Bandler and Salama, 1985

]

. SBT techniques, based on fault

dictionary, �nd limited applications in practice due to the high cost of analog simulation

needed for the large number of potential faults. These techniques are more convenient

for the isolation of hard faults. SAT techniques use measurements to compute parame-

ters of the network (parameter identi�cation techniques) or locate the faulty components

without computing parameter values (fault veri�cation techniques). They are suitable for

diagnosing soft faults (i.e., deviations of element parameters from the speci�ed tolerance

range). Depending on the excitation source arrangement which is used for test measure-

ments, SAT techniques are characterized as single vector or multiple vector

[

Walker and

Alexander, 1992

]

. In the �rst case the measurement is implemented with a single test fre-

quency while the multiple vector technique uses multiple test frequencies for the solution

of fault diagnosis equations.

The complexity of analog test fostered investigation of the design-for-test (DFT) prin-

ciples for analog and mixed analog/digital circuits

[

Soma, 1990, Ve
ing and Viktil, ,

Fasang, 1989, Eagner and Williams, 1989, Jarwala and Tsai, 1991, Ohletz, 1991

]

. Most
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analog circuits are designed in stages in order to localize the e�ect of components. By

appropriate modi�cations to the circuit, each individual stage can be controlled, ob-

served and tested in (relative) isolation, without intermediate measurements. In view

of the complexity, the general problem of DFT for analog circuits is almost certainly un-

feasable. Hence, Soma

[

1990

]

proposed a DFT methodology for a restricted class of circuits,

namely active analog �lters. Another aspect is to establish some general DFT strategy for

mixed analog/digital circuits. In this approach, individual analog and digital parts are re-

placed by functional blocks and DFT is investigated at the functional level

[

Fasang, 1989,

Eagner and Williams, 1989, Jarwala and Tsai, 1991, Ohletz, 1991

]

.

In recent years, model-based systems for fault diagnosis are starting to gain consider-

able interest in engineering practice

[

Sierzega and Rastogi, 1990

]

. Unlike in digital circuits

troubleshooting, it is impractical to use fault simulation and to construct diagnostic deci-

sion trees for analog circuits. Model-based approach provides a viable alternative since

it uses behavioral circuit models for fault diagnosis and is also transferable. Promis-

ing results of this approach have been reported recently

[

McKeon and Wakeling, 1989,

McKeon and Wakeling, 1990, Mozeti�c et al., 1991

]

.

The motivation for this work was the idea to use CLP(<) for the simulation and diag-

nosis of analog circuits. CLP(<) is a logic programming system extended with a solver for

systems of linear equations and inequalities. It is well suited to model AC circuits, real-

valued system parameters with tolerances, and feedback loops. First experiments

[

Mozeti�c

et al., 1991

]

showed that CLP(<) has some advantages over classical simulation tools (like

SPICE or Micro-CAP) since the same model can be used for both, simulation and diagno-

sis. CLP(<) can locate potential soft faults, i.e., parameter values (resistors, capacitors)

deviating from nominal values.

Some work on the diagnosis of analog systems was also done in the AI community,

e.g.,

[

de Kleer and Brown, 1992, Dague et al., 1990

]

. The main emphasis there is on the

modeling of circuit parameters with intervals, in e�cient interval propagation methods,

and in con
ict detection using ATMS-based mechanisms. Related to our work is the fault

identi�cation procedure in SOPHIE II

[

de Kleer and Brown, 1992

]

which uses SPICE to

identify component parameter shifts (soft faults) which explain the symptoms. Due to the

iterative application of SPICE the procedure is computationally intractable. In contrast,

CLP(<) can compute soft faults deterministically and e�ciently, provided that single faults

are assumed.

In this paper we combine CLP(<) with the DFT methodology

[

Soma, 1990

]

in order to

focus on individual stages-under-test and to make the DFT methodology operational. Di-

agnostic algorithm implemented in CLP(<) uses the results of measurements of magnitude

and phase characteristics as a function of a real frequency variable in the normal mode

and in the test modes. The diagnosis is performed incrementally, in each step reducing

the set of potential candidates for the detected fault. The CLP(<) system and measure-

ment instrumentation have been integrated in an experimental system for automatic fault

isolation. Experimental results are given to assess the e�ciency of the proposed solution.
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The paper is organized as follows. In section 2 we give a brief overview of the CLP(<)

language and illustrate how it can be used for modeling and diagnosis. The application of

the node-analysis method for the justi�cation of the CLP(<) model is discussed in section

3. In section 4 the main points of the DFT methodology for active analog �lters are

reviewed and the fault isolation procedure is described. Experimental results are given in

section 5, together with the computed diagnoses. Finally, some concluding remarks are

drawn.

2 Modeling Analog Circuits with CLP(<)

2.1 The CLP(<) language

Constraint Logic Programming (CLP,

[

Ja�ar and Lassez, 1987, Cohen, 1990

]

) is a general-

ization of logic programming. Uni�cation, the basic operation in logic programs, is replaced

by a more general mechanism of constraint satisfaction over a speci�c computation domain.

An instance of the general CLP scheme is obtained by selecting a computation domain,

a set of allowed constraints and designing a solver for the constraints. CLP combines the

advantages of logic programming (declarative semantics, nondeterminism, partial answers)

with the e�ciency of specialized constraint satisfaction algorithms. CLP(<) is an instance

of the CLP scheme which extends logic programs with interpreted arithmetic functions and

a solver for systems of linear equations and inequalities over the domain of <eals. In our

experiments we use an implementation of CLP(<)

[

Holzbaur, 1992

]

which is an extension

of SICStus Prolog

[

Carlsson and Widen, 1991

]

.

A CLP(<) program is a set of clauses of the form:

H  C

1

; : : : ; C

n

.

and a CLP(<) query is a clause without head:

 C

1

; : : : ; C

n

.

where H is an atom and C

i

are negated or non-negated atoms or arithmetic constraints.

Arithmetic constraints are equations or inequalities, built up from real constants, vari-

ables, +;�; �; = and =;�;�; >;< where all of these symbols have the usual meaning and

parentheses may be used. An atom is a predicate symbol applied to a number of terms. A

term is a constant, a variable, an uninterpreted functor applied to a number of terms, or

an arithmetic term. Variables start with capitals and are implicitly universally quanti�ed

in front of a clause, and constants start with lower-case letters.

We illustrate the CLP(<) language by specifying addition and multiplication of complex

numbers. Computation with complex numbers is needed to simulate and diagnose analog

circuits under AC conditions. A complex number Z = Re+j*Im is represented by a pair

c(Re,Im).

add( c(Re1,Im1), c(Re2,Im2), c(Re1+Re2, Im1+Im2) ).
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mult( c(Re1,Im1), c(Re2,Im2), c(Re,Im) )  

Re = Re1*Re2 � Im1*Im2,

Im = Re1*Im2 + Im1*Re2.

The above CLP(<) program allows for queries involving not only addition and multiplica-

tion, but subtraction and division of two complex numbers as well. For example:

 mult( c(1,2), c(3,4), Z ).

Z = c(�5,10)

 mult( X, c(3,4), c(�5,10) ).

X = c(1,2)

Answering the second query actually requires to solve the following system of equations:

3*Re1 � 4*Im1 = �5,

4*Re1 + 3*Im1 = 10.

which yields the solution Re1=1, Im1=2.

2.2 Modeling analog circuits

The purpose of this subsection is to show how analog circuits can be modeled by CLP(<).

First we show how the CLP(<) capability to solve systems of inequations can be used

to model parameter tolerances. Then we illustrate how the same CLP(<) model is used

not only for prediction, but also for diagnosis. When the measured voltage is out of the

expected range, CLP(<) computes values of suspected components which di�er from the

nominal values. This forms the basis for the isolation of soft faults in more complicated

analog circuits.

A model of a system is a triple hSD, COMPS, OBSi where

1. SD, the system description, is a CLP(<) program with a distinguished top-level

binary predicatemodel(COMPS, OBS) which relates states of the system components

to observations.

2. COMPS, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n is the

number of components, and variables S

i

denote states (e.g., normal or abnormal) of

components.

3. OBS, observations, is anm-tuple hP

1

; : : : ; P

i

; In

i+1

; : : : ; In

j

; Out

j+1

; : : : ; Out

m

i where

P are the model parameters, and In and Out denote inputs and outputs of the model,

respectively.

We consider a simple model of two resistors in a series operating under DC conditions.

Voltages of 12.5 and 10 Volts are applied at the ends (Figure 1, an example from

[

McKeon

and Wakeling, 1990

]

). Both resistances are within the range i(1000, 2000) 
. The �rst

question is: What is the voltage range at the node between the two resistors?
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1 - 2 K 1 - 2 K
V

I

12.5 10

Figure 1: Two resistors with tolerances in a series.

SD consists of the following CLP(<) program:

model( comps(R1,R2), obs(V,I) )  

V1 = 12.5,

V2 = 10,

resistor( R1, i(1000,2000), V1, V, I ),

resistor( R2, i(1000,2000), V, V2, I ).

resistor( ok, Rnom, V1, V2, I )  Rnom*I = V1�V2.

resistor( ab(R), , V1, V2, I )  R*I = V1�V2.

COMPS is a pair comps(R1,R2), where R

i

denote states of resistors: ok when the

resistance is within the nominal range, and ab(R) otherwise. R in ab(R) denotes an

unknown resistance of a faulty resistor which can be out of the allowed tolerances. OBS is

a pair obs(V,I), where V is the voltage at the node between the two resistors and I is the

current through the resistors.

The model relates states of the resistors to the voltage and the current. Atoms in the

body of the �rst clause represent models of resistors which enforce local constraints between

voltages and currents (Ohm's law). Shared variables represent connections between the

components and enforce global constraints, e.g., Kirchho�'s law for voltages. The last two

clauses de�ne behavior of a resistor for the case when it is normal, and when it is out of

tolerances, respectively.

The following query asks for the voltage and current, under the assumption that both

resistors are ok, i.e., within the allowed tolerances:

 model( comps(ok,ok), obs(V,I) ), inf(V,Vmin), sup(V,Vmax).

V � 10.0 + 2000.0*I,

V � 12.5 � 1000.0*I,

V � 12.5 � 2000.0*I,

V � 10.0 + 1000.0*I,

Vmin = 10.833333333333334,

Vmax = 11.666666666666666

CLP(<) returs a set of inequalities as an answer, and also computes in�mum and

supremum of the voltage between the two resistors. In contrast to our, symbolic approach,

[

McKeon and Wakeling, 1990

]

use an iterative, numeric approach to compute the voltage

range.
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Where do the inequalities come from? In our CLP(<) implementation one can use

generalized constants. A generalized constant is an ordered pair of 
oating-point numbers,

de�ning the lower and upper bound of an interval which contains the original constant.

A multiplication of a generalized constant by a variable is equivalent to the following

speci�cation:

i(A,B)*X = Y  X � 0, A*X � Y, Y � B*X.

i(A,B)*X = Y  X < 0, B*X � Y, Y � A*X.

In the actual implementation the case analysis on X is avoided by a two-pass solution, and

at a cost of incompleteness

[

Mozeti�c and Holzbaur, 1993

]

.

Now we turn to the second problem: diagnosis of soft faults. Assume that the actual,

measured voltage is 12 Volts, i.e., it is outside of the predicted range. This indicates

that at least one of the resistors is faulty, i.e., its resistance must be out of the allowed

tolerances. We make a single fault assumption and use the same CLP(<) model to compute

the resistance of a suspected resistor. The following two queries return lower and upper

bounds for resistances of suspected faulty resistors. Note that each query has two possible

answers, corresponding to two possible faults:

 model( comps(R1,R2), obs(12,I) ), maximize(I).

I = 0.0005,

R1 = ok,

R2 = ab(4000.0) ;

I = 0.002,

R1 = ab(250.0),

R2 = ok

 model( comps(R1,R2), obs(12,I) ), minimize(I).

I = 0.00025,

R1 = ok,

R2 = ab(8000.0) ;

I = 0.001,

R1 = ab(500.0),

R2 = ok

Suspected Computed

component value [
]

R1 250{500

R2 4000{8000

Table 1: Computed resistance ranges of potentially faulty resistors.
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Table 1 summarizes the results of diagnosis. The example illustrates the basic idea of

using CLP(<) to diagnose soft faults: each individual component is considered in turn and

its actual value is computed from the measurements. If tolerances are taken into account

then the computed value is a range, otherwise it is a single value. In our experiments with

�lters we do not take parameter tolerances into account. However, instead of one we take

several measurements, and combine the computed values of suspected faulty components

in order to rank them in decreasing likelihood of beeing faulty.

CLP(<) is resticted to systems of linear equations and inequalities. Non-linear con-

straints are accepted but not resolved | they are just delayed until (if) they eventually

become linear. In order to make CLP(<) applicable to the diagnosis of analog circuits we

have to make some assumptions. We have to restrict models to linear or piecewise linear

circuits, and assume that there are no multiple faults (a single fault assumption). In the

next section we give a formal argument which shows that under those assumptions, linear

CLP(<) is indeed su�cient for the diagnosis of single soft faults.

3 Application of the node-analysis method

In our approach, the CLP(<) model is based on the node-analysis method. Thus the

unknown quantities are node potentials. Let an electric circuit have n nodes and b branches.

One of the nodes of the circuit can be grounded without a�ecting any potential di�erences

across the nodes bounding the branch. The node-analysis method represents the circuit

by three independent matrix equations

Aj = 0

v = A

T

e

j = Y v

where the variables denote

� j { current vector

� e { vector of the node potentials

� v { voltage vector

� Y { admittance matrix

The �rst matrix equation represents the Kirchho�'s current law. The second equation

determines voltages across the branches of the circuit and is implicitly contained in the

CLP(<) model. The last equation represents the Ohm's law for all the branches.
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3.1 Simulation of a circuit with voltage input

Assume that an external voltage source is added to the circuit. The Kirchho�'s current low

equation must be modi�ed to include the source current, which is an additional unknown

quantity. The system gets an additional equation related to the input voltage.

Aj +B i

in

= 0

v = A

T

e

j = Y v

B

T

e = u

in

The system of equations can be rearranged to

AY A

T

e + B

in

i

in

= 0

B

T

in

e = u

in

where i

in

represents the source current, and u

in

the source voltage, respectively. The

matrix B

in

speci�es the nodes to which the source is connected. The resulting system is a

system of n linear equations with n unknown quantities. The output voltage can be easily

calculated from the resulting node potential by

u

out

= B

T

out

e

3.2 Determining the value of a component in terms of the

known system input and output voltages

We have shown how to determine the system output voltage in terms of the known voltage

input. In diagnosis of soft faults, however, is our main interest in determining the value

of particular component in terms of the known voltage input (stimulus) and the output

voltage (measurement). We have to show that this problem can be described by a system

of linear equations which yield a unique solution. Let A

i

be the ith column of A.

A = (A

1

; A

2

; � � � ; A

b

)

Accordingly, the admittance matrix is

Y =

0

B

B

B

@

Y

1

0 : : : 0

0 Y

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : Y

b

1

C

C

C

A
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i

u e e u

i
e

e

e

e

in

in

p

q

k

r

s

out

outl

u

j
Z

i
i

i

-

+

+ -

+

-

Figure 2: Electric circuit with suspected component Z

i

separated.

Let the unknown component be Z

i

(Figure 2). The component Z

i

is �rst taken out of

the circuit and considered separately from the rest of it. Now the circuit has n nodes (no

node deleted) and b� 1 branches (branch i was drawn out). The new matrix A

�

is

A

�

= (A

1

; A

2

; � � � ; A

i�1

; A

i+1

; � � � ; A

b

)

and the new admittance matrix is

Y =

0

B

B

B

B

B

B

B

B

B

B

B

@

Y

1

0 : : : 0 0 : : : 0

0 Y

2

: : : 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : Y

i�1

0 : : : 0

0 0 : : : 0 Y

i+1

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 0 0 : : : Y

b

1

C

C

C

C

C

C

C

C

C

C

C

A

The new current vector j

�

does not contain the current j

i

.

Two additional currents must be added to the Kirchho�'s current low: the source

current and the current through the unknown component. The output current is 0.

A

�

j

�

+ A

i

j

i

+ B

in

i

in

= 0

j

�

= Y

�

v

�

v

�

= A

�

T

e

The system has two additional equations corresponding to the source voltage and to the

output voltage. The resulting equations are:

A

�

Y

�

A

�

T

e + A

i

j

i

+ B

in

i

in

= 0

B

T

in

e = u

in

B

T

out

e = u

out

10



This is a system of linear equations and can be solved by CLP(<). The value of the

unknown component can be easily calculated by

Z

i

=

A

T

i

e

j

i

4 DFT methodology for active analog �lters

In our earlier work

[

Mozeti�c et al., 1991

]

we made an introductory study of automated

fault diagnosis of analog circuits by means of CLP(<). Promising results on a relatively

simple analog circuit have been obtained. Next we have tried to apply the approach to

more complex circuits, in particular in the domain of active analog �lters in which we

have gathered most practical experiences

[

Novak et al., 1993

]

. We have found that the

DFT methodology for active analog �lters proposed by Soma

[

1990

]

can be enhanced and

operationalized by using CLP(<). In other words, CLP(<) provides means for automatic

fault diagnosis of active analog �lters designed in accordance with the proposed DFT

methodology.

Soma

[

1990

]

presented a DFT methodology applicable to a class of active analog �lters

based on the standard operational ampli�er design. Possible faults are assumed to be

limited to the passive components, i.e., the operational ampli�ers are fault-free. Testability

is de�ned as controllability and observability of signi�cant waveforms within the �lter

structure. The signi�cant waveforms are the input/output signals of every stage in the

�lter, and the methodology permits full control and observation of these signals. The

main idea to increase the controllability and observability is to introduce MOS switches

to individual stages of a �lter in order to reduce the capacitive e�ects in the impendances

of the stages not under test. The normal �lter design becomes an \analog scan" structure

in the test mode. The modi�ed �lter circuit can then be tested in the following modes of

operation:

� normal mode (switches initialized such that all DFT transformations are disabled),

� individual stage test (switches set to disconnect the capacitors from the stages not

under test),

� all-test mode (switches set to disconnect all the capacitors in the circuit).

As an example, consider the �lter circuit shown in Figure 3. The CLP(<) model of the

�lter is in Appendix. Switches T

1

, T

2

, and T

2

have been introduced for the DFT purposes.

Their states in individual operation modes are as follows:

� normal mode: T

1

ON, T

2

ON, T

2

OFF,

11



R1

R2

C2
T2

R5

R6

Vout

50K

10K

10K

100K

100nF
Ms2

C1
T1

T2

R3

10K

100nF Mp2

Ms1

R4
Vin

10K

Figure 3: A low pass biquad �lter, designed-for-testability, with inserted switches T

1

and

T

2

.

� �rst stage test: T

2

OFF (C

2

disconnected), T

1

ON, T

2

ON,

� second stage test: T

1

OFF (C

1

disconnected), T

2

ON, T

2

OFF,

� all-test mode: T

1

OFF, T

2

OFF, T

2

ON.

The fault isolation procedure described in

[

Soma, 1990

]

includes a variety of techniques

that may prove useful in diagnosis. However, given examples and case studies do not o�er

a unique way toward fault isolation. They are rather used to illustrate the rich set of

possibilities available to the designer when troubleshooting a �lter circuit that has been

designed for testability.

In our approach, we use the samemodes of operation of the stage-under-test as proposed

by Soma

[

1990

]

, yet we restrict the measurements to the case where measurement results

can be fed directly to the CLP(<) system in order to perform the fault isolation process

automatically.

4.1 Fault isolation

Figure 4 gives gain and phase characteristics of the fault-free �lter from Figure 3 in all

testing modes. Simulation under the AC conditions for the fault-free circuit in the normal

mode was done by CLP(<) interpreter. Comparison between the actual circuit and the

CLP(<) model has shown that simulated results are close to the measured ones within
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less than 5%. When the correctness of the model is con�rmed, the process of deriving

diagnoses proceeds in the following way.

First are measurements of gain and phase at selected test frequencies performed on the

actual �lter circuit. The results are compared to the simulated fault-free circuit output

under the same input stimuli. If a discrepancy is detected, a CLP(<) model is used to

compute the deviating values of the suspected components that might have caused the

measured faulty circuit output. The values are computed for the normal mode, all-test

mode, and each individual stage test mode, respectively. The mean value �x and coe�cient

of variation s=�x (i.e., normalized standard deviation) are computed for each suspected

component in each operation mode, and for the composite case. Large s=�x indicates

that the predicted component value varies considerably across several measurements, and

consequently the component can be ruled out as a candidate. If we assume that faults are

non-intermittent, then a faulty component assumes some value di�erent than nominal, but

this value should not change during testing.

In the next step, the list of suspected components is reduced:

� Components with computed negative values are ruled out.

� Components with large value of s=�x are ruled out.

� Analysis of the all-test mode is performed in order to �nd out if the faulty component

is a resistor or a capacitor.

� In the remaining list, the components with minimum value of s=�x are declared as

potentially faulty.

In the next section we describe some typical fault situations and show how the con-

clusions of the circuit diagnosis are drawn from the results of computation of the CLP(<)

system.

5 Experimental results

The low pass biquad �lter, shown in Figure 3, has been implemented for experimental

purposes in thick �lm hybrid technology. LS404C operational ampli�ers and HEF4066B

MOS switches were employed. HP4192 LF Impedance Analyzer was used for measuring

gain and phase values in the range of 5Hz { 10kHz. CLP(<) simulations were performed

on a SUN SPARCstation IPC.

In order to evaluate our diagnostic approach we replaced various �lter components (one

at a time) with components with di�erent nominal values. While it is desirable to keep the

number of measurements at minimum, we performed experiments and CLP(<) diagnoses

only at two selected frequencies. In more complex circuits, more measurements might be

needed to compute reliable diagnoses.
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5.1 Example 1: C

1

1nF instead of 100nF

In the �rst case we have inserted a capacitor C

1

with 1 nF instead of the correct 100 nF

into the circuit. Table 2 gives the measured values of gain and phase at selected frequencies

of 100 Hz and 200 Hz for the four possible modes of circuit operation with C

1

= 1 nF.

Table 3 presents the computed mean values �x of suspected faulty components together

with the corresponding coe�cients of variation s=�x for the given operation modes.

Modes Frequency Gain Phase Gain di�erence Phase di�erence

[Hz] [dB] [

0

] [dB] [

0

]

normal 100 -13.957 176.34 -4.29 2.53

mode 200 -13.904 172.65 -4.40 158.20

all-test 100 -40.40 -178.92 -1.48 0.11

mode 200 -40.43 179.9 -1.50 -0.02

1st stage 100 -40.45 176.57 14.05 76.80

test 200 -40.52 176.57 19.91 77.71

2nd stage 100 -13.993 176.36 0.00 -0.04

test 200 -14.049 172.79 0.00 0.05

Table 2: Measured gain and phase for the fault C

1

= 1nF .

Suspected normal mode all-test mode 1st stage test 2nd stage test

component [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x

R

1

1546 0.876 83435 0.002 1832 0.862 99083 0.003

R

2

277 0.497 11985 0.002 313 0.483 10092 0.003

R

3

5548 0.419 2323 0.011 1 1.388 10006 0.000

R

4

2369 41.420 59352 0.002 1668 0.504 49970 0.000

R

5

277 0.495 11985 0.002 313 0.483 10092 0.003

R

6

21202 0.431 8343 0.002 16974 0.435 9908 0.003

C

1

1.16 0.063 x x 1.21 0.021 x x

C

2

2.71 0.507 x x x x 1.01 0.003

Table 3: Computed values of suspected components for di�erent test modes for C

1

= 1nF .

Inspection of coe�cients of variation s=�x for the normal mode immediately points to C

1

as being faulty because it has minimum s=�x and its value di�ers by an order of magnitude

from the others. Although the result is achieved in the �rst step we proceed by the other

three in order to illustrate the process of deriving the diagnosis as well as to con�rm the

initial result.

14



Resistor R

4

can be ruled out as a fault candidate due to the large value of s=�x in the

normal mode. Simulation results of the fault-free circuit in the all-test mode are close to

the measured values (Table 2), hence no further element can be ruled out at this step.

The situation implicitly indicates that fault can be expected in C

1

or C

2

since the circuit

operates correctly in the all-test mode where the capacitors are inactive.

Computed values for the �rst stage test mode indicate that R

3

is no longer a candidate

of being faulty due to its large value of s=�x.

The results of computation for the second stage test mode show equal values of s=�x

for the remaining suspected elements, except for C

1

which is excluded at this speci�c

measurement situation. Again, the measured values are close to the simulated fault-free

circuit (Table 2), which implicitly indicates that C

1

is the probable faulty element.

Suspected faulty Computed Coe�cient of

component mean value variation

C

1

1.19 0.045

R

6

14107 0.506

R

3

4470 0.920

R

2

5667 1.021

R

5

5667 1.021

R

1

46474 1.039

C

2

5.18 1.094

R

4

28340 1.801

Table 4: Ranking of the suspected components and their predicted values for C

1

= 1nF .

Table 4 gives the composite average values for the four circuit operation modes. Here

again is the coe�cient of variation s=�x of C

1

by an order of magnitude lower than the other

values which con�rms previously stated diagnosis. Notice also, that the computed value

of C

1

closely resembles the actual value of the inserted fault in the experimental circuit.

5.2 Example 2: R

3

1k
 instead of 10k


For the second experiment the circuit is modi�ed so that R

3

is 1 k
 instead of correct

10 k
. The measured values for this case are given in Table 5, and computed values of

the potentially faulty components in Table 6. In Table 7 we give the �nal predicted mean

values and ranking of the suspected components according to s=�x.

Due to the negative values computed for the normal mode, R

2

; R

5

; R

6

; C

1

and C

2

are

ruled out. From the remaining candidates, R

3

seems to be the most probable fault because

it has the smallest value of s=�x. At the same time, computed value of R

3

= 1001
 matches

the actual value in the modi�ed circuit.

15



Modes Frequency Gain Phase Gain di�erence Phase di�erence

[Hz] [dB] [

0

] [dB] [

0

]

normal 100 -33.627 179.60 -23.94 5.80

mode 200 -32.47 179.0 -22.97 164.55

all-test 100 -43.52 179.86 -4.59 -0.10

mode 200 -43.54 179.63 -4.61 -0.293

1st stage 100 -56.37 104.34 -1.86 4.56

mode 200 -61.63 79.09 -1.19 1.86

2nd stage 100 -33.983 179.23 -20.00 3.22

mode 200 -33.98 172.79 -19.92 6.39

Table 5: Measured gain and phase for the fault R

3

= 1k
.

Suspected normal mode all-test mode 1st stage test 2nd stage test

components [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x

R

1

18 0.837 57422 0.001 31224 0.160 19 0.860

R

2

-129030 0.905 17413 0.001 11904 0.052 1496 0.018

R

3

1001 0.0004 749 0.003 161 0.392 999 0.000

R

4

52706 19.615 84954 0.001 59541 0.052 495708 0.008

R

5

-129201 0.905 17413 0.001 11904 0.052 15032 0.017

R

6

-1292 0.912 5742 0.001 8379 0.056 1.8 0.860

C

1

-1316 0.910 x x 118 0.045 x x

C

2

-1315 0.911 x x x x 450 0.027

Table 6: Computed values of suspected components for di�erent test modes for R

3

= 1k
.

Measurement results of the all-test mode indicate that the faulty element is one of the

resistors. Computed values s=�x for the all-test mode are all close to zero and no further

conclusion can be drawn. Likewise, computed values for the �rst and the second stage test

mode do not contribute to the �nal diagnosis. The average values of s=�x given in Table 7

indicate that R

3

is the most probable cause of malfunctioning. The mean value of R

3

is

equal to 728
. Although less precise, the calculated value closely resembles the actual

situation in the circuit.

So far, experimental results and CLP(<) computations were made only for two selected

frequencies. While it is desirable to keep the number of measurements at minimum, more

complex circuits would probably require more measurements in order to compute reliable

diagnoses. Just to get the impression how additional measurements improves the fault

isolation, an additional measurement was made at 160 Hz. Computed results for the

three frequencies are given in Table 8. In this particular case the results are only slightly
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Suspected faulty Computed Coe�cient of

component mean value variation

R

3

728 0.504

R

1

22171 1.160

R

6

3207 1.338

C

1

-599 1.801

R

4

173227 2.532

C

2

-432 2.850

R

2

-21186 3.771

R

5

-21167 3.775

Table 7: Ranking of the suspected components and their predicted values for R

3

= 1k
.

Suspected faulty Computed Coe�cient of

component mean value variation

R

3

729 0.492

R

1

21946 1.142

R

6

3214 1.302

C

1

-510 1.750

R

4

142714 2.750

C

2

-349 2.963

R

2

-16981 4.030

R

5

-16963 4.034

Table 8: Ranking of the suspected components and their predicted values after testing at

three selected frequencies for the fault R

3

= 1k
.

improved.

5.3 Example 3: R

5

100k
 instead of 10k


In the last experiment, we inserted a deviation fault of R

5

(100 k
 instead of correct 10

k
) into the circuit. Like in previous examples, measurement results (Table 9), computed

values of the suspected components for the four modes of operation (Table 10), and the

computed mean values and ranking of the suspected components are given (Table 11).

From the computed values of components for the normal mode, R

3

can be eliminated

due to its negative value. R

1

and R

4

are the next candidates to be ruled out because of

higher values of s=�x. The di�erence between the measurement results and the simulated

17



Modes Frequency Gain Phase Gain di�erence Phase di�erence

[Hz] [dB] [

0

] [dB] [

0

]

normal 100 -17.987 52.27 -8.31 -121.53

mode 200 -37.57 5.87 -28.06 -8.57

all-test 100 -58.49 -179.33 -19.56 -359.29

mode 200 -58.49 179.82 -19.56 -0.10

1st stage 100 -74.47 103.27 -19.89 3.49

test 200 -77.98 80.24 -17.54 -14.98

2nd stage 100 -15.448 147.63 -1.450 -28.77

test 200 -18.161 128.47 -4.106 -44.37

Table 9: Measured gain and phase for the fault R

5

= 100k
.

Suspected normal mode all-test mode 1st stage test 2nd stage test

components [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x [
,nF] s=�x

R

1

1008 1.296 9975 0.000 104 4.637 9914 0.000

R

2

77702 0.436 100229 0.000 85783 0.212 100854 0.000

R

3

-2017 0.900 66 0.000 0.6 4.786 5942 0.380

R

4

591867 1.577 475525 0.000 428429 0.212 54560 0.072

R

5

77699 0.436 100230 0.000 85783 0.212 100849 0.000

R

6

1280 0.327 998 0.000 1145 0.169 991 0.000

C

1

767 0.471 x x 859 0.215 x x

C

2

779 0.423 x x x x 1005 0.002

Table 10: Computed values of components for di�erent test modes for R

5

= 100k
.

values of gain and phase in the all-test mode indicate that the faulty element is one of the

resistors.

R

2

; R

5

, and R

6

remain candidates also after inspecting the values in Table 11. The

reason is in the transfer function of the �lter circuit, where the three resistors always

appear in the same subexpression.

6 Conclusion

Achieved results show that the model-based diagnosis with CLP(<) can be used in au-

tomatic fault isolation of active analog �lters designed in accordance with the proposed

DFT methodology

[

Soma, 1990

]

. Although the results refer to a narrow problem domain,

they indicate that the DFT methodology can be enhanced and operationalized by using

18



Suspected faulty Computed Coe�cient of

component mean value variation

R

6

1103 0.195

R

5

91140 0.196

R

2

91142 0.196

C

2

892 0.258

C

1

813 0.296

R

1

5250 0.963

R

4

387595 1.0698

R

3

997 3.371

Table 11: Ranking of the suspected components and their predicted values for R

5

= 100k
.

CLP(<) and model-based diagnosis techniques. From the presented examples, derivation

of a formal fault diagnosis algorithm is straightforward. The approach has a good chance

to scale up, since DFT enables focusing on relatively small stages-under-test.

In the above experiments, nominal values of the model components were taken as con-

stants instead of more realistic tolerance intervals. Parameter tolerances could be modeled

with CLP(<) by a technique described in section 2. However, this turned out not to be

critical since even without the tolerances, the model matched the actual circuit within less

then 5%. More serious are rounding errors of the 
oating-point arithmetic. A potential

solution of using CLP(Q) instead of CLP(<) seems unpractical, since in our experiments

CLP(Q) turned out to be 100 times slower then CLP(<) and needed considerably more

space. What is needed is to represent <eals with 
oating-point intervals instead of single


oating-point numbers, as proposed by

[

Lee and van Emden, 1992

]

.

One of the restrictions of the approach is the single fault assumption. This is due to the

limitation of CLP(<) to linear constraints. Coping with multiple soft faults would require

the ability to resolve nonlinear constraints. This can be done by ICLP(<)

[

Lee and van

Emden, 1992

]

, for example, where the constraint satisfaction is based on local constraint

propagation, and resembles classical iterative numerical approximation techniqes. However,

from the practical point of view, diagnosis of multiple soft faults in analog circuits is no

pressing issue. A more practical problem is that test frequencies have to be determined by

the designer. Implementation of an algorithm for the selection of test frequencies is one of

our current research goals.
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Appendix: CLP(<) model of the �lter

% File: soma.pl

%

% A low pass biquad filter designed-for-testability according

% to Soma [1990].

% A complex number Z = Re+j*Im is represented by a pair c(Re,Im).

% Component tolerances not taken into account.

test( Test, F, Gain, Phase ) :-

V1 = c(1,0),

test_mos( Test, MOS ),

filt( comps(ok,ok,ok,ok,ok,ok,ok,ok,ok,ok,ok), MOS, F, V1, V2 ),

gain( V1, V2, Gain ),

phase( V2, Phase ).

test_mos( origin, mos(shrt,shrt,dis) ).

test_mos( normal, mos(res,res,dis) ).

test_mos( alltest, mos(dis,dis,res) ).

test_mos( stage1, mos(res,dis,res) ).

test_mos( stage2, mos(dis,res,dis) ).

filt( Comps, MOS, F, Vin, Vout ) :-

frequency( F, W ),

R1 = 100000,

R2 = 10000,

R3 = 10000,

R4 = 50000,

R5 = 10000,

R6 = 10000,

C1 = 100.0e-9,

C2 = 100.0e-9,

T1 = 60,

T2 = 60,

NT2 = 60,

filter( Comps, MOS,

param(W,R1,R2,R3,R4,R5,R6,C1,C2,T1,T2,NT2),

volt(Vin,Vout,_,_,_,_,_,_,_) ).

filter( comps(SR1,SR2,SR3,SR4,SR5,SR6,SC1,SC2,SA1,SA2,SA3),

mos(ST1,ST2,SNT2),
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param(W,R1,R2,R3,R4,R5,R6,C1,C2,T1,T2,NT2),

volt(Vin,Vout,V1,V2,V3,V4,V5,Vt1,Vt2) ) :-

Vgnd = c(0,0),

cmp_add( I1, Ib1, Ir4 ),

cmp_add( I2, Ir1, I1 ),

cmp_add( Ir3, Ic1, I2 ),

cmp_add( Ic1, Ir1, I3 ),

amplifier( SA1, W, Vgnd, V1, V2, Ia1, Ib1, Io1 ),

amplifier( SA2, W, Vgnd, V3, V4, Ia2, Ib2, Io2 ),

amplifier( SA3, W, Vgnd, V5, Vout, Ia3, Ib3, Io3 ),

cmp_add( I3, Io1, Ir2 ),

cmp_add( I4, Ib2, Ir2 ),

cmp_add( I5, Ic2, I4 ),

cmp_add( I4, Io2, Ir5 ),

cmp_add( Ir6, Ib3, Ir5 ),

cmp_add( Ir3, Ir6, I6 ),

cmp_add( Io3, I6, c(0,0) ),

bridge( ST1, T1, Ic1, Vt1, V2 ),

bridge( ST2, T2, Ic2, Vt2, V4 ),

bridge( SNT2, NT2, I5, V3, V4 ),

capacitor( SC2, W, C2, Ic2, V3, Vt2 ),

capacitor( SC1, W, C1, Ic1, V1, Vt1 ),

resistor( SR6, R6, Ir6, V5, Vout ),

resistor( SR5, R5, Ir5, V4, V5 ),

resistor( SR2, R2, Ir2, V2, V3 ),

resistor( SR4, R4, Ir4, Vin, V1 ),

resistor( SR1, R1, Ir1, V1, V2 ),

resistor( SR3, R3, Ir3, V1, Vout ).

% Inserted MOS switches T1, T2 and ~T2 have states:

% shrt - short circuit

% dis - disconnected

% res - resistor

bridge( shrt, _, _, V, V ).

bridge( dis, _, c(0,0), _, _ ).

bridge( res, R, I, V1, V2 ) :-

resistor( ok, R, I, V1, V2 ).

% Operational amplifier

% _
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% Iina | \_

% Vina -->--|+ \_

% | _>-->-- Vout

% Vinb -->--|- _/ Iout

% Iinb |_/

amplifier( ok, W, Vina, Vinb, Vout, Iina, Iinb, Iout ) :-

A0 = 46.4, % 46.416=pow(10,5/3),

Rin = 0.5e6,

R3 = 75,

Voff = 0.0,

Ibias = 0.0,

Ioff = 0.0,

F1 = 25,

F2 = 1.0e6,

R1 = 1000, R2 = 1000,

constant_pi( Pi ),

C1 = 1/(2*Pi*R1*F1), % 6.37e-6,

C2 = 1/(2*Pi*R2*F2), % 1.59e-10

C3 = 1.0e-12,

cmp_add( Vina, c(Voff,0), Va ),

resistor( ok, Rin, Ir, Va, Vinb ),

cmp_add( Ir, c(Ibias,0), Iina ),

cmp_add( Iinb, Ir, c(Ibias-Ioff,0) ),

cmp_add( V0, Vinb, Va ),

stage( A0, V0, R1, C1, W, c(0,0), V1 ),

stage( A0, V1, R2, C2, W, c(0,0), V2 ),

stage( A0, V2, R3, C3, W, Iout, Vout ).

stage( A0, V0, R, C, W, I, V ) :-

Vgnd = c(0,0),

cmp_mult_real( A0/R, V0, Is ),

resistor( ok, R, Ir, Vgnd, V ),

capacitor( ok, W, C, Ic, Vgnd, V ),

cmp_add( Is, Ir, Isr ), cmp_add( Isr, Ic, I ).

% Normal behavior of R and C

resistor( ok, R, I, V1, V2 ) :-

cmp_add( DV, V2, V1 ),

cmp_mult_real( R, I, DV ).
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capacitor( ok, W, C, I, V1, V2 ) :-

cmp_add( DV, V2, V1 ),

cmp_mult_imag( C*W, DV, I ).

% Weak fault models

resistor( ab(R), _, I, V1, V2 ) :-

cmp_add( DV, V2, V1 ),

cmp_mult( c(R,_), I, DV ).

capacitor( ab(C), W, _, I, V1, V2 ) :-

cmp_add( DV, V2, V1 ),

cmp_mult( c(_,C*W), DV, I ).

% Complex numbers, addition and multiplication

cmp_add( c(Re1,Im1), c(Re2,Im2), c(Re1+Re2,Im1+Im2) ).

cmp_mult( c(Re,Im), Cmp0, Cmp ) :-

cmp_mult_real( Re, Cmp0, Cmp1 ),

cmp_mult_imag( Im, Cmp0, Cmp2 ),

cmp_add( Cmp1, Cmp2, Cmp ).

cmp_mult_real( Re, c(Re0,Im0), c(Re*Re0,Re*Im0) ).

cmp_mult_imag( Im, c(Re0,Im0), c(-Im*Im0,Im*Re0) ).

% Gain and phase

constant_pi( 3.14 ).

frequency( F, 2*Pi*F ) :- constant_pi( Pi ).

gain( c(Re1,Im1), c(Re2,Im2), Gain ) :-

pow(10,G) = (Re2*Re2+Im2*Im2)*(1/(Re1*Re1+Im1*Im1)),

Gain = 10*G. % in original listing Gain = 10*G

phase( c(0,_), 0 ) :- true, !.

phase( c(Re,Im), Phase ) :-

Re>0, true, !,
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constant_pi( Pi ),

tan(Rad) = Im*(1/Re),

Phase = 180/Pi*Rad.

phase( c(Re,Im), Phase ) :-

Re<0,

constant_pi( Pi ),

tan(Rad) = Im*(1/Re),

Phase = 180/Pi*Rad + 180.
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Figure 4: Gain and phase characteristics of the �lter in all testing modes.
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