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Abstract

The research reported in this paper describes Fossil, an ILP system

that uses a search heuristic based on statistical correlation. This algorithm

implements a new method for learning useful concepts in the presence of

noise. In contrast to Foil's stopping criterion which allows theories to

grow in complexity as the size of the training sets increase, we propose a

new stopping criterion that is independent of the number of training ex-

amples. Instead, Fossil's stopping criterion depends on a search heuristic

that estimates the utility of literals on a uniform scale.

1 Introduction

In this paper we introduce an Inductive Logic Programming algorithm closely

related to Foil [Quinlan, 1990]. Fossil uses a search heuristic based on statis-

tical correlation. Advantages of this new heuristic are that there is no seperate

calculation for negated literals and that the quality of literals is assessed on a

uniform scale.

This paper is mainly concerned with the latter feature of this search heuris-

tic. We show that it can advantageously be used to cut o� all literals that

have a heuristic value below a certain threshold. This eliminates the need for

Foil's encoding length stopping criterion. Experimental evidence supports our

assumption that this method is successful in avoiding over-�tting the noise in

the data and in learning useful concepts in the presence of noise. We show

that Fossil converges towards a useful set of slightly over-general rules when

increasing the size of the training set, while Foil learns more and more complex

concept descriptions that �t the noise in the training data.

Section 2 will give a short introduction into Fossil's search heuristic and

section 3 will highlight the features of this heuristic we are mostly concerned

with. Section 4 gives a short description of the setup used for the experiments

reported in sections 5 and 6. In the last two sections we give a comparison to

related work known from the ILP literature and we conclude.



2 Fossil's search heuristic

Fossil's evaluation function is based on the concept of statistical correlation.

The correlation coe�cient of two random variables X and Y is de�ned as
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where � and � are expected value and standard deviation, respectively, of the

random variables X and Y , and (see e.g. [Bosch, 1982]).

This correlation coe�cient measures the degree of dependency of two series

of points on a scale from �1 (negative correlation) to +1 (positive correla-

tion). In the following description of its adaptation as a search heuristic for

the Inductive Logic Programming algorithm Foil, we will follow the notational

conventions used in [Lavra�c et al., 1992].

Suppose Fossil has learned a partial clause c. Let the set of tuples T

c

of

size n(c), containing n

�

(c) positive and n

	

(c) negative instances, be the current

training set. We arbitrarily assign the numeric values +1 and �1 for the logical

values true and false. The variable X in (1) now represents the multiset V (c)

of the signs (truth values) of the tuples in T

c

. The variable Y denotes the

multiset V (L) of the truth values of a candidate literal L. A literal L is said

to be true, whenever there exists a tuple in T

c

that satis�es L; if L introduces

new variables, they must have at least one instantiation that makes the literal

true. Note that V (c) and V (L) naturally contain the same number of values.

The expected values in (1) will be estimated by the mean values of V (c) and

V (L) respectively. Standard deviation will be approximated by the empirical

variance. Thus we get
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The last remaining term to be computed is E(V (c) � V (L)). If both the

truth values v(c) and v(L) of a tuple and the literal under scrutiny have the

same sign, then v(c) � v(L) = 1. Conversely, if one is positive and the other

negative we have v(c)� v(L) = �1. If we denote the number of positive tuples

yielding a negative value for the literal L with n

�
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The partial results of above now only need to be substituted into the formula

for the correlation coe�cient (1). As �

c

and �

c

only need to be evaluated once

for each tuple set T

c

, evaluation of this formula is not as complicated as it may

seem at �rst sight. Also notice that with this approach no seperate calculation

for negated literals has to be performed, as a high negative correlation indicates

a high dependency on the negated literal.



The literal L

c

with the highest absolute value of the correlation coe�cient

(or :L

c

if the sign of the coe�cient is negative) is then chosen to extend c to

form a new clause c

0

. This is based on the assumption that its high correlation

with the current training set T

c

indicates some form of causal relationship be-

tween the target concept and L

c

. The set T

c

is then extended to a new a set of

tuples T

c

0
(which in general will have a di�erent size) and the process continues

as described in [Quinlan, 1990].

3 Important features of the correlation coe�cient

heuristic

The information gain heuristic used in ID3 [Quinlan, 1983] and Foil has been

extensively compared to other search heuristics in decision tree generation

[Mingers, 1989, Buntine and Niblett, 1992] and Inductive Logic Programming

[Lavra�c et al., 1992]. The general consensus seems to be that it is hard to

improve on this heuristic in terms of predictive accuracy in learning from noise-

free data. While our results con�rm this, we nevertheless claim that Fossil's

evaluation function has some important features that distinguish it from the

weighted information gain heuristic used in Foil.

� In Foil, the heuristic value of each literal and of its negation have to

be calculated separately. Fossil does this in one calculation, as posi-

tive correlation indicates a causal relationship between the tuple set and

the literal under scrutiny, while negative correlation indicates a causal

relationship between the tuple set and the negation of the literal.

� The correlation between a tuple set and a determinate literal

1

is unde�ned,

as �

L

will be 0 for determinate literals, because all tuples have at least one

true variable assignment for this literal and thus (1��

L

) and n

	

(L) both

will be 0. This allows the user to take care of the problem in a 
exible

way. The experiments reported in this paper ignored this problem by

treating unde�ned cases as having correlation 0. De�ning the heuristic

value of determinate literals as 1 would put all determinate into the clause

body. Irrelevant literals could be removed later in a post-processing phase

[Quinlan, 1990]. Values between 0 and 1 result in the behavior proposed

in [Quinlan, 1991]: Until a literal with a correlation above this pre-set

value is found, determinate literals will be added to the clause body.

� The value of Foil's evaluation function is dependent on the size of the

tuple set. The same literal will have di�erent information gain values in

di�erent example set sizes of the same concept, although its relative merit

compared to its competitors will be about the same. Fossil's correlation

coe�cient on the other hand | after taking absolute values and choosing

1

We say that a literal is determinate when it introduces a new variable that is always

bound to exactly one value and thus yields no information gain (e.g. plus( X, Y, Z) with

the new variable Z). This may cause problems, because the introduction of this new variable

may be useful despite the fact that no information is gained.



the appropriate, positive or negative, literal | assigns a value on the

uniform scale from 0 to 1. As the plausibility of a literal can now be

judged on an absolute basis, the user can require the literals that are

considered for clause construction to have a certain minimum correlation

value. This can be used as a simple criterion for �ltering out noise, as it

can be expected that tuples originating from noise in the data will only

have a small correlation with predicates in the background knowledge.

This paper reports experiments that con�rm the last hypothesis.

4 Experimental setup

For the experiments in this paper we have used the domain of recognizing

illegal chess positions in the KRK ending [Muggleton et al., 1989], which has

become a running example in ILP research. The goal is to learn the concept

of an illegal white-to-move position with only white king, white rook and black

king being on the board. The goal predicate is illegal(A,B,C,D,E,F) where

the parameters correspond to the row and �le coordinates of the pieces in the

above order. Background knowledge consists of the predicates X < Y, X = Y

and adjacent(X,Y)

2

. Typing constraints were used to speed up the search and

recursion was not allowed for e�ciency reasons.

Class noise in the training instances was generated according to the Clas-

si�cation Noise Process described in [Angluin and Laird, 1988]. In this model

a noise level of � means that the sign of each example is reversed with a prob-

ability of �. Note that this di�ers from most of the results in the ILP liter-

ature, where a noise level of � means that, with a probability of �, the sign

of each example is randomly chosen. Thus a noise level of � in our experi-

ments is roughly equivalent to a noise level of 2� in the results reported in

[Lavra�c and D�zeroski, 1992, D�zeroski and Bratko, 1992b]. Noise was added in-

crementally, i.e. instances which had a reversed sign at a noise level �

1

also had

a reversed sign at a noise level �

2

> �

1

. Similarly, training sets with n examples

were fully contained in training sets with m > n examples.

In all experiments the induced rules were tested against sets of 5000 ran-

domly chosen instances. It also proved useful to record the number of clauses

in the induced concept and the average number of literals per clause to measure

the complexity of the learned concept description.

5 The Cuto�

Fossil handles noise by simply not considering literals that have a correlation

coe�cient lower than a certain user-settable value | the cuto�. This results

in a natural criterion for when to stop adding literals or clauses to the current

concept de�nition. Whenever no literal has a correlation coe�cient above the

set threshold, the growing of the current clause stops and the examples that are

2

Our de�nition of adjacent actually was adjacent or equal.



covered are removed from the tuple set.

3

If no literal above the cuto� can be

found for starting a new clause, the current set of clauses is used as a concept

de�nition. Note that it may happen that Fossil \refuses" to learn anything

in cases where no predicate in the background knowledge has a signi�cant cor-

relation with the training data. This has actually happened several times, and

is evident in the result with 20% Noise and and a Cuto� C = 0:4, where the

average clause length is below 1 (see table 1).

We want to emphasize that this type of stopping criterion is not limited to

Fossil's correlation coe�cient heuristic, but may yield similar results with all

search heuristics that assign values on a uniform scale, as e.g. the expected

accuracy measure [Lavra�c et al., 1992].

The �rst series of experiments aimed at determining an appropriate value

for this parameter for further experimentation. 10 training sets of 100 instances

each were used at three di�erent noise levels (5%, 10% and 20%). 6 di�erent

settings for the cuto� parameter C were used. The results averaged over the 5

runs are reported in table 1.

Cuto�

Noise 0.0 0.1 0.2 0.25 0.3 0.4

Accuracy 93.05 93.05 93.32 93.58 95.57 93.86

5% Clauses 6.3 6.3 6.2 5.8 4.2 2.7

Lits/Clause 2.25 2.25 2.25 2.19 2.02 1.87

Accuracy 87.77 87.77 90.0 93.44 93.52 83.18

10% Clauses 8.2 8.2 6.3 4.5 3.8 1.8

Lits/Clause 2.74 2.74 2.52 2.24 2.24 1.53

Accuracy 80.21 80.21 85.21 86.87 87.00 72.48

20% Clauses 11.4 11.4 6.0 4.1 3.2 0.7

Lits/Clause 3.09 3.09 2.80 2.76 2.67 0.85

Table 1: Experiments with di�erent settings for the Cuto� .

From these results the following observations can be made:

� A good setting for C in this domain seems to be somewhere around 0.3.

� There is a roughly linear transition from over�tting the noise to over-

generalizing the rules. A low setting of C has a tendency to �t the noise,

because most of the high correlation literals are above the threshold.

4

Conversely, a too optimistic setting of C results in over-generalization as

too few literals have a correlation above the threshold.

� The complexity of the learned concepts (#Clauses � #Lits=Clause)

monotonically decreases with an increase of the cuto� parameter.

� The in
uence of a bad choice of the cuto� is more signi�cant in data

containing a larger amount of noise.

3

Like Foil, Fossil has a parameter that can enforce a given minimum clause accuracy,

i.e. that a certain percentage of the examples covered by the clause must be positive.

4

A setting of C = 0 results in learning a 100% correct rule for explaining the training set.



6 Comparison with Foil

We performed two experiments to compare Fossil's performance to the per-

formance of Foil. In the �rst series we compared the behavior of the two

systems with 10 training sets of 100 instances each at di�erent noise lev-

els, which has been the standard procedure for evaluating many ILP sys-

tems [Quinlan, 1990, D�zeroski and Lavra�c, 1991, D�zeroski and Bratko, 1992b,

Muggleton et al., 1989]. In the second experiment we evaluated both programs

at a constant noise level of 10%, but with an increasing number of training

instances.

According to the results of the previous experiments we set C = 0:3 and

never changed this setting.

6.1 Experiment 1

In this experiment we compared Foil4 to Fossil at di�erent noise levels. In or-

der to have a fair comparison to Fossil where backtracking is not implemented,

we used two versions of Foil, regular Foil4 and a new version, Foil-NBT,

where Foil4's extensive mechanisms of backtracking and regrowing of clauses

were not allowed. Surprisingly this version performed better than the original

Foil4 in noisy data as can be seen from the results of table 2.

Di�erent Noise

Noise Levels 0% 5% 10% 15% 20% 25% 30% 50%

Accuracy 98.32 95.26 92.12 90.26 85.21 79.83 71.53 53.00

Foil4 Clauses 3.5 4.2 5.4 5.9 5.7 6.6 8.0 7.9

Lits/Clause 1.64 1.98 2.41 2.47 2.66 2.98 3.03 3.45

Accuracy 98.11 95.00 92.98 91.76 87.12 79.42 76.32 55.33

Foil-NBT Clauses 3.5 4.1 4.2 4.2 4.5 5.4 5.0 5.2

Lits/Clause 1.64 1.98 2.34 2.48 2.67 2.80 2.79 3.08

Accuracy 98.54 95.57 93.52 92.83 87.00 81.63 70.59 (67.07)

Fossil (0.3) Clauses 3.7 4.3 3.8 4.2 3.2 2.7 0.7 0.0

Lits/Clause 1.62 2.02 2.24 2.29 2.67 2.69 0.85 0.0

Table 2: A Comparison of Foil and Fossil on di�erent levels of noise.

An analysis of the result shows that Fossil performs best in most of the

tests, but no signi�cant di�erence between Foil-NBT and Fossil can be found.

A comparison of the average number of induced clauses and of the average

literals per clause shows evidence that Fossil over-generalized at the high noise

levels. A lower value of the cuto� parameter may result in better performance

in the case of 30% noise, although it is unlikely that a useful theory would

be learned. An interesting detail is that Fossil did not learn anything at a

noise level of 50%, i.e. with totally random data. Thus the cuto� mechanism

seems to be a primitive, but e�cient means of distinguishing noise from useful

information.

On the other hand, Foil4 seems to perform worse than both, Foil-NBT



and Fossil. The complexity of the concepts learned by Foil4 increases with

the amount of noise in the data, which is clear evidence for over-�tting noise in

the data. Experiment 2 was designed to con�rm this hypothesis.

6.2 Experiment 2

In this series of experiments we compared Foil without backtracking to Fossil

at di�erent training set sizes, each having 10% noise. We decided to use Foil-

NBT instead of Foil4, because it performed better at the previous series of

tests. Besides, the version without backtracking naturally runs faster, which

proved to be important. However, we have done a few sample runs with Foil4

to con�rm that its results would not be qualitatively di�erent to those of Foil-

NBT.

Again, we used 10 di�erent training sets and averaged the results. The

outcomes of these experiments are summarized in table 3.

Di�erent Training Set Training Set Size

Sizes (10% Noise) 100 250 500 750 1000 2000

Accuracy 92.98 90.97 92.63 93.58 94.02 |

Foil-NBT Clauses 4.2 7.7 11.5 16.7 22.0 |

Lits/Clause 2.34 3.31 3.61 3.89 4.15 |

Accuracy 93.52 92.68 92.79 96.33 98.05 98.41

Fossil (0.3) Clauses 3.8 3.7 3.1 3.0 3.0 3.0

Lits/Clause 2.24 3.01 2.63 1.94 1.5 1.4

Table 3: A Comparison of Foil and Fossil with di�erent training set sizes

The most important �nding is that Foil clearly �ts the noise, while Fossil

avoids this and learns a slightly over-general, but much more useful theory

instead. Foil's �tting the noise has several disadvantages:

Accuracy: The more noisy examples there are in the training set, the more

specialized are the various clauses in the concept description, which de-

creases the predictive ability of each clause. This results in an increasing

di�erence between the over-all predictive accuracy of the rules learned by

Foil and Fossil.

Understandability: It is a widely acknowledged principle that the more com-

plex a concept de�nition is, the less understandable it will be, in particular

when both de�nitions describe the same data set. While the descriptions

induced by Foil for the large training sets were totally incomprehensible

to the author, Fossil converged towards the simple, approximate theory

of �gure 1.

5

In fact in 8 of the 10 training sets with 2000 examples, pre-

cisely this theory was learned, while in the other two the literal A \== C

5

This theory correctly classi�es all but 4060 of the 262,144 possible domain examples

(98.45%). 2940 positions (1.12%)with WK and WR on the same squares and 1120 positions

(0.43%) where the WK is between WR and BK on the same row or �le are erroneously classi�ed

[F�urnkranz, 1993]. (Remember that we have de�ned adjacent to mean adjacent or equal).



illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F.

illegal(A,B,C,D,E,F) :- adjacent(A,E), adjacent(B,F).

Figure 1: An approximate theory that is 98.45% correct.

had been added to the �rst clause, which gives a 97.98% correct theory

[F�urnkranz, 1993].

E�ciency: Foil grows an increasing number of clauses with an increasing

number of literals. Also, several of the literals chosen to �t the noise

introduce new variables, which leads to an explosion of the size of the

tuple set. In fact, the C implementation of Foil could complete none of

the ten experiments with 2000 training examples within 500 minutes of

CPU time, while the PROLOG implementation of Fossil only needed

about 15 minutes of CPU time for each of the training sets, running on

the same machine.

What seems to be responsible for the drastic increase in the complexity of the

learned clauses is that Foil's stopping criterion [Quinlan, 1990] is dependent on

the size of the training set. In the KRK domain it performs very well on sample

sizes of 100 training examples. The more this number increases, the more bits

are allowed for the theory to explain the data. However, more examples do

not necessarily originate from a more complex theory. In fact, Foil very often

chooses the same literals as Fossil for the �rst clauses of its concept de�nition,

but then continues to add literals and clauses, where Fossil stops.

Fossil uses a statistical stopping criterion based on the assumption that

each literal in an explanation must have a signi�cant correlation with the set

of training examples. Statistical measures usually improve with the size of the

training sets and so does the quality of the rules induced by Fossil. While both

Foil and Fossil successively improve their predictive accuracy with increasing

training set sizes, only Fossil converges towards a useful theory.

7 Related Work

A comparison of the above �ndings to the relevant results reported for mFoil

[D�zeroski and Bratko, 1992b] and LINUS [Lavra�c and D�zeroski, 1992] would be

interesting, but the results cited for the performance of Foil di�er in all these

papers. Considering the di�erent noise model we are using, our results for

Foil are signi�cantly better than in both other papers. The reason for this

might be our di�erent de�nition of the adjacent-relation. However, none of

the above papers reports the complexity of the learned clauses, and none of

them performs experiments with increasing training set sizes. The architec-

ture of Fossil resembles that of mFoil, but while mFoil uses a parameter

to adjust the degree to which the examples can be trusted, Fossil's cut-

o� parameter can be used to trade o� over-generality and over-�tting. In



addition, mFoil and Foil both have to do additional calculations to deter-

mine when to stop learning | mFoil computes a statistical signi�cance test

[D�zeroski and Bratko, 1992a], while Foil uses a heuristic based on the com-

pression of the theory [Quinlan, 1990]. Fossil's simple cuto� method reduces

the amount of additional computation to a mere comparison. We currently

work on repeating the test series described above on mFoil and on a version

of Foil that uses a similar cuto� stopping criterion.

[Srinivasan et al., 1992] report a series of similar experiments using CW-

GOLEM. Here the results are directly comparable to our �ndings, as the same

noise model has been used in both experiments. In the presence of 10% noise

CW-GOLEM also converges towards the approximate theory of �gure 1, and

it seems to converge faster towards this theory than Fossil. However, CW-

GOLEM is �rst generating a highly specialized theory, from which the most

compressive set of clauses is selected in a post-processing phase, while Fossil

bases its pruning decisions solely on heuristic estimates without any look-ahead.

8 Conclusion

In this research we have shown that Foil's stopping criterion is not appropriate

for learning in noisy domains, as it allows for �tting the noise in the examples.

To circumvent this problem we have proposed a di�erent search heuristic based

on statistical correlation which yields values on a uniform scale. This allows to

assess the heuristic value of a certain literal on an absolute basis, and thus to

drop literals with values below a certain threshold. This method of handling

noise proved especially useful with increasing training set sizes.

We believe that search heuristics based on quality estimates on a uniform

scale can be used advantageously in several other ways, e.g. for a simple best-

�rst or beam search in the space of literals, or for an incremental version of the

algorithm. This remains to be explored in the near future. We also want to

perform experiments in di�erent domains to see whether the cuto� parameter,

whose setting has so far been experimentally determined, has some domain

independence. There is some evidence that the optimal value of the cuto�

parameter changes with the amount of noise in the theory, so a dynamical

change or automatic assessment of the parameter during learning seems to be

another promising �eld for further research.
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