
Interval arithmetic with CLP(<)

Igor Mozeti�c & Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna

Austria

(igor, christian)@ai.univie.ac.at

Abstract

We describe two extensions of CLP(<), motivated by an application to model-

based diagnosis of active analog �lters. The �rst extension addresses the problem of

rounding errors in CLP(<). We represent <eals with
oating-point intervals which

are computed by outward rounding. The second extension increases the expressive-

ness of linear CLP(<). Constants in linear expressions can now be intervals, which

enables reasoning with imprecise model parameters (tolerances). Bounds (sup and

inf) for individual variables are computed by the linear optimization via modi�ed

Simplex. Both extensions are implemented in a CLP shell | an adaptation of SIC-

Stus Prolog, which allows for easy and fast developments and modi�cations of CLP

languages.

1 Introduction

The motivation for this work was the idea to use CLP(<) for the simulation and diagnosis

of analog circuits. First experiments

[

Mozeti�c et al., 1991

]

showed that CLP(<) has some

advantages over classical simulation tools (like SPICE or Micro-CAP) since the same model

can be used for both, simulation and diagnosis. CLP(<) can locate potential soft faults, i.e.,

parameter values (resistors, capacitors) deviating from nominal values. Recently

[

Novak

et al., 1993

]

this was combined with the design-for-test (DFT) methodology

[

Soma, 1990

]

in order to be able to distinguish between previously indistinguishable faults. The idea of

the DFT methodology is to introduce MOS switches into a circuit in order to increase its

controllability and observability.

Experiments with the simulation and diagnosis of analog circuits very soon revealed

the
oating-point problems of CLP(<). A potential solution of using CLP(Q) instead of

CLP(<) is not practical. In our particular experiments CLP(Q) turned out to be 100 times

1

slower then CLP(<) and needed considerably more space. What we tried next, and what

we describe in this paper, is to extend CLP(<) by real intervals.

Real intervals were already incorporated in CLP languages, e.g., in BNR Prolog

[

Older and Vellino, 1990, Older and Vellino, 1992

]

and in ICLP(<)

[

Lee and van Emden,

1992

]

. The main motivation there is the control of rounding errors, and the ability to

resolve nonlinear constraints. The mechanism for doing this is a new type of variables

called an interval. A variable is initialized to an interval which subsequently narrows as

more constraints on the variable are imposed. The constraint satisfaction mechanism for

narrowing is based on local constraint propagation. It is non-symbolic and resembles a

classical iterative numerical approximation technique.

In contrast, existing CLP(<)

[

Ja�ar and Michaylov, 1987

]

implementations are limited

to systems of linear (in)equations and use symbolic (in)equation solving techniques. Here,

variables which �gure in inequalities can be interpreted as intervals. Their bounds (sup

and inf) are not explicit, but can be computed by the Simplex optimization.

We introduce an extension to CLP(<) where generalized constants can be used. A

generalized constant is an ordered pair of
oating-point numbers, de�ning the lower and

upper bound of an interval which contains the original constant. These intervals are not

narrowed during the computation | their ranges, however, have an e�ect on the variables.

Originally ground variables might become just constrained (bound between sup and inf),

and originally constrained variables might get looser bounds. The motivation for having

generalized constants is twofold:

� The representation of <eals by
oating-point intervals in order to cure the rounding

problems. These generalized constants cannot be speci�ed by the user | they are

introduced by the low level numerical evaluator as a result of outward rounding.

� The increased expressive power of linear CLP(<) by retaining the advantages of

symbolic techniques. In this case, the generalized constants are introduced by the

user in order to model parameter tolerances.

2 Outward rounding

The CLP shell

[

Holzbaur, 1992

]

we are using for our experiments is an extension of SICStus

Prolog

[

Carlsson and Widen, 1991

]

. Various CLP instances themselves are implemented in

Prolog and coded in a rather modular fashion. This coding discipline, together with the

relative ease of applying partial evaluation to declarative programs, makes it possible to

replace the numeric evaluator which works at the bottom of every CLP(<;Q) implementa-

tion. In fact, our CLP(<) and CLP(Q) implementations share 99% of the code. The only

di�erence besides some special case analyses that stem from the �nite precision of
oating-

point numbers, is the numeric evaluator which computes with
oating-point numbers in

the case of CLP(<), and with normalized rational numbers in the case of CLP(Q).

2

We implemented an outward rounding evaluator which returns a pair of
oating-point

numbers for each arithmetic expression involving (simple of generalized) constants. The

pair encloses the actual results of the computation as tight as possible within the space of

(hardware) representable
oating-point numbers.

Although this evaluator is speci�ed as a Prolog predicate, there is no call overhead

during the execution of the resulting system, because we unfold references to the evaluator

predicate. This is such a simple instance of partial evaluation, that we have no need for

the power of a general partial evaluator. This leads us to unfolding e�ciency | which

is no issue after all because this process only takes place once when the CLP system is

compiled.

3 Generalized constants

Replacing scalars, i.e., constants and coe�cients in linear equations, by pairs of constants

denoting lower and upper bound, allows one to model additional properties of parameters

such as tolerances. This can be modelled directly in CLP(<). Take, for example, the

following system of three equations:

X

1

= a

X

2

= bX

1

+ c

X

3

= dX

1

+ eX

2

+ f

Assume that a and b are generalized constants with given bounds:

X

1

= [a

1

; a

2

]

X

2

= [b

1

; b

2

]X

1

+ c

X

3

= dX

1

+ eX

2

+ f

Each factor with a generalized coe�cient can be replaced by a fresh variable and two

inequalities:

X

2

= X

0

1

+ c

X

3

= dX

1

+ eX

2

+ f

a

1

� X

1

� a

2

(1)

X

1

� 0 : b

1

X

1

� X

0

1

� b

2

X

1

(2)

X

1

< 0 : b

1

X

1

� X

0

1

� b

2

X

1

(3)

A generalized coe�cient requires a case analysis (2 or 3). This can be executed directly by

CLP(<) (through backtracking), but the complexity is of course exponential in the number

of generalized coe�cients.

3

We propose a two pass solution. In the �rst pass, mean values of generalized constants

are taken, yielding ground or (in general) constrained solutions for the variables:

�

X

1

=

a

1

+ a

2

2

�

X

2

=

b

1

+ b

2

2

�

X

1

+ c

�

X

3

= d

�

X

1

+ e

�

X

2

+ f

In the second pass, these mean solutions are used to resolve the cases (2 or 3), and looser

bounds on the original variables are computed. This two-pass technique is e�ectively

realized by the freeze mechanism

[

Carlsson and Widen, 1991

]

, by delaying (2, 3) on

�

X

1

until it is su�ciently constrained. The technique is sound but incomplete. In general, a

solution to the system of linear equations with generalized constants yields a set of bounds

(interpreted as intervals) for each variable. The proposed technique �nds just one interval,

expanded around the ground solution, computed in the �rst pass from the mean values.

The question arises: \Why shouldn't one use the low level outward rounding evaluator

to deal with all generalized constants (needed internally and introduced by the user) ?" The

evaluator works under the assumption that terms submitted for evaluation are independent,

even when several represent the same constant. This is the well know `variable (constant)

identity' problem. As a consequence, the tightness of the computed bounds is suboptimal.

Therefore, to make these identities explicit, fresh variables with associated inequalities are

introduced.

4 An example

We illustrate various interval handling techniques by a simple example of two resistors in a

series (Figure 1). Both resistors and given voltages have tolerances. The goal is to compute

the voltage and current ranges at the node between the resistors.

V1 = [11, 14]
R1 = [1000, 2000]

V = ?

I = ?

V2 = [8, 12]
R2 = [1000, 2000]

Figure 1: Two resistors with tolerances in a series.

4

The following CLP(<) program speci�es the circuit:

model(V, I)

V1 = [11,14]

V2 = [8,12],

resistor([1000,2000], I, V1, V),

resistor([1000,2000], I, V, V2).

resistor(R, I, V1, V2) R*I = V1 { V2.

A variable is represented by a pair v(

�

X;X), where

�

X is computed from mean values

of generalized constants, and X is bound between lower and upper bounds of generalized

constants. The following code speci�es the assignment of a generalized constant to a

variable, and the multiplication of a generalized constant by a variable:

[A,B] = v(

�

X,X)

�

X =

A+B

2

,

A � X, X � B.

[A,B] * v(

�

X ,X) = v(

�

Y ,Y)

�

Y =

A+B

2

�

�

X ,

freeze(

�

X , bounds(

�

X, A, B, X, Y)).

bounds(

�

X, A, B, X, Y)

�

X � 0,

A*X � Y, Y � B*X.

bounds(

�

X, A, B, X, Y)

�

X < 0,

A*X � Y, Y � B*X.

The multiplication of a generalized constant to a variable is delayed until

�

X is ground. This

reduces backtracking, but misses some solutions. The correct (but less e�cient) de�nition

of the bounds predicate should test the sign of X instead of

�

X.

The �rst query illustrates how the outward rounding is used to compute the mean

solution, i.e., I and V are computed from the mean values of generalized constants. Instead

of a single
oating-point number, the result is a pair of
oating-point numbers which

contain the <eal solution:

 I = (12.5 { 10)/(1500 + 1500),

V = 12.5 { 1500*I.

I = [0.00083333333333333328, 0.0008333333333333335],

V = [11.249999999999999, 11.250000000000002]

The same mechanism applied to the actual generalized constants (instead of their mean

values) yields a naive block, i.e., an interval in two dimensions. However, due to the `con-

stant identity' problem the block contains a considerable number of impossible solutions

(Figure 2):

5

 I = ([11,14] { [8,12])/([1000,2000] + [1000,2000]),

V = [11,14] { [1000,2000]*I.

I = [{0.00050000000000000001, 0.0030000000000000001],

V = [4.9999999999999992, 15.000000000000002]

computed block around

-0.001 0.001 0.002 0.0030

0.00083-0.0005

3

5

7

9

13

15

13.33

V

I

11.25

missed
block

solution
mean

naive block

the mean solution

actual solution
polyhedron

11

Figure 2: Interval ranges for the two resistors example.

If we consider the generalized constants then the actual solution polyhedron is deter-

mined by a set of inequalities. Through backtracking, CLP(<) returns two solutions,

depending whether I � 0 or I < 0:

 model(V, I).

I � 0,

I � 0.0055 { 0.0005*V,

I � {0.008 + 0.001*V,

I � 0.014 { 0.001*V,

I � {0.006 + 0.0005*V ? ;

I < 0,

I � {0.012 + 0.001*V,

I � 0.011 { 0.001*V

6

It is convenient to represent the polyhedron by the smallest block which contains it. In

CLP(<) this can be done by computing inf and sup of each variable involved:

 model(V, I),

inf(V, Vinf), sup(V, Vsup),

inf(I, Iinf), sup(I, Isup).

I � 0,

� � �

Iinf = 0, Isup = 0.003,

Vinf = 9, Vsup = 13.333333333333334 ? ;

I < 0,

� � �

Iinf = {0.0005, Isup = 0,

Vinf = 11, Vsup = 12

The proposed two pass technique (with mean values and freeze) computes in the �rst

pass the mean solutions, and in the second pass the block around the mean solution (Fig-

ure 2). The second solution (for X < 0, in the missed block) is not computed, since there

is no backtracking.

5 Discussion

From the CLP(<) solver's point of view the proposed technique amounts to an additional

workload because of the two inequalities added for each constant or coe�cient being gen-

eralized. While we are pleased with the additional modelling power of our system, we are

not satis�ed with the overall performance. Our current explanation is the following.

We decide the satis�ability of systems of inequalities by an incremental version of the

Simplex

[

Dantzig, 1963

]

algorithm. The current version does not take advantage of special

properties of the submitted inequalities.

One such property is the dimension (= number of variables) of the inequalities. There

are variants of the Simplex algorithm which perform the costly basis transformations only

for equations in more than one variable, i.e., simple upper and lower bounds on variables

are treated specially (bounded variable linear programs

[

Murty, 1976

]

). Note that this

restriction on the syntactical form of inequalities is local in the sense that it does not

restrict the number of variables in the other inequalities of a system. This is in contrast

to the global restrictions imposed by TVPI algorithms

[

Cohen and Megiddo, 1991

]

.

Special treatment of inequalities of low dimension also facilitates the detection of re-

dundant inequalities. For simple bounds this is an evaluable test, for inequalities in more

dimensions one can (sometimes) detect syntactic redundancy by sorting

[

Lassez et al., 1989

]

or hashing

[

Pugh, 1991

]

. In general, however, one has to run linear optimization programs

to detect subsumption.

7

Therefore we plan to incorporate specializations for inequalities of low dimension into

the decision algorithm for inequalities.

Acknowledgements

The authors acknowledge the support of the Austrian "Fonds zur F�orderung der wis-

senschaftlichen Forschung" under grant P9426-PHY. Austrian Research Institute for Arti-

�cial Intelligence is supported by the Austrian Federal Ministry of Science and Research.

References

[

Carlsson and Widen, 1991

]

Carlsson, M., Widen, J. SICStus Prolog user's manual.

Swedish Institute of Computer Science, Kista, Sweden, 1991.

[

Cohen and Megiddo, 1991

]

Cohen, E., Megiddo, N. Improved algorithms for linear in-

equalities with two variables per inequality. IBM Research Report, RJ 8187 (75146),

1991.

[

Dantzig, 1963

]

Dantzig, G.B. Linear Programming and Extensions. Princeton University

Press, Princeton, NJ, 1963.

[

Holzbaur, 1992

]

Holzbaur, C. DMCAI CLP reference manual. Report TR-92-24, Austrian

Research Institute for Arti�cial Intelligence, Vienna, Austria, 1992.

[

Ja�ar and Michaylov, 1987

]

Ja�ar, J., Michaylov, S. Methodology and implementation of

a CLP system. Proc. 4th Intl. Conf. on Logic Programming, pp. 196-218, Melbourne,

Australia, MIT Press, 1987.

[

Lassez et al., 1989

]

Lassez, J.L., Huynh, T., McAloon, K. Simpli�cation and elimination

of redundant linear arithmetic constraints. Proc. North American Conf. on Logic Pro-

gramming 1989, pp. 35-51, Cleveland, MIT Press, 1989.

[

Lee and van Emden, 1992

]

Lee, J.H.M, van Emden, M.H. Adapting CLP(<) to
oating-

point arithmetic. Proc. Intl. Conf. on Fifth Generation Computer Systems, pp. 996-

1003, ICOT, Tokyo, 1992.

[

Mozeti�c et al., 1991

]

Mozeti�c, I., Holzbaur, C., Novak, F., Santo-Zarnik, M. Model-based

analogue circuit diagnosis with CLP(<). Proc. 4th Intl. GI Congress, pp. 343-353,

Munich, Springer-Verlag, 1991.

[

Murty, 1976

]

Murty, K.G. Linear and Combinatorial Programming. Wiley, New York,

1976.

8

[

Novak et al., 1993

]

Novak, F., Mozeti�c, I., Santo-Zarnik, M., Biasizzio, A. Enhancing

design-for-test for active analog �lters by using CLP(<). Analog Integrated Circuits

and Signal Processing, to appear, 1993.

[

Older and Vellino, 1990

]

Older, W., Vellino, A. Extending Prolog with constraint arith-

metic on real intervals. Proc. Canadian Conf. on Electrical and Computer Engineering,

1990.

[

Older and Vellino, 1992

]

Older, W., Vellino, A. Constraint arithmetic on real intervals.

In Constraint Logic Programming: Selected Research (F. Benhamou, A. Colmerauer,

Eds.), MIT Press, to appear, 1993.

[

Pugh, 1991

]

Pugh, W. The Omega test: a fast and practical integer programming algo-

rithm for dependence analysis. Proc. of Supercomputing, 1991.

[

Soma, 1990

]

Soma, M. A design-for-test methodology for active analog �lters. Proc. IEEE

Intl. Test Conf. 1990, pp. 183-192, Washington D.C., IEEE, 1990.

9

