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Abstract

The current rebirth of self-organizing systems in several

distinct domains of research poses new epistemic questions.

Self-organizing systems have a tendency to not only behave

in an unpredictable way, they are also extremely di�cult to

analyse. In this paper we discuss three problems with neural

networks that are important for self-organization in general.

They are related to the proper design of a self-organizing

system, to the role of the system engineer, and to the proper

explanation of system behaviour. We shall try to present a

generally applicable solutions, which is based on a \symbol

grounding" neural network architecture. We then discuss

the relation of this approach to the measurement problem

in physics and point out similarities to existing positions in

philosophy. However, it should be noted that our \solution"

of the explanation problem may be judged as being a very

sceptic one.
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1 Introduction

1.1 Understanding and self-organization

Scientists not only search for solutions to problems, they also seek to construct a

solid basis upon which their results can be justi�ed and explained. That such an

absolutely secure ground of science is impossible to be found within empirical �elds

is one of the truisms of our time. The recent rebirth of self-organizing systems

in many di�erent domains confronts scientists with new epistemic problems. Self-

organizing systems have a tendency to not only behave in an unpredictable way,

they are also extremely di�cult to analyse.

Both|rebirth and the epistemic problems|are manifest in computer science

through the discussions that center around arti�cial neural networks or, as it is

called, connectionism. Such \newly" developed techniques are usually accompanied

by theoretical arguments around their usefulness and drawbacks. In the case of self-

organizing neural networks there has been much discussion about the virtues and

possible advantages of emergent properties. In this paper we want to put our �nger

on three problems with neural networks that are important for self-organization in

general. These three problems are related to the proper design of a self-organizing

system, to the role of the system engineer, and to the proper explanation of system

behaviour. All three problems are just di�erent aspects of one central problem: Only

that can be designed which has been understood and only that can be understood

which has been designed.

This paper addresses questions concerning understanding the responses of a self-

organizing system. We shall try to present a generally applicable solution, one that

will also be implementable for neural networks. It is based on a \symbol ground-

ing" architecture which has been originally developed by Georg Dor�ner [6]. The

increasing importance of autonomous systems which are put in a physical environ-

ment (cf. [2]) leads us to assume that these issues will be even more important in

the future. However, our approach will also be a sceptic solution of the problem. In

the light of the extremely wide applicability of the principle of self-organization, we

admit that this paper barely can scratch the surface of epistemic questions dealing

with emergence, design, measurement, indeterminacy of translation, semantics, and

other problems related to self-organizing systems.
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1.2 Terminology

In this paper we distinguish between physically and non-physically (informationally)

self-organizing systems. They di�er with respect to their epistemic qualities. A

physically self-organizing system is open to ow of energy or material. Its behaviour

is fully predictable at a low inux of energy by means of laws which describe the

behaviour of the system's atomisms (\equilibrium state") [9]. At a higher inux of

energy, through the interaction of elements, the behaviour of the system is not fully

accounted for by initial and boundary conditions [10]. To successfully predict it, one

needs to develop a new way of describing the system. In these descriptions sets of

atomic states map on a state in the new descriptive frame (the macro description).

This \change of view" means the development of a new observable of the system,

which is important for successfully predicting it. We say that a new phenomenon

has emerged.

In an informationally self-organizing system no physical emergence takes place,

since the system is not necessarily open to ow of energy. Taking arti�cial neural

networks as an example (which we will do throughout the paper), such systems share

some properties with their physical pendants. This correspondence consists in the

fact that (i) di�erent levels of descriptions are necessary to explain the system and

(ii) the new observables appear through the interaction of many elements which can

be assumed to be atomic. As in the former case the new observables are mappings

from the \atomic" state space to a macro description of the system. The main

di�erence to physical self-organization consists in the fact that when simulated on

a conventional computer architecture, the number of possible observables of the

system is �xed (cf. section 2.1).

It has already been pointed out by von Bertalan�y as soon as in 1950 that the no-

tion of an open, self-organizing system which shows emergent phenomena is related

to biological systems [1]. A well-known socio-biological example of self-organization

happens in large populations of nest building insects, e.g. termites [9, 10]. A single

termite can be described as a simple autonomous agent who reacts upon a speci�c

scent so that material is deposited immediately. If many insects interact through

similar deposit of building and odor emittingmaterial, this simplemechanism results

in the construction of an emergent, seemingly planful behaviour|the construction

of a termite dome. Investigating the system by only considering individual termites

cannot reveal this emergent phemonenon. The adequate description levels of this

behaviour are the emergent phenomenon and the interaction of the individuals.

It is important to realize that emergence only appears because of many interact-

ing termites. Macro-desriptions like \The insects are constructing and arch." are

important in describing and predicting the system of termites, whereas the micro-

descriptions of single termites do not possess this predictive value (for a detailled

discussion see [10, p.10]).
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2 System Design Problems

2.1 Conventional systems, rule-based systems

A conventional system can be designed to behave in a well-de�ned way, because

the internal dynamics of the system are highly constrained. No self-steering inter-

action between the programmed entities takes place, therefore there is no emergent

behavior of the system (for a more mathematical formulation see e.g. [11, pp.31{

39]). A mechanical example for such a system is the motor of a car, where the

parts of the engine constrain the turbulances of exploding gas to guide the forces in

order to operate the wheeles. Another example is a rule-based system in AI where

the system designer tries to capture the mapping of a problem space to a space

of solutions by means of a partition of the former. This can be done, because the

computer program ensures that the rules are mapped on the physical state space

of the computer system in a way that the system is kept at a low energy level.

Therefore, no physically relevant interactions between the rules take place and no

emergent properties of the system arise. Thus, the rules specify the physical state

transitions and the transitions in the problem-solving state space.

The conventional approach to designing a solution with such systems consists

in classifying \situations", i.e. input data, and connecting them to \actions". In

immediately grounded connectionist systems or autonomous systems the classi�ca-

tion refers to the data which arrives from the sensoric input. Such an input can be

regarded as a measurement of the physical environment, like e.g. a video-camera

recording. The system designer can classify the data according to what is happening

at her own sensory \device" by means of the concepts which he has aquired. Being

in possession of a relevant conceptual framework enables the designer to develop

the rules and to understand what the rules do. When later explaining an action

of the system, the programmer can give \causal" explanations in the sense that a

speci�c set of data items \means" this or that and consequently leads to the action

in question (cf. [19]). Explaining and understanding the system therefore crucially

depend on the fact that the system actually uses the same conceptual framework

as we do.

For several reasons (pointed out e.g. by [12]) this implies severe limitations, even

in the case of a machine-learning system. The inuence of the designer restricts

the system not only in the way that the mapping from situations to actions is

being designed. The more profound problem is the pregiven conceptual bsis of the

designer. This problem has originally been one of the main arguments for arti�cially

neural systems and is now extended through the importance of autonomously acting

systems in physical environments. We shall call it the designer problem.

2.2 Arti�cial neural networks

As opposed to conventional systems, in arti�cial neural networks the interaction of

many simple computing units results in an emergent phenomenon, in this case a

useful computation. The overall behaviour of the system is a consequence of the

interaction of units, so that the appropriate level of describing and explaining the

system is the level at which the behaviour emerges. With respect to section 1.2
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it must be noted that the emergent character of neural networks is a function of

the system taken into account. If one views the computer together with the neural

network simulator as the system in question, than no new states emerge. It is only

with respect to the designed entities that we can talk of \emergent properties".

A great part of the neural network literature only deals with the appropriate

design of these entities. The question which confronts the designer is: \How can

a network be designed, so that it shows the desired emergent behaviour". This

question is dual to: \What sort of behaviour will emerge from that system?" and

can therefore be labelled the inverse emergence problem. This problem can be

translated to our termite example as: Which behaviour should a single termite

have, so that instead of the dome the insects build a bridge?

In neural networks there cerainly exists an important inuence in designing the

architecture (number of units, learning parameters and rules, etc.). But it can

be said that this is not comparable to the aforementioned strong inuence of the

designer. The hope at least is that the relevant system behviour only emerges from

the interaction of many units. Therefore, the decisions made through the network

do not directly depend on the conceptual framework of the net designer, especially

if the input to the system is \immediately grounded" in the physical environment

[3] (and not of the symbolic sort as e.g. in NETtalk [22]). The designer's strategy

consists in enabling the system to self-organize to a satisfactory degree.

One of the well-known drawbacks of this technique is the explanation problem.

(See e.g. [13] or [5].) It is now very di�cult to explain the system behaviour within

our own conceptual framework, i.e. with words containing personal experiences, sen-

sual impressions etc. and not purely mathematical terms. We shall refer to this way

of explaining a network as \understanding". One of the procedures that has been

suggested and often used for this is to investigate the hidden units' representation.

This can be done by activating input units for which a predication e.g. \there-is-a-

dog" can be given. A statistical relation between this input and an activation of a

hidden unit can lead to assertions of the kind: \Hidden unit 7 is activated for dogs."

However, this approach often does not work, because the hidden units simply do not

represent something that would be easily expressible in natural language (within our

conceptual framework). The more complicated the network architecture the more

implausible this approach becomes. For systems with a manifold of inputs (e.g.

many and/or complex sensors with many states that receive data directly from the

physical environment) it becomes impossible to trace statistical relations between

the parts of a self-organizing system and its emergent properties.

An approach to this problem is not just an epistemic need of the philosophically

eager scientist, but a technical imperative. Without even a rudimentary approach

to predicting the system, to evaluate it there can be no con�dence in its results. It

is also for reasons of maintanance that the explanation problem must be addressed.

Note that even if we would be satis�ed with a merely mathematical solution to

the problem, a physically self-organizing system simply develops new observables.

Therefore, understanding of such systems without the endeavour of applying di�cult

techniques of analysis is not feasible. The \explanation"-problem thus is a principal

limitation of any self-organizing system. It coexists with a dualtity between design-
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based limitations and understandability. In the next section we will show that there

are possibilities to overcome these problems in a systematic way.

3 What do we need?

3.1 Law-like rules and concepts

The rules in a conventional system not only support its design but also guarantee

our understanding of the system. Therefore, if we want to explain a self-organizing

system, we are searching for rule-like descriptions of the system behaviour. Since

we hope that we did not design these rules (because of the designer problem), we

must �nd another way to guarantee that the rule by which we describe the system

actually is followed by the system.

Consequently, our �rst step will consist in a technique of attributing rule-like

descriptions to the self-organizing system. The basis of this description must in-

volve an understandable description of the situation in which the system �nds itself.

To understand what these situations for the system are, we need a possibility to

make the system use one of our conecpts without actually using it for decisions.

This paradox requirement can be overcome by forcing the system to translate be-

tween the \concepts" it \uses" and the ones which we (the system observers) easily

understand. What we need is a mapping of the system's states that result from

self-organization to the concepts which we understand. The principle of the system

(the COSYC-architecture) can be gathered from �gure 1.

Self-organizing
Decision Mechanism

Understandable Concepts

Language-like Behavior

Action

Mulitmodal Sensor Input

Translation

Figure 1: Systematic of the COSYC-Architecture.

This architecture is supposed to achieve the following. It is able to \mimic" the

designer's response to a given situation. When it sees a ower, it responds with

\ower!". In order to make the system answer with concepts which are understand-

able there will have to be a training process through which the system builds its

translation function. (See �gure 2.) We do not assume to know this translation

function. We only make the system respond in a plausible way to the situations

in which it �nds itself. Moreover, by assuming that the system is self-organizing

and dealing with immediately grounded data, we assume that no analysis of the

translation function is possible. Strictly speaking, we do not even have to know the

state space of the decision making, acting system as long as the words are consistent

with what we expect them to be.
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flower!flower!

Figure 2: Supervising the system.

3.2 Automated generation of descriptions

Such a mapping does not necessarily have to be constructed by the system. In our

termite example scientists have found an explanation of the system through careful

investigation. The termites, however, form a relatively simple system because of the

low dynamics and the easy to observe interacting units. Note that this approach to

understanding the system is not limited to neural networks, but can be regarded as

generally applicable to self-organizing systems. All we need is a consistent language-

like behaviour that is achieved through a translation mechanism.

The point which we would like to make here is that such a system can be ex-

plained by using its own descriptions of the situations. We can construct predictive

rules based on the system's own situation descriptions. When it senses a \dog",

it reacts in a speci�c way. These attribution of situations shall form the basis of

our understanding the self-organizing mechanism. But can we be sure that this is

a useful description of what the system does?

3.3 Objections

The di�erence between (i) investigating the termites and (ii) the mimicry of a

conventional conceptual frame seems to be a very profound one. In the case of the

termites (i) the concepts which explain the behaviour really describe what happens.

In (ii) the concepts are just classi�cations of the system's states that do not really

describe what is going on in the system.

What is obviously meant with such an objection is that in (i) we have grasped

\nature" with our concepts and describe what is causally happening and could not

otherwise be explained satisfactory. In (ii) the system's translation is just a mapping

on a set of words that could well be wrong, i.e. not what the system really does.

The system could, e.g. if we taught it wrong usages of words, lie to us and truly do

something else. Can this be a serious doubt?

Of course, we must assume that the system has learned to use the words it

learned correctly. Its description of situations should be comparable with the way

we classify them and the actions which the system undertakes. This question, we

propose, must be formulated in the following way: Which fact can guarantee that
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the system means (through parroting) what I mean with this same word? The

answer is that if the system is truly complex (i.e. not simply analyzable), then the

only fact that does guarantee this can be found in the system's behaviour. If it

behaves as if it would use my terms correctly, we not only can but must say that it

does.

This problem has been intensively discussed within a philosophical debate around

the later works of Ludwig Wittgenstein [23]. In Kripke's interpretation [8], the main

achievement of Wittgenstein was to have shown that there is no other guarantee for

what somebody means with a word but some outer criterion to be found in his or

her behaviour. According to this position it is useless to search for facts within the

speaker which could guarantee what is meant with a word. And it is also impossible

to ensure that the word will always be used correctly in the future.

With respect to our problem here this position holds that as long as the system

correctly uses my words we have to say that the systemmeans the same as we do. In

this sense do we understand the situations in which the system is. Additionally, as

long as the system behaves according to rules which are based on these situations we

have properly designed the state space which is necessary to describe the system. We

can then say to understand the system's actions in terms of our rules. For the sake of

clarity, we shall reformulate this position in section 5. Let us �rst present a neural

network architecture which is capable of implementing the necessary translation

function for the case of an informationally self-organizing system.

4 The COSYC-Architecure

The neural network model of Dor�ner [6] can be expanded to cope with multi-

modal sensory input. A detailed technical description will be given elsewhere [20].

For the purpose of this paper it su�ces to know that the categorization of input

data happens without the inuence of the designer. (For a theoretical argument

related to this speci�c architecture cf. [18].)

Figure 3 shows that the model can have several sensoric inputs, which are sup-

posed to be immediately grounded, i.e. directly connected to physical sensors. For

each input channel unsupervised (informational) self-organization within a layer of

connectionist units (called a C-layer [7]) takes place. A second unsupervised cate-

gorization is where concept formation happens. Again, layers of connectionist units

ensure that the system is able to categorize the manifoldness of inputs without be-

ing taught which concepts to form. (Nevertheless, this process can be supported

by the designer.) Another set of layers (SY-layers) learns to map these C-layer

representations onto single, discrete states. These discrete states can be interpreted

as symbols or words. Thus the system learns (i) to categorize the input data and

eventually use this categorization for acting in the world and (ii) translates its con-

ceptualization to symbolic states which are interpretable as words (if taught and

coded appropriately).
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referential links
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World

Perception

symbolic states

Action

Figure 3: Understanding what a net does.

5 Understanding and Measurement

One possible interpretation of our approach is to compare it with a measuring device

and a physical process (�gure 4). What we have introduced above is a system that

responds with \ower!" to describe its own state. Now imagine a physical system

and a meter, e.g. a thermometer that delivers numbers. We usually assume to

understand the physical system if we can use the measurement in a rule which

predicts another aspect of the physical system (of course, another measurement). If

we fail to make a correct prediction, we can either blame our rule, blame the meter

or blame the explanation of the meter. Note that the system being measured can

have (and presumably always has) additional states, which are not captured by the

meter. But unless this does not result in wrong predictions, we are not only satis�ed

with our description, we say that we have understood the system. We can even say

that physical events correspond to changes of state which are only speci�ed by the

evaluation of observables on states [21]. This means|as long as our predictions are

correct and we have no need to introduce or to assume the existence of additional

states|that all there is about physical systems (i.e. all there is) is that for which

an observable exists.

measurement

Observation

(Output)

Input

MeterOpen Physical System

Figure 4: A physical measurement.
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Compared to our neural network example it now becomes clear in which sense we

understand what the network does: As long as its own descriptions of the situations

in which the system �nds itself are consistent with what we expect these descriptions

to be like, there is no reason whatsoever to say that we do not really understand

what is going on in the network. In the COSYC-architecture all there is to explain

the neural network (the left part of the system in �gure 3 with inputs, categorization

and action) is what COSYC's translation function (the right part in �gure 3) tells

us about it. This forms the relevant set of states of the connectionist system.

Assume now that we have a physically self-organizing system which can develop

new interesting states. Imagine further that, since we cannot predict what the

relevant states will be, we invent a procedure to build new measuring devices which

capture the newly developed observable (cf. [15, pp.105{108], [21, p.90]). This new

meter maps the states of the system to numbers or symbols. In a way, this would

be a better way of explaining the system, since we now have a direct meter for

interesting phenomena. However, it is not clear how we can understand the new

measurement. Note, that we do not know what the meter is actually measuring, we

can only see its output, which consists in \meaningless" numbers or symbols. Trying

to �nd out what an unknown meter measures results in extensive experiments where

one compares the results of the measurement with well-known situations measured

by other devices or sensory organs.

It has been pointed out by Pattee [16, 17] that all this are typical features of

measuring devices, since we do not know the internal dynamic constraints of the

meter. Nevertheless, we can understand new measurements, because someone can

explain them to us. I can, for example, be told that a bat can use its subsonic

sensors to detect objects in the night. We understand the bat's measuring device

through a comparison with our eyes and think that subsonic \hearing" is in a way

like \seeing".

This sort of translation is exactly what happens in the proposed architecure.

The system is constructing a meter and automatically \explaining" it by using

words the way we would do. In the case of the simulated neural network the meter

construction is not a principal problem, because the state space of the computer

is �xed. Therefore, we can theoretically construct a meter of the system's state

space onto any desired scale. This cannot be done easily in the case of a physically

self-organizing system [4]. Although one such self-building measuring device has

been described and built by Gordon Pask [14], the applicability of the proposed

method in physically self-organizing systems depends on physical methods for the

construction of the translation function from \internal states" to symbols.

6 Understanding and rules

There is a second level at which the question of understanding what a system does

can be answerded. In what we said above, we tried to reduce the problem to the

question of properly discovering the state space of the system, i.e. the situations

which are important to predict its beahviour. This was supposed to help us to

discover the predicting rules. However, understanding can also mean to recognize

the purposiveness of a speci�c behaviour. In this case the rules which the system

9



follows are themselves proven to be useful, meaningful, or goal-achieving. It has

been previously pointed out by the author [19] that neural networks in general, but

especially together with their appearance in autonomous systems or \arti�cial life"

models tend to be explained in a teleological i.e. goal-oriented way.

In the case of our self-organizing system, however, we cannot be sure about the

goals which the system will try to achieve. Because it is a technical system, we

assume that it has been designed to ful�ll one of our goals. This is why it may be

a useful technical system.

Would the proposed mimicry be enough if the goals of the system would be

di�erent? Wittgenstein would deny this, since we can only understand what a

system says and does, because of our socially shared way of living, our common

\Lebensform." If a lion could speak, we could not understand him. [23, p.568]
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