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Abstract

This paper analyzes the important role qualitative knowledge plays

in Machine Learning. For this purpose important results from re-

search in the �elds approximate theory formation, automated qualita-

tive modeling, learning in plausible domain theories and learning with

abstractions are reviewed. The analysis of these approaches shows

several of the bene�ts the use of qualitative knowledge can bring to

Machine Learning and also points out important problems that have

to be dealt with. The need for qualitative knowledge to keep learn-

ing tractable is illustrated with examples from the domain of chess.

Finally we make some suggestions for further research based on the

shortcomings of previous approaches.
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1 Introduction

Knowledge representation is one of the oldest and probably the most impor-

tant issue in Arti�cial Intelligence. In the early years of AI research it was

widely believed that most problems can be solved with fairly general problem

solving methods, given that an appropriate formalization and representation

can be found. The most outstanding example of this optimistic point of

view was Newell and Simon's \General Problem Solver" [Newell et al., 1960],

which operates in a simple state space representation of the world.

Later on research mostly concentrated on trying to �nd better and more

e�cient inference algorithms, and the knowledge representation side was

more and more neglected. Research in Computer Chess is a typical example

of this lack of appropriate knowledge representation. A chess computer's

knowledge is encoded in an evaluation function that assigns a numerical

value to each position. The only design criterion for evaluation functions

is that they have to include basic chess concepts in a very e�cient way to

speed up the search process. Consequently, chess playing programs are very

hard to understand and to debug, as detecting the parts of the knowledge

that are responsible for a bad move is very complicated. In this respect

the basic ideas of today's chess programs have not changed considerably

since the proposal of the MiniMax algorithm by Claude Shannon in 1950

[Shannon, 1950]. Improvements in hardware [Hsu, 1987] and in the e�ciency

of the MiniMaxing method| especially through the use of Alpha-Beta Prun-

ing [Knuth and Moore, 1975] | has led to the chess playing programs of to-

day that are able to challenge Grandmasters and maybe in the near future

even the World Champion. Thus research in Computer Chess has led to the

development of very e�cient search algorithms, but has contributed very lit-

tle to research on human chess playing. It is signi�cant that none of today's

leading programs are able to learn from their faults.

1

1

In Deep Thought the weights of the parameters of the evaluation function have been

tuned using a simple reinforcement algorithm [Hsu et al., 1990], but the values of the

parameters are not changed during tournament play. Bebe can avoid playing a losing
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Later on it was proposed that large amounts of knowledge rather than

e�cient and sophisticated general reasoning procedures are the key to in-

telligent performance of a computer system, the so-called Knowledge Prin-

ciple [Lenat and Feigenbaum, 1991]. This philosophy has also led to sev-

eral chess programs that tried to make use of explicit representation for

plans and goals. But these approaches were only successful in limited subdo-

mains of chess, as e.g. tactical combinations [Wilkins, 1982], pawn endgames

[Berliner and Campbell, 1984] etc. The main problem was the complexity of

the domain. First of all it is very hard to formulate precise rules or plans for

chess as adding or removing only one piece on the board can have a signi�-

cant in
uence on the outcome of the game. Second, even if there would be

a set of rules that could be used for good play, it is quite likely that the size

of this set would be too big to allow a game within reasonable time limits.

We think that the slow progress in knowledge based chess systems (and

in many other complex domains) is due to the lack of appropriate representa-

tion formalisms that allow e�cient reasoning in complex domains. Classical

representations in �rst-order logic are not su�cient to deal with complex

real-world domains in a tractable way. In recent years this problem has been

addressed independently in many research areas in AI and in particular in

Machine Learning. The purpose of this paper is to give an overview of the

research done in learning of and in the presence of various forms of \quali-

tative" background knowledge. In this paper the term \qualitative" will be

used for all kinds of knowledge that attempt to overcome the intractability

of complex domains by allowing uncertainty.

When forced to attempt a de�nition of what we mean by \Qualitative

Knowledge", the following negative de�nition would be the result:

De�nition 1.1 (Qualitative Knowledge) Qualitative Knowledge is any

kind of knowledge that does not always allow a correct and consistent match

between the represented objects and the real world, but can nevertheless be

used to get approximate characterizations of the behavior of the modeled do-

main.

line twice by saving the board positions occurring in a game in a long term memory

[Scherzer et al., 1990], but it does not generalize in any way. It will still make the same

type of mistake over and over again.
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Various �elds of research can be labeled as using qualitative knowledge

according to this de�nition. Among them are

� Explanation-Based Learning with approximate theories

� Automated Qualitative Modeling

� Learning of theories with di�erent abstraction levels

� Plausible Reasoning

In chapter 2 we show the need for what we call Qualitative Knowledge

to facilitate learning in various complex domains. Although chess | being

the favorite domain of the author | will appear quite often in this paper,

we want to stress that the general principles exempli�ed by this domain are

valid for all complex, intractable domains (e.g. reasoning about physical sys-

tems [Weld and deKleer, 1990], medical domains [Bratko et al., 1989], music

[Widmer, 1992b], chess [Tadepalli, 1989], [Flann, 1989] etc.).

The next three chapters give a review of previous work in Machine Learn-

ing on the topics of approximation, learning with qualitative and plausible

theories and abstraction. Very loosely these chapters correspond to the three

di�erent kinds of abstraction as seen in [Doyle, 1986]:

Approximation is the simpli�cation of the domain theory through assump-

tions that some condition holds or some constraint is satis�ed.

Qualitization is the mapping of a continuous description of a domain into

a discrete one.

Aggregation is the subsumption of complex structures under simpler struc-

tures.

Doyle's notion of abstraction closely corresponds to our notion of qualitative

knowledge. We will use abstraction whenever a change of the representation

level occurs during learning. So while the next two chapters focus on the

characterization and representation of approximate and qualitative domain

theories, chapter 5 concentrates on the bene�ts of di�erent ways of moving

from one level of detail to a more approximate, abstract representation level.

The three chapters are also ordered according to the amount of uncer-

tainty that is explicitly captured in the representation languages. While
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approximate theories (chapter 3) can be expressed in any representation lan-

guage by simply not formulating rules that are not necessarily correct, qual-

itative and plausible theories (chapter 4) need special language constructs to

capture various uncertainties of the domain. Qualitative modeling, for in-

stance, introduces discrete characterizations of various continuous behaviors

in physical domains. Finally chapter 5 deals with deep theories that have

various levels of detail in their representations.



2 The need for Qualitative Knowledge

We will now look at the question of why we need qualitative knowledge at all.

For this purpose several properties of complex domains that cause problems

for classical knowledge representation methods are discussed shortly. From

this section the need for other, qualitative knowledge representation becomes

apparent. We use the domain of chess as our running example, because it is

su�ciently complex to exhibit all problems that representations of real-world

domains usually have to solve, but it still is a closed domain, relatively easy

to survey, where the quality of a system's knowledge can be judged quite

accurately. For these reasons chess has been called \the drosophila

2

of AI"

alluding to the important role this comparably simple animal played as the

object of early research in genetics [McCarthy, 1990].

3

In particular chess has

become a standard example [Tadepalli, 1986, Tadepalli, 1989, Flann, 1990]

for an intractable domain.

2.1 Knowledge is intractable

Many applications of rule-based production systems assume that the under-

lying theory is complete and consistent. However, real-world domains usually

can't be formalized in a nice and neat way [Rajamoney and DeJong, 1987].

It is often the case that not all information needed is available or that the

system's knowledge is not correct. Even in domains where it would be possi-

ble to have complete and correct knowledge about the environment, the size

of the knowledge base or of the implied search space would be too big to

be useful. Complex complete information games like chess are good exam-

ples of such intractable domains [Mitchell et al., 1986]. Theoretically, a chess

2

fruit
y

3

As most experts nowadays consider a silicon chess world champion to be just a

matter of time, a trend has developed that the game of Go should take up that

role, because it is not that accessible to brute-force searching algorithms and thus

imposes stronger challenges to the proper formalization of knowledge (see Part V of

[Marsland and Schae�er, 1990]).
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playing system has all the information it would need to determine whether a

given position (in particular the starting position) is a win, a loss or a draw.

Every medium advanced programmer could write a program that could play

perfect chess, if it were not for the limitation that it would take longer than

the universe exists for the program to make its �rst move. Thus, as complete

and correct domain theories usually are unavailable or intractable, ways have

to be found to deal with theories that are incorrect, incomplete or both.

2.2 Knowledge is inconsistent

One may of increasing the tractability of a domain may be to allow not neces-

sarily correct and consistent domain theories. Especially over-generalization

seems to be a powerful method to obtain simple, but powerful rules. Peo-

ple use over-general heuristics like \People from the same country speak the

same language" in common-sense reasoning. Simple rules that are correct

for most of a large amount of data are often preferred over rules that cover

a whole, but small data set (see also section 2.5).

To stick with the chess example, it is reasonable to assume that winning

a knight is an advantage su�cient for a win. Material advantage is a very

important factor in the evaluation of a chess position, but unfortunately,

this knowledge is too general to be correct. In many positions a piece can

be sacri�ced for compensation of some other form, e.g. mobility.

4

Attempts

to incorporate the intuitive knowledge of \compensation for sacri�ces" into

chess playing program have failed so far, mostly because an exact formaliza-

tion of the term \compensation" is not available in the chess literature and

probably can't be found.

Needless to say that incorrect theories impose major problems for reason-

ing as well as for learning. Multiple explanations may arise for a fact, a fact

might even be disproven and proven with the same theory, thus resulting in

inconsistency. New forms of | plausible | inferences have to be found to

cope with this problem.

4

Note that I'm not necessarily talking about sacri�ces that result in a mating attack

or at least win the sacri�ced material back in a couple of moves. Many sacri�ces can not

be justi�ed by analysis, it is part of a grandmaster's knowledge to \feel" when a position

gives compensation for sacri�ced material in the long run.
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2.3 Knowledge is incomplete

Another way to deal with the intractability of many domains is to try to

reason with incomplete knowledge. In general not all preconditions for the

proof of a fact are known. What should be done in cases like this is to

look for plausible explanations for the missing parts of the proof. If a fact

cannot be proved to be true, but arguments to strengthen the belief in it

can be found, it is plausible to assume its truth. The extent to which the

plausible explanation should be trusted, depends on several factors including

the relevance of the fact for the overall goal and the number and strength of

supporting (and disagreeing) arguments.

In chess a signi�cant amount of thinking time is used for trying to �gure

out your opponent's plan and then to either prevent it or to simply ignore it

and to follow your own plan (which in that case had better been stronger than

your opponent's). This process can be viewed as trying to �nd a \proof" for

your best move, which includes to �nd out plan( opponent, X). No exact

proof for any plan X can be given, as this information is in general not

available. Nevertheless the current situation on the board and the history of

the game may provide evidence for or against certain values of X.

2.4 Knowledge has various representation levels

Human experts in a domain mostly solve common problems in that domain

without much reasoning. Apparently experts can immediately and intuitively

associate the appropriate action with the current situation. On the other

hand, when they are faced with unfamiliar situations, they can rely on a

profound knowledge about the domain and are capable of solving the problem

with more elaborate methods.

In chess playing this multi-level representation of knowledge becomes ob-

vious at speed or blitz chess. Here the players each have �ve minutes or less

to play the whole game. Whoever uses up his allotted time �rst, loses (un-

less the game is decided by conventional means �rst). This game allows no

deep computations of move sequences, players have to decide on their moves

almost immediately. Thus they have to rely on their \intuition" to make

the right moves. Presumably very e�cient pattern recognition methods as-

sociate very few candidate moves with the position at hand and one of them

is chosen with a very limited look-ahead.
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Nevertheless, the quality of play in Blitz Chess is not that di�er-

ent from the quality of play in regular chess as one might expect, given

the di�erences in the amount of time spent for analyzing the positions

[Church and Church, 1983]. The reason for this is that even in regular chess,

experienced players neither examine considerably more moves nor calculate

deeper variations than beginners. The di�erence is that the knowledge they

use in the problem solving process allows them to compentently and e�-

ciently select the \right" moves for further examination [deGroot, 1965].

Thus it seems to be the case that chess players have at least two levels of

knowledge representation:

� a very e�cient knowledge that immediately produces approximate re-

sults (good candidate moves)

� a more elaborate model about weaknesses and strengths of positions

and moves which has to be searched with more expensive problem

solving methods

Apparently both forms of knowledge are closely connected and it is prob-

ably hard to assign pieces of knowledge to either of the two categories, so

that it seems to be a plausible assumption that both categories represent

the same kind of knowledge at a di�erent level of detail. \Shallow", e�cient

rules suggest candidate moves which are then submitted to a \deep", causal

theory for closer evaluation (unless time constraints prevent that).

2.5 Knowledge is simple and approximate

It has already been stressed in sections 2.2 and 2.4 that simple rules should

be preferred over complicated ones even at the cost of lack of precision. The

principle that simpler rules, all other things being equal, are more likely

to be predictive for future data | known as Occam's razor | has been

thoroughly examined [Blumer et al., 1987] and widely applied as a preference

criterion for rule formation in Machine Learning algorithms [Michalski, 1983].

Nevertheless, the importance of this principle is still underestimated. In most

Machine Learning algorithms a correct, complicated rule is preferred over a

simple, approximate rule. Humans seem to use slightly over-generalized rules

in their commonsense reasoning (cf. also the examples in section 2.2).
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The concept of a \fork" is one of the �rst pieces of chess knowledge a

player acquires. Although the concept \fork" is easy to understand, it is

hard to formalize. The intuitive de�nition | a piece attacks two or more

pieces such that the player can gain material by capturing one of them |

can hardly be converted into a general rule, as there are many ways for the

opponent to prevent loss of material (e.g. capture the piece that forks; move

one of the forked pieces and give check, so you can save the other one in

the following move; threaten other pieces etc.). Many learning algorithms

would end up with a set of separate recognition rules for highly specialized

concepts like \knight fork where the knight is not attacked and one of the

attacked pieces is the opponent's king" etc. Human chess players, on the

other hand, seem to base recognition of forks on very simple visual patterns.

Information about whether the expected gain of material will actually take

place, is checked seperately in every case the recognition rule �res and says

\Look at this, there might be a fork".

So it is not only desirable to learn correct rules, but also to learn approx-

imate, but simple rules that, although incorrect in some exceptional cases,

combine high predictivity with e�ciency. Simple, but powerful rules are

desirable, even if they are imprecise.

2.6 Knowledge is noisy

Very related to the topic of approximate and incomplete knowledge is the

fact that knowledge is often imprecise and noisy. Very often data needed by

a system is automatically acquired by various input mechanisms, which are

subject to errors and imprecisions.

An intelligent agent interacting with the real world has to rely on its

sensory data. Although errors in sensing devices usually are small, they

are nevertheless there. Numerical methods for reducing the errors like e.g.

averaging over multiple readings exist, but they can't guarantee precise mea-

surements either. Errors in discrete sensing devices are even harder to deal

with.

Mechanisms for representing uncertainty and noise in data are needed.

The e�ects of noise on input data has been widely studied (see e.g.

[Angluin and Laird, 1988, Clark and Niblett, 1987]), but the problem of dis-

tinguishing noise in the data from rare instances of the target concept has

been addressed only recently [Srinivasan et al., 1992] and is mostly based
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on statistical heuristics. Qualitative knowledge about the approximate be-

haviour of the environment might help to recognize noise, because of its lack

of plausibility.

As the environment of a chess playing system (the chess board) is rather

simple, errors because of noise in data are rather unlikely to occur. Nev-

ertheless, human chess players make mistakes that could be interpreted as

resulting from noisy input data. E. g. a common mistake is that when calcu-

lating a sequence of moves you move a piece twice, the second time forgetting

that it already has moved. \Hanging a piece", also a mistake that occurs

more often than chess players like, results of incomplete information about

the current situation on the board | a threat has been overlooked. Note

that this kind of error is di�erent from not knowing about a certain kind

of threat. Human players obviously do not perform a systematic \forward

chaining" search for threats, otherwise pieces wouldn't hang that often. Be-

sides, a complete search for threats would be far too ine�cient for the \human

hardware".

2.7 Knowledge is acquired in various ways

Another important point to mention, although not directly related to knowl-

edge representation, is that knowledge is acquired and used in a variety of

ways. Chess players gain much by continuing practice that presumably au-

tomates (\operationalizes") their theoretical knowledge. This knowledge in

turn has most often been taught by friends, teachers or books. A player can

prepare his opening repertoire by studying books and memorizing moves or

by continuous practice, but most e�ciently with both.

Operationalizing already acquired knowledge is nothing else than Expla-

nation-Based Learning, while learning openings by mere practice is done by

induction. Learning from instruction is often done by analogy, as prototyp-

ical, instructive instances are presented that will be remembered in similar

situations.

Closely related to the di�erent ways of knowledge acquisition is that

knowledge can be used in several ways. We already have discussed issues

of e�cient \intuitive" knowledge and ine�cient \deep" models in section

2.4. The former apparently is immediately associated with certain features

of the environment (a fork is recognized without any processing) while the

latter has to be searched more systematically.
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As we have seen in chapter 2, in su�ciently complex domains there is a

need for the use of approximations in order to increase the tractability of

the domain knowledge. An approximation of a theory intuitively is a simpler

theory in the same representation language that can be used to derive most

of the results required in a more e�cient way.

We will try to analyze approximations in the next section. After that, sev-

eral approaches to learning of, and in connection with approximate theories

will be introduced.

3.1 Approximations and Simplifying Assumptions

Consider the following approximate de�nition of the concept fork in chess:

\A fork is when a piece threatens two of his opponent's pieces (either of

higher value or en prise) at the same time. This wins material, as the other

player can only move one of the pieces" The given de�nition is exact in

board positions where the opponent has no defending resources like taking

the threatening piece, moving out of the fork and simulatneously giving a

counterthreat, etc. Thus the approximation might be viewed as an exact

theory of a subdomain of the original problem where several additional as-

sumptions simplify the problem.

Thus most authors [Doyle, 1986, Ellman, 1988] de�ne approximation in

a way similar to this:

De�nition 3.1 (Approximation) An approximation T

A

of a domain the-

ory T may be viewed as making useful simplifying assumptions about the

domain of T and then reformulating T in the new simpli�ed subdomain.

Note that this de�nition does not de�ne the quality of an approximation.

There are many subdomains of a domain, and clearly most of them are not

appropriate for forming approximations. Identifying di�erent types of useful

simplifying assumptions will be the purpose of the next section.
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We also de�ne

De�nition 3.2 (Simplifying assumption) A simplifying assumption is a

mapping of a domain D into a subset D

S

of itself.

Domain simplifying assumptions may be explicitly stated or implicitly

assumed. By simplifying the domain theory they can improve performance

in reasoning and learning. It is much easier to check for the mere pattern of

a knight fork than to analyze whether it will actually be successful or not.

This gain in e�ciency and simplicity unfortunately must be traded o� with

precision and consistency. One of the major problems that arises when using

approximations is that approximate theories may be inconsistent . In prob-

lems outside of the simpli�ed subdomain, explanations may contradict each

other. The fork in chess promises material gain, but when the assumption

of no appropriate defensive resources does not hold, a simple look-ahead of

one ply might tell the player that it will lose material, when e.g. the forking

piece is en prise. Thus two contradicting results can be derived. Of course,

multiple non-contradicting explanations are possible as well.

To keep the loss in precision small, it is advisable to use assumptions that

are true in most typical cases. Ideally approximations should also yield a bias

towards a correct solution in cases where the underlying assumptions are not

true. The approximate de�nition of a \fork" is | despite the danger of

producing inconsistencies | still useful, as it tells the chess player that there

might be a chance of winning material, thus biasing his search to moves

and plans that may prevent the threat. The player thus can evaluate the

opportunity by examining the position at a �ner level of detail (see also

sections 2.4 and chapter 5).

So among the problems that have to be dealt with when using approxi-

mate theories are

� �nding the right approximations

� reasoning and learning in incomplete or inconsistent theories

� multiple explanations

3.2 Learning of Approximations

Learning approximate theories has mostly been studied in connection with

Explanation-Based Learning. In [Mitchell et al., 1986] it has already been
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noted that imperfect theories are a major drawback of EBL. Several authors

have given the problem a closer examination and several approaches were pro-

posed to extend explanation-based learning to be able to use inconsistent, in-

complete or intractable domain theories (e.g. [Rajamoney and DeJong, 1987,

Tadepalli, 1986, Danyluk, 1989, Sebag and Schoenauer, 1992]). This chapter

will be concerned with the learning of approximate rules. As we have seen

in the preceding section, we have to identify useful simplifying assumptions

for �nding good approximate theories.

3.2.1 Approximation Hierarchies

Ellman [Ellman, 1988] was the �rst to stress the importance of identifying

appropriate simplifying assumptions for approximate theories. He views �nd-

ing the right simplifying assumptions as the main goal of explanation-based

learning of approximate theories. Ellman's system POLYANNA thus con-

siders approximation as a search through the space of possible simplifying

assumptions.

For this purpose assumptions are encoded in generic functions represent-

ing a hierarchy of increasingly specialized implementations of the same func-

tion. This hierarchy induces a similar hierarchy on the space of approximate

theories created by combining various functions at various levels of abstrac-

tion. Thus it forms a lattice according to the relation that a theory is more

special than another when it contains a generic function that is more special

than its equivalent in the other theory. This space can be systematically

searched, starting at the root (the simplest theory) and moving down the

hierarchy to more complex theories only when simpler ones are contradicted

by training examples. The algorithm takes an error threshold as input and

stops at the simplest | i.e. the �rst | theory that meets the speci�ed error

rate, thus �nding an acceptable trade-o� between shortening the process of

explanation building and correctly explaining many examples, i.e. �nding

a useful approximation. Error rates are estimated empirically by using a

teacher-provided set of training examples.

The system was applied to derive heuristics for the game of Hearts and

a uniprocessor scheduling task [Mostow et al., 1990].
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3.2.2 Incremental Approximation

Lazy Explanation-Based Learning [Tadepalli, 1989] is a very radical approach

to learning in intractable two person games like chess. One of the major

problems in these domains is that | in order to prove a move to be correct

| all possible moves of the opponent have to be considered. Generalizing

this into general concepts is hard to do, as in a slightly di�erent situation on

the board your opponent might have a totally di�erent set of responses and

counter-plans. Lazy EBL's philosophy is to attack this problem by paying

no attention to the possible refutations of a move. The system learns a set of

over-general, optimistic plans called o-plans. All moves in the plan contribute

to the achievement of either the goal itself or of one of its preconditions.

During actual play a planning module combines all o-plans that seem to be

relevant for the current board situation into so-called c-plans. Over-general

plans can be re�ned by learning a new o-plan that will be indexed in the

original plan as a counter plan. Explanation-Based Learning is invoked each

time the system encounters an unexpected plan failure. Then the c-plan

that has been constructed from previously learned o-plans is generalized into

a new o-plan that only considers moves that have either been suggested by

its c-plan or that were actually performed on the board. Thus only a subset

of possible moves is considered. Tadepalli calls this simplifying assumption

Omniscience Assumption: The planner assumes that it knows all the o-plans

necessary to explain all the relevant alternative moves by both the players.

The hope is that the more o-plans are learned the more alternative moves

for both players will be suggested and thus the better the play will be.

The work described in [Chien, 1989] is very similar to Lazy EBL. While

Lazy EBL is designed mainly for the intractability arising from the need to

consider all the opponent's possible moves in two-person games like chess,

Chien's extension to EBL incrementally approximates and corrects plans

in the domain of STRIPS-like planning. Here intractability arises through

the unknown side-e�ects of the application of some operators. In the initial

learning phase an approximate plan is learned by considering only immediate

e�ects of operator applications. As in Lazy EBL, each time an expectation

failure occurs, the system tries to explain the failure and to correct it with

plan re�nement (in the case of unexpected goal failure) or with specializ-

ing over-general failure explanations (in the case of unexpected goal achieve-

ments). The inaccuracies in the learned knowledge arise because | although
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the system performs a complete update of all immediate consequences of an

operator application | it does not consider possible inferred e�ects. As

the systems assumes everything that has become true to be true until ex-

plicitly contradicted, failures may arise when unnoted inferred e�ects clash

with preconditions of later operators. This clearly is another instantiation of

Tadepalli's Omniscience Assumption.

A di�erence in the two systems, however, lies in the way they re�ne

over-general schemas. While Lazy EBL learns new counter-plans to correct

over-general plans, Chien's system simply specializes the preconditions of the

existing approximate rules.

Although Lazy EBL and Chien's Incremental EBL seem to di�er consider-

ably from Ellman's POLYANNA, the algorithms are actually quite similar.

Both search a space of approximate theories, moving on to more complicated

theories when errors in the simpler theories have been detected. Thus they

�nd the simplest correct theory. The main di�erence is that POLYANNA

learns from a batch of examples provided by a teacher, while Lazy EBL de-

tects errors in its theories by expectation failures in actual play. Lazy EBL

thus incrementally changes its theory, while POLYANNA relies on having

a representative set of examples in advance.

One of the common characteristics of both Lazy EBL and Incremental

EBL is that they change their theories as soon as the approximation proves to

be incorrect in some cases. Theory approximation is thus treated as a means

to converging towards a correct and consistent theory. This has led to the def-

inition of Probably Approximately Tractable (PAT) Learning [Tadepalli, 1990]

which tries to extend the notion of Probably Approximately Correct (PAC)

Learning as introduced in [Valiant, 1984] to capture the additional constraint

of learning a tractable theory. In their way of incrementally approaching a

target concept the systems are quite similar to approaches that repair plans

from failure [Hammond, 1990].

3.3 Approximate Background Knowledge

The algorithms of the last section try to make simplifying assumptions to

speed up the learning process. In this section approximate background knowl-

edge is used for narrowing down the search space for inductive learning al-

gorithms.
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ML-SMART [Bergadano and Giordana, 1988] is an algorithm for induc-

ing concept description in �rst-order logic from speci�ed positive or negative

instances. In addition background knowledge can be speci�ed that may be

incorrect or incomplete. ML-SMART searches the rule space to �nd a rule

that is consistent with the given examples for the target concept. It starts

a best �rst general to speci�c search and specializes the hypothesis that ev-

erything is an instance of the target concept by successively choosing one of

the non-operational predicates and expanding one of the rules of the back-

ground knowledge that �re on this predicates. If no such rule can be found,

but the current hypothesis is still too general, it is specialized by inductive

means. Too specialized rules can be detected by a heuristic that watches the

number of covered examples of each hypothesis and can be generalized by

dropping conditions. All hypotheses are organized in a tree structure such

that the most promising hypothesis | according to a heuristic that trades o�

completeness and consistency against the ratio between the number of opera-

tional and non-operational predicates in the rule | can be chosen for further

modi�cation. The algorithm can also be reformulated in an incremental way

as has been shown in [Widmer, 1989a].

A related approach can be found in [Pazzani and Kibler, 1992]. FOCL

(First-Order Combined Learner) tries to combine the virtues of the First-

Order Inductive Learner FOIL [Quinlan, 1990] and Explanation Based

Learning. It allows the user to specify extensionally de�ned background

knowledge as well as intensionally de�ned training examples. Background

knowledge can be in the form of typing constraints for predicates, informa-

tion about the variabilization of the predicate's arguments (e.g. all di�erent)

and partially learned or even incorrect rules in an either operational or non-

operational way. Non-operational rules will be operationalized by expand-

ing the clause that promises the highest information gain, thus performing a

heuristic hill-climbing search, instead of ML-SMART's best �rst search. This

is continued until operational predicates that can be checked or learned are

reached on the leaves of the 'proof tree'. The various forms of background

knowledge allow FOCL to reduce the search space considerably and provide

means for a more goal-directed search. Even the speci�cation of incorrect

rules gives a better performance than the no background knowledge at all,

as long as the trainings examples are informative enough to allow for an

inductive patching of the errors.
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3.4 The Utility Problem

Although Tadepalli shows most of the algorithms of the section 3.2 to be

probably approximately tractable, it is quite conceivable that most of the

systems | when faced a complex learning task | will learn huge theories.

[Minton, 1984] reports the problem of learning too many too specialized rules

with explanation-based learning in several game domains including chess.

This experience has motivated his research with Prodigy where he tried

to make sure that \the cumulative bene�ts of applying the knowledge must

outweigh the cumulative costs of testing whether the knowledge is applica-

ble" [Minton, 1990]. This has been known as the utility problem (see also

[Cohen, 1992] and section 3.5.2).

If approximations incrementally approach a correct and consistent domain

theory as in the last section, mistakes will always be corrected by either

learning new rules as in Lazy EBL or by further specializing the preconditions

of learned rules as in Incremental EBL. No criterion is applied that allows to

stop learning and rely on di�erent kinds of problem solving.

In section 2.1 we have tried to suggest that domains like chess are in-

herently intractable. No complete and consistent formalization of it can be

tractable. Approximate knowledge that guides problem solving towards a

solution can help to increase the tractability of the domain. But in order

to make use of them, a criterion has to be found to assess the quality of

an approximation. If approximate rules are incrementally re�ned every time

they do not produce the right result, the problem arises that more and more

rules will be learned for more and more specialized concepts, so that prob-

lem solving with the acquired knowledge becomes intractable again because

of the huge number of rules that have to be processed.

In the domain of chess we have seen that approximate rules are mainly

used to guide the search into a certain direction. When a chess player recog-

nizes the pattern of a \fork", this is only the start of a complex, but tractable

problem-solving process that checks if the fork actually will result in a gain

of material. Forks that do not end up in a gain of material will not cause

a further re�nement of the rules. Approaches using abstraction hierarchies

seem to attack this problem in a similar fashion: Concepts recognized at a

high level of abstraction do not necessarily have to be true after examining

the situation with a more detailed domain theory. This is known as the \false

proof" problem (see [Plaisted, 1981, Tenenberg, 1987] and section 5.2).
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3.5 The Multiple Explanation Problem

Reasoning with inconsistent theories has not been thoroughly investigated

yet. [Roos, 1992] gives a framework for using logic in inconsistent domain

theories, but no large-scale implementation of a system for reasoning with

inconsistent knowledge is available so far. Nevertheless several authors have

faced the problem of dealing with multiple, possibly inconsistent explanations

(see also section 2.2) in Machine Learning.

Multiple inconsistent explanations can arise from incomplete domain the-

ories, when some information is missing and must be assumed, or from in-

correct domain theories that contain one or more over-general rules.

3.5.1 Selecting the best explanation

An obvious way to deal with multiple explanations is to try to rule out im-

possible or implausible explanations until only one explanation is left which

clearly is the best. [Rajamoney and DeJong, 1987] have designed a system

that is able to design experiments to gather enough information to decide

which explanations cannot hold for the given situation. Similarly, experi-

ments can be conducted to �nd the only completion of an incomplete proof.

Another approach is tried in [Fawcett, 1989]. Even for explanation-based

learning in complete and consistent domains, the importance of selecting

the \best" explanation to derive the most accurate rule has been recognized

[Pazzani, 1988]. Fawcett's work tries to transform this approach to EBL

systems in incomplete theory domains. Abduction is used to guess the miss-

ing parts of a partial proof. Among all possible abductive completions of the

proof the system chooses the most plausible partial explanation for the train-

ing instance. In this process heuristics for concise rules, rules that account

for many known attributes of the examples while leaving as few antecedents

as possible unproven, and for more speci�c rules are computed into a sin-

gle integer value that accounts for the plausibility of the partial explanation.

Then a new, maximally speci�c rule covering the training instance is asserted.

Some primitive generalizations are performed, but the generated rules for un-

proved facts should be fed to an inductive generalization procedure, as soon

as enough of them have been collected.

The Gemini system [Danyluk, 1989, Danyluk, 1987] relies on previous

experience in completing partial proof trees in incomplete domains. The
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author proposes to use knowledge of previous proof trees to bias the induc-

tion needed to �ll in the gaps of incomplete proofs. Several heuristics are

suggested to guide the induction, e.g. eliminating features that already ap-

pear in other parts of the proof of an example and eliminating features that

generally appear with a high frequency.

In [Keller, 1988] the MetaLEX system [Keller, 1987] has been extended

to deliberately introduce approximations. Two operators | Truify and

Falsify | replace arbitrary subexpressions of initially correct concept de-

scriptions with the atoms True and False. The operators might as well be

applied to search control decisions, e.g. unsolved subgoals might be consid-

ered as already solved by application of the Truify-operator to the predicate

solved.

Starting with an initially correct description of the target concept, the sys-

tem performs a steepest ascent hill-climbing search. The system attempts to

apply the Truify or Falsify operator that maximizes increase in e�ciency,

while minimizing decrease in e�ectiveness. The �rst operational de�nition

that meets certain prede�ned performance criteria will be used. Experiments

have shown thatMetaLEX was able to improve its e�ciency due to its abil-

ity to explicitly reason about costs and bene�ts of approximating.

A similar approach to increasing a problem solver's e�ciency while main-

taining its e�ectiveness by dropping conditions can be found in the works of

[Zweben and Chase, 1988] and [Chase et al., 1989]. The ULS system trans-

forms rules generated by EBL into approximate rules using statistical mea-

sures. Rules are generalized by dropping conditions that are true most of the

time and do not introduce new variable bindings. For this purpose counters

maintain the number of times a condition is true over the number of times

a condition is tested, thus estimating the conditional probability that a con-

dition is true given that the already tested conditions of the rules have been

true. ULS also keeps a copy of the original rule that can be used to test

whether the generalization was bad in case the new rule repeatedly misclas-

si�es examples.

3.5.2 Using a set of explanations

In [Cohen, 1992] the multiple inconsistent explanation problem is addressed

by repeatedly marking a rule that gives the highest ratio of newly explained

examples to rule size, thus performing a greedy search to cover the set of
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examples with a minimum set of rules. Rules covering negative examples are

eliminated before this process. The approach is successfully applied to the

domain of �nding suitable opening bids for the domain of Bridge.

Subsequent work [Cohen, 1990] addressed both, the utility problem (sec-

tion 3.4) and the multiple inconsistent explanations problem by combining

induction with explanation-based learning. The utility of a rule is its contri-

bution to performance improvement and as such is directly proportional to

the coverage of the rule and inversely proportional to the match cost of the

rule. The system thus chooses the explanation which maximizes the ratio of

newly explained examples to the size of the rule. With this method multiple,

possibly inconsistent explanations can be dealt with (see [Cohen, 1992]).

In addition to this heuristic that | quite similarly to the Prodigy sys-

tem [Minton, 1990] | increases the convergence rate of learning, the system

also tries to learn approximations of expensive rules as another method to

avoid swamping. For this purpose approximations of rules are formed by

throwing out all but a bounded number of literals of each rule. As the pro-

cess is exponential on the literal bound, only few literals can be kept. In all

but one test domains substantial performance improvement occurred when

learning only rules of a length � 2.

[Sebag and Schoenauer, 1992] propose a di�erent approach to this prob-

lem. The basic idea of the authors is to learn meta-rules that control the

application of the original rules. In a �rst phase (possibly inconsistent) rules

are induced from a set of examples. The instance descriptions are then re-

duced to two predicates for each rule of the already learned knowledge. One

predicate is true when the rule has �red, the other when the rule has not

�red. After all examples have been reduced like this, an inductive learning

mechanism uses these new predicates to learn preference rules for the orig-

inal rules. This process of meta-rule generation can be succesively applied

to rules, meta-rules, meta-meta-rules etc. Experiments in a propositional

learning framework [Sebag and Schoenauer, 1990] have shown that three it-

erations succesively improve predictive accuracy, while further steps may

decrease performance on unseen examples, possibly through over�tting. An-

other possibility is to use the meta-rules instead of the original rules, which

yields promising results too.



4 Plausible Theories

So far we have considered approaches that approximate theories by simply

relaxing the constraint that the learned rules have to be correct. Simple, but

powerful over-generalizations can serve as useful approximations in many in-

tractable domain theories. However, the qualitative nature of the knowledge

learned in the systems of chapter 3 is often kept implicit. In many of them it

is hard to distinguish between correctly learned and approximate knowledge.

In this chapter we will consider a di�erent approach to the learning of

and with qualitative knowledge: the introduction of explicit language con-

structs to capture weak inferences and approximations to make the \qual-

itativeness" of the domain explicit. The work of Collins and Michalski

[Collins and Michalski, 1989] gives a formal framework for human plausible

reasoning. Although the presented formalism has been implemented in sev-

eral versions [Dontas and Zemankova, 1988, Baker et al., 1987] it has not yet

been directly used in Machine Learning research.

5

Nevertheless, many of the

ideas presented in this chapter are directly in
uenced by or based on ideas

of this fundamental work.

Explicitly representing weaker forms of inference should increase under-

standability and expressive power. Analogously to [Doyle, 1986] we will call

this process qualitization. But while Doyle restricts his de�nition of the map-

ping of a continuous domain description onto a discrete representation, we

want to stress that our de�nition is meant to capture all forms of language

constructs that capture some kind of intuitive, plausible reasoning.

It is to be expected that several of the problems that can occur with using

approximate rules may as well appear in reasoning with plausible theories.

In particular several of the explanation-based learning approaches of section

4.2 are quite similar to approaches of chapter 3. While the research reported

there tried to overcome intractability by allowing inconsistent and incom-

plete domain theories, other authors deal with the problem by extending

5

Michalski's recent Inferential Theory of Learning [Michalski, 1992] views some of the

basic ideas of from the standpoint of Machine Learning.
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explanation-based schema formation to a powerful generalization algorithm

by replacing implication in the domain theory with some weaker forms of

inference [Kodrato� and Tecuci, 1989, Widmer, 1992a].

4.1 Qualitative Reasoning about Physical Systems

4.1.1 Qualitization

In the middle of the 80's a new direction of research in qualitative knowledge

representation has started: Qualitative Reasoning about Physical Systems.

The basic idea behind this is to map the continuous physical systems (mostly

modeled by di�erential equation systems) into a discrete representation that

captures the qualitative behavior of the systems, but disregards quantitative

details. [Doyle, 1986] calls this process qualitization. Among the number of

qualitative knowledge representation formalisms that have emerged over the

years [Weld and deKleer, 1990, AI-, 1984, AI-, 1991] three formalisms have

now become \standard":

� Qualitative Process Theory [Forbus, 1984]

� Qualitative Simulation [Kuipers, 1986]

� Reasoning with Con
uences [deKleer and Brown, 1984]

All of the above systems support some kind of qualitative algebra

[Williams, 1988] that allows them to reason with qualitative function descrip-

tions. In physical systems qualitative di�erential equations (QDEs) are very

important and thus form central notions of most representation languages.

We will shortly introduce the three systems following the more elaborate

discussion in [Coiera, 1992]. For a detailed description consultation of the

original papers is recommended.

The work described in [deKleer and Brown, 1984] is primarily concerned

with modeling the structure of complex objects. The basic philosophy of this

approach is that no information about a model's function should be included

into the representation. A physical model should be constructed by forming

a modular description of the model components and their interactions. The

behavior of the entire system can then be simulated and the function of the

model supposedly can be derived from it. This is called the No Function in

Structure (NFIS) principle.



4.1 Qualitative Reasoning about Physical Systems 23

A set of con
uences, i.e. QDEs, is used to describe the behavior of de-

vice component. Connections to other components allow a simulation of the

device model, called envisionment . Theoretically the modularity of this ap-

proach would allow huge libraries of components to be built up that could be

put together to form more complex objects. While this approach has been

proven useful in structured domains as e.g. circuitry, it has its di�culties in

representing continuously varying systems.

In the Qualitative Process Theory [Forbus, 1984], on the other hand, the

central notion is a process. Objects consist of a view | the processes and

their relations to each other | and a set of in
uences that are used to model

simple qualitative relationships of functions, such as monotonicity, derivation,

addition etc. Views have entry conditions that allow the same object to have

di�erent views depending on the context in which the object is used. QPT

is a very general approach to qualitative reasoning about physical systems.

This of course has the disadvantage of requiring quite some time to specify

a model.

A discussion of the relation between the formalisms and their advantages

and disadvantages can be found in [Coiera, 1992].

We will discuss a simpli�ed version of the QSIM approach to qualitative

reasoning in a little more detail in the next section, because of its simplic-

ity and its wide use for Machine Learning research (e.g. [Coiera, 1989a,

Bratko et al., 1991, Var�sek, 1992]).

4.1.2 QSIM

Qualitative SIMulation (QSIM) [Kuipers, 1986] is the most recent approach

to qualitative reasoning. Its main purpose was to allow simulation | envi-

sionment | of processes. Thus it is mainly concerned with the time varying

behavior of qualitative representations of functions which then can be used

for simulating the behavior of the system. The main di�erence between QPT

(developed for modeling) and QSIM (developed for simulation) is stressed by

the Qualitative Process Compiler (QPC) [Crawford et al., 1990], an algo-

rithm that allows transformation of QPT in
uences into QSIM constraints.

In QSIM a model of a physical system is described by a set of continuously

di�erentiable, real valued functions of time. These functions are qualitized

by mapping their domain onto an ordered, �nite set of discrete symbols, like
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e.g. high, low and medium, called landmarks. In addition to a landmark, the

value of a function consists of a symbol indicating the direction of change,

either inc (increasing), dec (decreasing), or std (steady).

The model speci�cation basically consists of a set of qualitative constraints

that must hold between di�erent functions, very similar to QPT's notion of

in
uences. 6 di�erent types of constraints can be used:

ADD(f,g,h) () 8t : f(t) + g(t) = h(t)

MULT(f,g,h) () 8t : f(t) � g(t) = h(t)

MINUS(f,g) () 8t : f(t) = �g(t)

DERIV(f,g) () 8t :

d

dt

f(t) = g(t)

M+(f,g) () 8t : f(t) is monotonically increasing with g(t)

M-(f,g) () 8t : f(t) is monotonically decreasing with g(t)

The domain of each function, as already mentioned, is a set of landmarks.

A list of real valued corresponding values can be used to specify particular

points of each of the relations as an additional constraint, but as our interest

lies in the qualitative part of the reasoning procedure we will pay no further

attention to this possibility.

In the next sections we will �rst deal with the automated acquisition of

qualitative knowledge and then with its use as background knowledge.

4.1.3 Learning of Qualitative Models

An important problem in automated qualitative modeling | referred to as

the system identi�cation problem | is to �nd a model of a physical system

that is consistent with given examples of its behavior. In section 4.1.1 we have

introduced the NFIS principle. Following this principle, many qualitative

modeling theories only require to specify the structure of the modeled objects

and the behavior of each individual component. The overall behavior of the

system can then be inferred from that by simulation.

A natural place for learning in this framework is to induce the quali-

tative behavior of the components themselves from provided examples. In

[Mozeti�c, 1987a] a system is described which learns rules for the function of
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the model components from instances of their behavior. The initial back-

ground knowledge consists of a structured model of the heart from the KAR-

DIO project [Bratko et al., 1989] and some instances of component behavior.

Initial data-driven learning generalizes these instances into �rst-order

logic rules. It does so by generalizing a true fact and subsequently spe-

cializing it by adding literals and instantiating or unifying variables until

no negative instance is covered. This procedure is quite similar to sys-

tems of the AQ-family [Michalski, 1980] with the di�erence that it is using

non-recursive PROLOG-like clauses as a representation language. It can

thus be considered as an early Inductive Logic Programming (ILP) system

[Muggleton, 1991, Quinlan, 1990], very similar to the Model Inference Sys-

tem (MIS) [Shapiro, 1981].

As in MIS [Shapiro, 1982], the initial hypotheses can be incrementally

debugged. For this purpose the model with the induced functions of the

components is simulated and the result is compared with the intended model

behavior. In the case of the derivation of a false fact, exactly one hypothesis

is blamed and the negated instance of the hypothesis is added as a negative

exception, thus preventing future derivations of the false fact. If a true fact

cannot be derived, the debugger proposes positive, yet uncovered instances

for some component behaviors until the model behavior can be derived. Gen-

erating positive exceptions for the rules is a non-trivial task which, due to

its extensive use of abstractions [Mozeti�c, 1987b], is described in more detail

in section 5.5. The proposed negative and positive exceptions can be vali-

dated by the user. When he thinks that enough exceptions for component

behaviors have been accumulated, the incremental learning procedure can be

started again to modify the rule set for the components' behavior.

GenModel [Coiera, 1989a] is another early system for automated quali-

tative modeling. As a simpli�ed version of the QSIM qualitative domain the-

ory is used as background knowledge, the learning algorithm is again quite

similar to recent approaches in ILP. Input to the algorithm are the names

of the functions that should model the components and several examples for

their behavior.

After generating landmarks for each function by simply taking the union

of all values occuring in the examples, the most speci�c set of constraints

consistent with the �rst training instance is generated and then successively

generalized. Exhaustive search is used for the generation of this clause, which
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is too expensive for bigger models.

In a simple example domain, modeling a qualitative description of the

U-tube, GenModel ends up with 14 constraints, instead of the correct

solution of 6 constraints. This and other experiments show that the system

has a tendency to over-specialize. Further examples would be needed to

generalize the learned model. This speci�c-to-general search strategy is dual

to Mozeti�c's general-to-speci�c search for forming the initial hypotheses as

described above.

A more detailed discussion together with a suggestion for the use of

negative training examples can be found in chapter 9 of [Coiera, 1989b].

[Coiera, 1993] has pointed out that the clause generation process in Gen-

Model is nothing else than constructing the relative least general generaliza-

tion (rlgg) in ILP terminology [Plotkin, 1970, Plotkin, 1971, Buntine, 1988].

A well-known ILP system was then actually used in [Bratko et al., 1991].

Golem [Muggleton and Feng, 1990] learns �rst-order clauses in a very ef-

�cient way. A de�nition of the QSIM theory in �rst order Horn clauses

allows it to be used as background knowledge. Qualitative constraints are

expressed by logic predicates, similar to the approach we have used in section

4.1.1. Thus they can be used for learning a description of the target con-

cept. The constraint predicates are compiled into tables of ground facts as

needed byGolem. Golem is able to induce the correct description of a legal

state in the U-tube system by using only 10 examples and 5408 ground facts

as background knowledge, although the correctness of Golem's description

was not immediately obvious, as it introduced a new variable into the de-

scription of the model, which would have been impossible with GenModel.

The application of other ILP systems | FOIL [Quinlan, 1990] and LINUS

[Lavra�c et al., 1991] | is reported to be less successful on this particular

problem.

A very interesting approach to the same problem domain using a genetic

algorithm can be found in [Var�sek, 1992]. Qualitative Models are represented

in hierarchical binary trees. Genetic operators | crossover and mutation |

change the population of these tree structures and only the �ttest models sur-

vive. The �tness of a model is estimated by computing a raw �tness function

of the model's behavior depending on the percentage of covered positive and

on the percentage of negative examples that have been recognized as illegal

states. This raw �tness is de�ned to be the same among similar candidate
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models

6

to prevent early convergence and permit the formation of subpop-

ulations that exploit di�erent niches. Thus a very broad search for a global

�tness maximum is performed.

Several experiments in simple QSIM models, among them the U-tube,

exhibit good learning progress. The algorithm �nds �ve di�erent minimal

solutions with 6 constraints in about 20 generations. Background knowledge

could be incorporated into this approach by introducing \building blocks"

into the trees of the initial population that is currently generated randomly.

4.1.4 Chunking of Qualitative Behavior

The research described in section 4.1.3 tries to induce the behavior of single

components in a structured model of a physical system in order to be able

to simulate the behavior of the entire system. The approaches in this section

assume that a structured model of the physical system is available and the

behavior of the various components has already been speci�ed. As simulating

the behavior of the system can be quite expensive (see section 2.4), several

authors have considered to learn e�cient rules for associating the correct

system behavior with the input without having to simulate the whole process.

Preliminary work in this area has again been done in the KARDIO project

[Bratko et al., 1989]. As we have seen in section 4.1.3 an MIS-like learning

algorithm was able to induce and debug component behaviors. When the de-

bugging process has come to an end, i.e. the user has enough con�dence into

the behavior of the learned qualitative model, it can be used for simulation

and problem solving. A natural approach would be to operationalize and

generalize every problem solution with an Explanation-Based Generalization

algorithm [Mitchell et al., 1986]. However, in the KARDIO project another

approach was used [Mozeti�c, 1986]: The generated qualitative model is simu-

lated on all possible inputs and thus a complete case base of model behavior is

obtained. These instances are then used as training examples for generating

e�cient decision rules with a predecessor of the AQ15 [Michalski et al., 1986]

induction algorithm. The induced rules have proved to be not only e�cient,

but also quite meaningful to human domain experts.

A similar approach has been taken in [Pearce, 1988]. By systematically

6

Similarity of two models is estimated with the number of examples on which the

models agree.
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failing all model components, a qualitative model is used to induce rules

for diagnosing faults. Having a complete and consistent set of examples

| all possible faults have been simulated | the induction algorithm AQR

[Clark and Niblett, 1987]

7

generates a set of rules that covers 100% of the

data. Thus learning is once more used for data compression. A comparison

with a handcrafted model for the same task (diagnosing faults in a satel-

lite's power subsystem) showed that the construction of diagnosis rules by

induction is cheaper, more precise and easy to verify.

Pearce's method using AQ-type induction, however, was not able to di-

agnose faults a�ected by the history of certain components, a type of failure

that actually can occur in the satellite's power subsystem.

8

[Feng, 1991]

shows that this problem can be solved by using learning algorithms with

greater expressive power, i.e. algorithms that can induce �rst-order logic

descriptions of the faults. The author uses the ILP algorithm Golem

[Muggleton and Feng, 1990] in the task mentioned above. Golem succeeds

in 29 out of 33 induction experiments. 4 faults could not be detected by

induced rules in certain conditions, e.g. a solar panel in eclipse.

4.1.5 Learning with Qualitative Domain Models

Several approaches exist for learning with qualitative background theory.

In [Forbus and Gentner, 1986] a theoretical framework is given by Ken

Forbus and Dedre Gentner as an attempt to combine Qualitative Pro-

cess Theory [Forbus, 1984] and Structure Mapping Theory [Gentner, 1983].

[Forbus and Gentner, 1986] describe a coupling of the two systems: QPT is

used to model portions of people's physical knowledge, and SMT is used for

reasoning by analogy, i.e. it gives a theory of how a known solution to a

problem can be mapped onto a \similar" problem.

Dedre Gentner views analogy as a mere comparison between two struc-

tural representation without any functionality in the mapping process

[Gentner and Landers, 1985]. This loosely corresponds to the NFIS principle

we have discussed in section 4.1.1. The process of comparing two knowledge

7

AQR is a variant of Michalski's AQ [Michalski, 1980] that is able to deal with con-


icting classi�cations of examples.

8

In [Pearce, 1988] this problem did not arise as examples for failures that could not

be distinguished from a normal state with respect to the observable indicators had been

removed from the set of example behaviors used for induction.
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structures in order to �nd relevant similarities to the current situation merely

falls out as a map between the relationship between two physical processes.

No information about the goal of the mapping or about the problem to solve

is involved.

9

Learning occurs by mapping a qualitative explanation of a

physical phenomenon onto a new domain.

Falkenhaimer's research on the Structural Mapping Engine (SME)

[Falkenhainer et al., 1989] and its use in Phineas [Falkenhainer, 1990] is

an attempt to implement the Structural Mapping Theory developed in

[Forbus and Gentner, 1986].

Phineas is an implemented integration of Gentner's SMT and Forbus'

QPT. Whenever the system is not able to explain an encountered physical

process it tries to �nd a solution by analogical inference. First SME is used

to retrieve a previous experience matching the current situation. This prior

situation is explained using the domain theory and the explanation is mapped

to the new situation with SME. The consistency of the resulting models

can be veri�ed by comparing their predictions to the current situation. In

[Falkenhainer, 1987] a time based planning system can then be used to extend

the consistent theory through further experimentation. When the proposed

experiments show that the current theory is inconsistent, it can be re�ned

using model re�nement techniques or a new analogy can be looked for in

order to �nd a new explanation. The learned theories are thus evaluated by

their ability to predict observed physical phenomena.

This veri�cation-based re�nement technique supposedly applies equally

well to any form of theory formation in which conjectures of uncertain va-

lidity are made. In this respect Phineas is quite similar to GenModel

[Coiera, 1989a] | where inconsistent rules are deleted and a new, correct

rule is learned | and to the incremental theory re�nement approaches of

section 3.2.2.

4.1.6 Directed Dependencies

The monotonicity operators M+ and M- used in QPT and QSIM (see section

4.1.2) are very widely used in qualitative knowledge representations. They

are also referred to as qualitative proportionalities [Forbus, 1984] or directed

dependencies [Collins and Michalski, 1989].

9

For a criticism of this view see [Hammond et al., 1991].
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The use of directed dependencies requires an ordering relation on the set of

qualitative values. When M+( f, g) holds, this means that when the values

of f move into a certain direction (upwards or downwards), the values of g

are likely to change into the same direction. So e.g. M+( PieceAdvantage,

ChancesToWin) speci�es that the more pieces a player wins in a chess game,

the higher are his chances to win. PieceAdvantage as well as ChancesToWin

are functions over a domain of ordered symbols, such as PawnUp, ExchangeUp

or RookDown and �+, �, =, � or +�.

10

Plausible Inferences | i.e. educated, abstract guesses at why a given

proposition is likely to be true | are proposed in [DeJong, 1989]. Two prob-

lems appear: Plausible inferences are uncertain and imprecise. The problem

of imprecision is solved by a procedure outside of the EBL-scope that watches

and remembers the amount of changes in the quantitative values of a qualita-

tive variable and uses them for interpolation in future problems. Uncertainty

is decreased by the fact that derivations of explanations from plausible back-

ground knowledge by using an existing observation for biasing the search

adds credibility to the inferred rule. The interpolation function mentioned

above can be used for detecting inconsistencies, especially when smoothness

constraints are used in addition to continuity constraints. DeJong's notion

of Plausible Inference di�ers considerably from Collins' Theory of Plausible

Reasoning as imprecision is wholely contained in the background knowledge

and does not re
ect fundamental domain fuzziness.

One of the shortcomings of DeJong's approach is the lack of ability to

rate the plausibility of explanations and that it is unable to incrementally

modify learned concepts in the face of new evidence. Based on the plausible

EBL approach of DeJong, [Widmer, 1992a] uses plausible explanations for

better generalizations in plausible proof trees.

Widmer's system uses estimated degrees of plausibility to assess the value

of an explanation, quite similarly to the approaches of section 3.5.1. If pos-

sible, only generalizations that are safe (i.e. preserve the validity of the

inference drawn in the proof tree) will to be considered for generalization.

Also several types of explanatory links are less important or less plausible

(by de�nition or by their estimated degree of plausibility) than others, which

10

The latter �ve symbols are commonly used in collections of chess games denoting (in

that order) decisive advantage for black, minor advantage for black, equal chances, minor

advantage for white and decisive advantage for white.
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means that generalizing or dropping them is less dangerous. Information

from heuristics like these is combined into one value, indicating how likely it

is that a generalization of the explanation is justi�ed.

When facing an unexpected behavior the algorithm heuristically decides

whether a new example should be used to deduce a new rule or whether an ex-

isting rule should be incrementally modi�ed. New rules are learned by using

plausible explanation trees which are stored for further use by incremental

induction. This process is described in detail in [Widmer, 1991]

While the approaches described above extend Explanation-Based Learn-

ing with the use of plausible inferences using qualitative background knowl-

edge, [Clark and Matwin, 1993] present an approach using directed depen-

dencies to guide the search for correct rules in inductive learning. The back-

ground knowledge consists of a qualitative model of a physical system repre-

sented with a directed graph whose nodes represent numeric parameters and

whose arcs represent directed dependencies between the parameters. The

inductive learning algorithm CN2 [Clark and Niblett, 1989] is then used to

learn rules that are consistent with the qualitative model. The conditions of

the learned rules are restricted to be tests on the numeric parameters. A rule

is de�ned to be consistent with the model when it follows a tree in the model

graph where each test in the condition corresponds to a node in the graph.

The rules predict an increase or decrease of the numeric values correponding

tothe leaves of the tree. The restriction on CN2 only to learn rules that are

consistent with the qualitative model resulted in a better explainability of the

results as well as in an increase predictive accuracy. Constraining the search

space by using qualitative background knowledge seems to have a positive

e�ect on the learning behavior as it reduces the danger of learning incorrect

rules that by chance �t the sample data.

4.2 Determinations

4.2.1 Introduction

Determinations are an attempt to formalize a piece of common-sense knowl-

edge that is too weak to be captured with logical implication. A determi-

nation denotes a dependency between two expressions, without explicitly

stating what this dependency is. A well-known example for this is that one's
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native language depends on the country where one is born, i.e. the country

determines the language.

In the relatively simple chess endgame King and Pawn vs. King (KPK)

it might be plausible, even for novices that the position of the white king

relative to its pawn might determine the outcome of the game. Nevertheless

without further analysis, it is not at all plausible that the king must be in

front of his pawn | possibly even obstructing the pawn's path to the eighth

rank (where it can promote to a queen, ensuring an easy win) . In fact the

mistake of pushing the pawn forward as fast as possible, protecting it with

the king from behind, can be frequently found in beginners' games. But when

the player realizes that the position of the king relative to his pawn is very

relevant to the outcome of the game, the player needs to see only one game

where the king in front of the pawn wins the endgame and he will derive

the rule \The king has to be in front of the pawn", a rule that is known

by the majority of chess players. Many more examples of determinations in

common-sense knowledge can be found in [Russell, 1986a].

As we have seen, the mere knowledge that there is a functional relation-

ship between the position of king and pawn and the outcome of the game

was su�cient to learn a simple, powerful rule. We will know try to formalize

this kind of reasoning.

4.2.2 De�nition

A logical expression P (x; y) is said to determine another expression Q(x; z)

when any two things x that have the same value y on property P also have the

same value z on property Q. As determination is a property of predicates,

we also can say P determines Q. The important di�erence to implication

is that without knowledge of one or more ground instances of P (x; y) and

Q(x; z) nothing can be inferred about the relationship between P and Q. If

P implies Q then knowledge about instances of P is su�cient for inferring

that Q is also true. If P determinesQ however, nothing can be inferred about

Q from the knowledge of P only. We need pairs of examples that unify with

P (x; y) and Q(x; z) to establish the relationship between them. It is easy

to see that if P implies Q it also determines Q, but the reverse is not true.

Thus logical implication can be viewed as a special case of determination.

[Davies and Russell, 1987] give the following formal de�nition of determi-

nations:
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De�nition 4.1 (Determination) A predicate schema P with sets of free

variables x and y determines (denoted as �) a predicate schema Q with sets

of free variables x and z when the following holds:

P (x; y) � Q(x; z)() 8y; z[(9xP (x; y)^ Q(x; z))) (8xP (x; y)) Q(x; z))]

This states that P determines Q | with which it shares the variables

x | whenever it holds that after seeing ground instances of P and Q that

unify the variables x to the same constants any further instantiation of P

can be used to derive another instantiation of Q. Note that the variable sets

y and z are bound outside of the derived implication.

From the chess determination

king_pawn_relation( CurrentPosition, Relation) �

classification( CurrentPosition, Class)

we can thus derive the following rules after seeing one instance of each of

the two cases:

classification( CurrentPosition, won) :-

king_pawn_relation( CurrentPosition, in_front).

classification( CurrentPosition, draw) :-

king_pawn_relation( CurrentPosition, behind).

4.2.3 Learning with Determinations

Determinations have originally been proposed as a \a logical approach to rea-

soning by analogy" [Davies and Russell, 1987]. Up to this work analogy has

mainly used heuristic similarity measures [Russell, 1986b, Carbonell, 1986]

for retrieving previous instances and mapping their features to the cur-

rent situation. By using determinations a reasoning system now has the

chance to �nd appropriate generalizations from single examples, without hav-

ing the rules it will generate be implicitly speci�ed from the start as most

explanation-based systems do.

In subsequent work [Russell, 1987] points out that single-instance gener-

alization as in EBL and reasoning by analogy both can have explanation-

based as well as determination-based justi�cations. For this purpose both |

single-instance generalization and analogy | are put in a framework using
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determinations [Davies and Russell, 1987]. It is shown that strong domain

theories, as used traditionally in EBL, overly constrain learning. For any

implicative rule there is a corresponding, less speci�c determination which,

when combined with an instance, yields the same result. The training in-

stance is then needed as a source of information, while in EBL with strong

domain theories it merely serves as a focus.

4.2.4 Weaker Relatives of Determinations

Determinations are still relatively strong statements, as after seeing one in-

stance a universal rule is deduced, but if this example were one of the notori-

ous \exceptions to the rule", the wrong rule would be deduced. When a chess

novice encounters an endgame that is won by keeping the king behind the

own pawn, he might not be aware of the fact that his opponent must have

made mistakes. He might thus generalize to the false rule that endgames

always can be won by keeping the king behind the pawn.

For this reason many authors use some form of determinations with a

weaker semantics. Russell himself calls this form of knowledge partial de-

terminations [Russell, 1986a]. Directed dependencies (section 4.1.6) can be

viewed as a kind of determination as well, only used for ordered sets of qual-

itative values.

The system PostHoc [Pazzani, 1989] uses so-called in
uences. In
u-

ences are determinations, that do not necessarily have to be correct. After

seeing a training example PostHoc forms a hypothesis by �nding an in
u-

ence on the target concept and assuming that all factors that in
uence the

target imply it. Thus a generalization from a weak form of inference (in
u-

ences) to a stronger form (deduction) is performed. Whenever the system

goes wrong with one of its rules, it tries to correct the error. In the case of

errors of omission

11

a new clause is added that covers the example. In the

case of errors of commission

12

PostHoc tries to specialize one of the clauses

by adding a new literal such that the example is no longer covered.

As in
uences are much weaker statements than determinations, one ex-

ample is no longer enough to �nd valid generalizations. PostHoc needs a

variety of them to converge towards the right concept de�nition. Thus it may

be viewed as a version of the Incremental EBL algorithms (see section 3.2.2)

11

The system does not recognize an object as an instance of the object's de�nition.

12

The system erroneously classi�es an object to be an instance of the target concept.
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where the approximation is guided by a weak form of background knowledge,

instead of merely trying to guess the relevant features.

As the ILP algorithm ML-SMART uses its background knowledge \only"

as a powerful means for guiding the search for an inductive hypothesis (see

section 3.3), the rules speci�ed as background knowledge need not be com-

plete or consistent. For this reason [Bergadano et al., 1989] present an ex-

tension of the basic algorithm, where in addition to �rst-order logic rules,

so-called dependencies can be speci�ed. Dependencies are nothing else as a

method which enables the user to give hints about what predicates might be

relevant for a concept de�nition. Very often, no exact de�nition of the back-

ground knowledge is available, but the user has some idea of which predicates

might be used in the target concept description. The inductive discrimina-

tion algorithm of ML-SMART uses these hints to constrain the search for a

correct hypothesis as described above.

Dependencies may be viewed as a formalism to denote possibly over-

specialized rules. Too many conditions are speci�ed in the concept descrip-

tions. Induction is used to select the correct set of predicates to form a

consistent rule. The system WHY [Saitta et al., 1991] on the other hand in-

troduces a special 0-arity predicate 
 that can be used to explicitely specify

the incompleteness, i.e. the over-generality, of rules. Here a induction pro-

cess, very similar to the one used in ML-SMART can be used to �ll in the

gaps.

4.2.5 Learning of Determinations

As we have seen, determinations can be quite useful for analogical and

explanation-based learning. Representing less restrictive pieces of knowledge

than implications, they are also easier to specify. Nevertheless automatic

acquisition of determinations is a topic that still has to be explored.

In [Russell and Grosof, 1987] an example is given where the transitivity

relation that holds between determinations is exploited to infer new deter-

minations. In short, if we have P � Q and Q � R we can infer P � R.

Chapter 8 of [Russell, 1986a] also attacks the problem of inductively ac-

quiring determinations. The author suggests two methods to learn determi-

nations from either a set of universally quanti�ed expressions or from a set
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of instances. The �rst method inverts the reasoning involved in using deter-

minations as guidelines for analogies. Input are rules as in the example in

section 4.2.2, while the output is the determination saying that the relative

position of king and pawn determines the outcome of the game.

The more challenging kind of induction is the one from examples. Russell

develops an algorithm that induces determinations from facts. A problem

that arises here is that in real-world domains it will seldom be the case

that a determination will be satis�ed by every possible instantiation. In

the chess endgame example we have already seen that it is possible to win

the endgame with keeping the king behind the pawn, if the opponent also

makes mistakes. Russell therefore tries to compute a degree of determination,

i.e. a value between 0 and 1 indicating the strength of the determination.

He thus more or less measures the degree of determination in in
uences

similar to those introduced in section 4.2.4. The basic method for this is to

randomly select known examples from the joint domain of P and Q and then

to compute the proportion of those pairs matching on P that also match

on Q [Russell, 1986a]. The resulting certainty factor supposedly measures

the percentage of examples satisfying the implication that would result by

using the induced determination for an analogy. Russell calls these weaker

determinations partial determinations.

Of course these certainty factors could as well be used to measure the

degree of con�dence in the analogy. Using certainty factors could at least

express the fact that the inference might be faulty. Calculating useful cer-

tainty factors, of course, is a di�cult problem. Russell's method relies on

a uniform distribution of examples over the space of possible instances. If

one randomly generates examples of chess pawn endgames, the majority of

them will be one with the king behind the pawn, because of weak play by the

opponent. When looking at games of expert players, however, all of them

will be following the right rule.

It might seem that inducing determinations from facts is not very useful,

as the implications resulting from subsequent analogies could have been in-

duced in the �rst place, without the detour into determinations. This does

not consider the fact that determinations represent an entire family of im-

plications. When seeing only examples of games with king in front of pawn,

a determination can be induced that might later on | after seeing an illus-

trating example | be used for deducing that all other games are lost.
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5.1 Introduction

As we have seen in section 2.4, knowledge may be represented at various

levels of detail. We have seen in chapters 3 and 4 that knowledge can be

approximated by either learning almost correct, but simple rules or by in-

troducing new language constructs that explicitly capture the uncertainty

of the learned rules. In both approaches the problem how to deal with in-

consistency arises. We have seen several straightforward solutions including

incremental re�nement of domain theories, re-learning of inconsistent rules

or selecting the most plausible explanation. Another approach to deal with

this and related problems is to have simple and e�cient knowledge to �nd

an approximate solution and then re�ne it with more elaborate and time-

consuming problem-solving methods. This seems to be the case in human

chess play, where players usually have very general ideas and plans that guide

their search for a move sequence that serves their goal. Chess players usually

know \What to do" and have to think a while to �nd out \How to do it"

quite contrary to chess computers, who usually have no idea what they are

doing, but are very good in how to do that without making bad mistakes.

5.2 Deep Models

One way to represent these ideas in knowledge based systems is the use of the

so-called deep and shallow models. Shallow models consist of rules that are

directly applicable to the input data and immediately produce an answer.

Deep models can be used to generate shallow level knowledge as has been

shown in the KARDIO-project [Bratko et al., 1989] or in [Pearce, 1988]. In

Mozeti�c's work on learning in the KARDIO project described in section 4.1.4

the qualitative background knowledge is organized into a hierarchical, deep

knowledge base. Experiments prove that this kind of knowledge representa-

tion is much more e�ective for learning than a 
at organization that directly
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relates instances with their classi�cations.

The advantages of shallow knowledge representation is its e�ciency, but

disadvantages are the in
exibility, as rules typically correspond to a few,

highly specialized cases, and the large number of rules that have to be main-

tained. Deep models on the other hand are highly structured and modular.

Reasoning in models of this kind is much more transparent and understand-

able, but much less e�cient as it requires a more sophisticated control struc-

ture.

[Klein and Finin, 1987] give an operational de�nition of the deeper-than

relation for domain models:

De�nition 5.1 (Deepness) Model M

1

is deeper than model M

2

if there

exists some implicit knowledge in M

2

which is explicitly represented or com-

puted in M

1

.

Note that according to this de�nition two models can both be deeper

than the other. In this case the two models cannot be compared.

In the next section we will look at a mechanism called abstraction that

allows to change from a deeper model to a more shallow model and vice versa.

Thus shallow, e�cient knowledge can be used to generate an approximate

solution to a problem, while deeper, more costly knowledge is only used to

re�ne and correct the result.

5.3 Abstractions

De�nition 5.1 gives a de�nition of a deepness-relation between models. Now

we need a mechanism that allows us to change between various levels of de-

tails. Intuitively, abstraction can be described as the process of mapping a

representation of a problem into a new representation which reduces com-

plexity and preserves certain desirable properties like e.g. that a solution

in the abstract space must be useful for solving the ground problem as well

[Giunchiglia and Walsh, 1989]. Several formal de�nitions try to capture this

intuitive idea. [Plaisted, 1981] de�nes a class of functions called abstraction

mappings for this purpose.

De�nition 5.2 (Abstraction) An abstraction is a mapping of a clause C

onto a set of clauses f(C) such that f | the abstraction mapping | has

the properties
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1. If R is a resolvent of S and T then at least one element of f(R) is

subsumed by a clause that is the resolvent of two elements of f(S) and

f(T ).

2. If S subsumes T then f(S) subsumes f(T ).

3. f(;) = ;

Plaisted also shows that a function that maps clauses literal by literal is

an abstraction mapping if it preserves complements (f(:S) = :f(S)) and

instances (if S is an instance of T then f(S) is an instance of f(T )).

A serious problem that may arise with Plaisted's formalization of ab-

straction is the false proof problem, i.e. consistent theories might become

inconsistent after abstraction.

[Tenenberg, 1987] introduces restricted predicate mappings, a subset of

abstraction mappings, to deal with this problem. Predicate mappings are

functions that map predicate symbols from one �rst order language to those

of another, where they possibly may result in a common symbol, representing

a superconcept of the original predicates. The intuition behind restricted

predicate mappings is that the interpretation of a predicate in the abstract

theory should be the union of the interpretations of each of the predicates

in the original theory that map to it. This is obtained by removing all

axioms from the original theory that serve to distinguish the relations that

are con
ated at the abstract level. In addition it is permissible to include

mapped positive clauses from the original theory into the abstract theory.

More precisely Tenenberg's restricted predicate mappings can be obtained

by adding the following condition to de�nition 5.2:

De�nition 5.3 (Restricted Predicate Mapping) An abstraction map-

ping is a restricted predicate mapping when the following condition is sat-

is�ed:

4. S 2 f(T ) for some T that is part of the axiomatization of the domain

theory. Then either S must be a positive clause or every clause R such

that S 2 f(R) can be proven in the domain theory.

Interesting in this de�nition is that it involves the notion of a proof. Thus

Tenenberg's approach is a leap from a mere structure-matching abstraction

function to a semantic de�nition.
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An important property of abstraction mappings is the upward-solution

property: Every solution in a problem space has a corresponding solution in

an abstracted space. The opposite, however, is desirable in most problem-

solving applications: A solution found in an abstract space should be usable

in deeper representation levels as well. Tenenberg's restricted predicate map-

pings achieve this goal by replacing Plaisted's upward-solution property with

a downward-solution property, i.e. each solution at an abstract level corre-

sponds to a solution at a detailed level. Solutions at abstract levels may

not exist though, because they may require some of the details that are

ignored at that level. [Giunchiglia and Walsh, 1989] show a close relation-

ship between the upward-solution property and the false-proof problem: The

authors prove that for every mapping between two theories

13

that has the

upward-solution property, there is always a set of consistent axioms whose

abstraction is inconsistent, i.e. that they cause the false proof problem.

14

Abstraction hierarchies have been widely used in Arti�cial Intelligence

research, especially in the �elds of problem-solving and planning (see

e.g. [Sacerdoti, 1974a], [Sacerdoti, 1974b], [Korf, 1980]). A historical ac-

count of the use of abstractions in various domains can be found in

[Giunchiglia and Walsh, 1992a]. Our main concern in the next sections will

be the use of abstractions in the context of learning.

5.4 Abstraction by Approximation

Knoblock's work on a problem solver that uses hierarchies �nally led to the

development of an algorithm that allows the system to automatically generate

the hierarchies needed for e�cient problem-solving [Knoblock, 1989].

13

They do not restrict themselves to predicate mappings, but prove their results for

general functions that map representation languages, axioms and/or inference rules. As

most systems use some formof �rst-order predicate calculus as a representation formalisms,

Plaisted's de�nition given above is su�cient for our purposes. For a more general account

of abstractions see [Giunchiglia and Walsh, 1992b].

14

[Giunchiglia and Walsh, 1989] propose a solution for this problem by introducing an

ordering according to relative \weakness" of abstraction spaces. This sequence is then

searched from strongest to weakest abstractions to either identify the �rst abstract theory

where the theorem in question is not a theorem (in which case it cannot be a theorem in

the ground space either) or to map the proof of the weakest abstraction to the ground

space to construct a proof of the analogous theorem.
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Knoblock's system alpine constructs plans for several domains | among

them the Tower of Hanoi puzzle, a robot planning domain and a machine-

shop scheduling domain | on increasingly less detailed abstraction levels. In

the Tower of Hanoi domain a plan to move the biggest disk is generated on

the �rst level.

15

This plan cannot be executed immediately as in general the

disk will lying beneath some other disk. Thus a plan for moving this disk has

to be created without violating the prior planning result (movement of the

biggest disk). Knoblock calls the latter requirement | that the re�nement

of an abstract plan leaves the truth value of every literal in the abstract plan

unchanged | the ordered monotonicity property [Knoblock, 1990b], which is

a special case of the downward solution property. The hierarchy of abstrac-

tion spaces in alpine is formed by removing successive classes of literals,

such that each abstraction space is an approximation of the original problem

space. The abstraction mapping thus is reminescent of some of the ideas of

chapter 3.

alpine automatically learns its abstraction hierarchies by generating

an ordered graph with the literals used in the STRIPS-like operators

[Fikes and Nilsson, 1971] as nodes. The directed edges of a graph are in-

serted among literals of the add- and delete-lists, and between them and the

literals of the precondition of the same operator. A directed edge from one

literal to another thus says that the former must be in the same or on a

higher level of abstraction as the latter. The strongly connected components

of the resulting graph then represent a class of literals that must be in the

same abstraction level. The connection between di�erent literal classes can

only be one way (otherwise they would be strongly connected) and thus a

partial ordering of literal classes is found | the abstraction hierarchy. Ex-

perimental results prove the problem-solving using the learned abstractions

to solve more problems than versions using EBL or Prodigy.

Pablo [Christensen, 1990] is | as a hierarchical planner | quite similar

to alpine. It also learns a hierarchy of abstraction spaces, but uses a di�erent

strategy. It performs a regression of goals through the operators, thus being

able to determine the number of steps required to achieve each goal. The

system then solves a problem in successive abstraction levels by �rst working

on the parts of the problem that require the most steps. alpine on the other

hand tries to �rst solve the parts of the problem that can be left unchanged

15

For more details on the planning aspects of alpine see [Knoblock, 1990a].
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while the remaining subproblems are solved.

In [Unruh and Rosenbloom, 1989] possibilities for the use of abstraction

in the SOAR system [Laird et al., 1987] are suggested. As alpine and

Pablo, SOAR uses a method for abstracting the search space by sim-

ply removing some aspects of the problem. While in the systems dis-

cussed above this is done a priori in a static way, in SOAR abstraction

occurs dynamically during problem solving. Whenever SOAR encounters

and impasse during search, it usually resolves this by proposing a new

subgoal [Laird et al., 1987]. [Unruh and Rosenbloom, 1989] suggest that in-

stead of further problem solving in another level of subgoals the impasse

may as well be removed by ignoring the sub-goal. This is very simi-

lar to the approach taken in [Keller, 1988] (see section 3.5.1). Learn-

ing occurs in SOAR by converting the subgoal-based search into shallow

rules [Rosenbloom and Newell, 1986, Rosenbloom and Laird, 1986]. Thus

abstracted subgoals are simply ignored and approximate search control rules

are learned.

16

. This approximation mechanism naturally extends to form

an abstraction hierarchy out of the dynamic subgoal hierarchy that SOAR

creates during problem solving. When an operator is �nally chosen after

a search using abstraction, its preconditions have to be ful�lled before the

operator can actually be applied. Thus the formerly abstracted subgoal has

to be searched now. During the search for an operator that establishes this

goal, abstraction might be useful again, the new abstraction being on a more

detailed level than the original one. This incremental deepening continues

until a complete plan is generated.

The proposed method is a very general technique that can be applied

without domain speci�c abstraction knowledge. However, additional back-

ground knowledge can be used to guide the abstraction (e.g. to choose the

subgoals that should be abstracted). Experimental results in a robot toy

domain and a computer con�guration domain show that abstraction helps

more the more search is required for a solution of the problem.

16

Abstraction in SOAR is limited to search control as this ensures that unjusti�ed

abstractions will not lead to incorrect, but only to ine�cient behavior
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5.5 Abstraction by Enhancing the Representation

Language

While the approaches to abstraction of the last section made use of rule

approximation techniques similar to those of chapter 3, this section will deal

with approaches that simplify learning by dynamically changing to a more

expressive representation language.

Qualitization as introduced in chapter 4 is one form of simplifying learn-

ning in many domains. In [Mozeti�c, 1987b] an approach to automated qual-

itative modeling (see section 4.1.3) is extended with the use of abstractions.

In section 4.1.3 we have described how initial hypotheses for the compo-

nent behavior are formed. The model is then simulated on new instances.

Whenever an expectation failure occurs, a debugging module similar to MIS

[Shapiro, 1982] is invoked. In the case of incomplete hypotheses | a true

fact is not covered | a new rule is added to the current hypothesis. While

generating this new rule, the search space is reduced by considering an ab-

straction of the uncovered instance, as behavior at the speci�c level in the

model must be consistent with the behavior at the abstract level, i.e. the

upward solution property must hold in the abstraction hierarchy. So the basic

idea is that instead of querying the user for possible values of a variable as

it is the case in MIS, appropriate values can be automatically generated by

abstracting the expression and considering only specializations of the more

abstract concept.

For this purpose the qualitative model of the heart that is used as back-

ground knowledge is represented at several layers of detail. Abstractions can

be formed in one of the following ways:

� Constants of the same type

17

can be collapsed into a single, abstract

value, thus forming a hierarchy of values.

� Functions can be renamed and some (or all) of their arguments deleted.

� Predicates can be renamed and some of their arguments deleted.

Thus a hierarchy of representation languages can be formed that will be used

for model re�nement.

17

Variables and constants are associated with types, such that variables of a certain

type can only be instantiated by constants of the same type.
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In subsequent work [Mozeti�c and Holzbaur, 1991] this abstraction mech-

anism is put into an explanation-based learning framework. In classical EBL

non-operational predicates are unfolded in the generalized proof tree until

the concept is de�ned in operational predicates only [Mitchell et al., 1986].

The authors extend this mechanism by adding the abstraction methods used

above. Concrete instantiations of these abstraction schemas can be speci�ed

by the user and will be applied to all literals in the proof tree. This mech-

anism allows abstraction to occur during explanation-based generalization.

Classical EBL falls out as a special case of this framework, as the operational-

ity criterion can be formulated by adding a predicate abstraction operator

for each operational predicate that renames the predicate to itself and deletes

none of the arguments.

In [Drastal et al., 1989] abstraction is used to bias induction in an

attribute-value domain language. A domain theory de�ning more abstract

descriptors in terms of simpler ones is used for a simple kind of forward

chaining performed on each instance until a set of descriptors is reached that

cannot be further abstracted. The set of all such descriptors is used as the

language in which the target concept will be induced.

[Giordana and Saitta, 1990] use this idea in the inductive relational learn-

ing system ML-SMART [Bergadano and Giordana, 1988]. Here a �rst-order

logic abstraction theory quite similar to [Mozeti�c and Holzbaur, 1991] can

be speci�ed. In the �rst abstraction phase ML-SMART generates instance

representations at di�erent levels of abstraction as an input to the inductive

learning algorithm. This di�ers from the approach of [Drastal et al., 1989]

where a set of maximally abstracted descriptors is used. Various experiments

with induction on di�erent abstraction levels con�rmed that using the most

abstract representation levelminimizes the combined costs of abstraction and

induction. Besides, the results achieved at the most abstract level appeared

to be most understandable for human domain experts.

[Giordana et al., 1991] put this work into the ILP framework of Inverse

Resolution [Muggleton and Buntine, 1988]. A non-generalizing absorption

operator, a similar variant of inter-construction, and an additional mech-

anism, term abstraction, are introduced for this purpose. The latter is a

combination of absorption and intra-construction and serves the purpose of

de�ning compound terms, similar to abstract data types in programming.
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The approaches discussed above show that the abstraction mechanism

can be axiomatized by means of a theory, and abstraction itself can be ob-

tained by deduction. This approach is further pursued in the system Place

described in [Flann, 1989]. The author observes several di�culties with com-

mon approaches to abstraction via approximation (see section 5.4) in solving

formation problems

18

. Flann claims that abstraction by approximation is

ine�ective in formation problems, as it is very often the case that the rein-

troduction of a constraint that has been abstracted away interacts with the

results of the problem-solving on the abstract level. Thus the results obtained

at the approximate, abstract level are very often invalid at the speci�c level,

i.e. the ordered monotonicity property is violated. Removing pieces from a

chess position can cause drastic changes in the evaluation of this position. We

have discussed this problem in section 2.5 and come to the conclusion that

although abstract concepts like a \fork" cannot be de�ned precisely, an ap-

proximation with a simple visual pattern as human chess players apparently

use can be a useful guide for the search for good moves.

Flann attacks this problem along similar lines, although he stresses that

the abstractions his program �nds are not approximations: Place is able

to recognize many typical, abstract concepts (e.g. my-king-in-check) and

associate plans and goals with them. The goals are completely instanti-

ated and highly specialized, thus constraining the search. The use of ab-

stract concepts reduces the search as well, as Place does not have to

consider all moves in a position, but reasons with abstract operators (e.g.

move-my-king-out-of-check).

The problem of goal interaction is dealt with through a process called

visualization. Place looks for operators that maintain, destroy or achieve

a goal. Complex expressions for the achievement of multiple goals are ana-

lyzed and compiled by doing an exhaustive case analysis [Flann, 1990]. This

analysis is able to generate geometrical constraints that can be used as a

recognition pattern for the abstract concept.

18

Formation problems di�er from derivation problems in that the goal is not speci�ed

in the same structural description language as the initial state, but through a functional

description. Typical formation problems are optimization problems. Flann views chess as

a formation problem with the goal to optimize the outcome of the game.
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6 Multistrategy Learning

We have seen in section 2.7 that knowledge can be acquired and used in a

variety of ways. Initial research in Machine Learning has mostly concentrated

on acquiring powerful methods for each principle learning method separately.

Nowadays fairly powerful algorithms for learning by induction, deduction or

analogy exist. The logical next step is therefore to try to integrate several

di�erent methods into a single system. Research on Multistrategy Learning

has been quite active for several years.

As we are mainly concerned with the underlying knowledge representation

and not so much with the learning strategies, a complete summary would be

beyond the scope of this paper. We will be content to give a few references

and to shortly introduce a prototypical system, MTL, that includes weak,

qualitative forms of inferences.

Multistrategy Learning has been mostly investigated in the con-

text of integrating inductive and deductive learning methods. Well-

known systems that enhance Explanation-Based Learning methods

with an inductive learning component are UNIMEM [Lebowitz, 1986]

and OCCAM [Pazzani, 1990]. Other approaches can be found in

[Flann and Dietterich, 1989] and [Widmer, 1989b]. In Inductive Logic Pro-

gramming, the systems FOCL [Pazzani and Kibler, 1992] and ML-SMART

[Bergadano and Giordana, 1988] try to integrate background knowledge into

inductive learning methods.

DISCIPLE [Kodrato� and Tecuci, 1987] is another integration of induc-

tive and deductive learning methods. In subsequent work learning by anal-

ogy was added as an additional means of dealing with imperfect domain

theories [Tecuci and Kodrato�, 1990]. From this work the Multistrategy

Task-adaptive Learning framework (MTL) [Tecuci and Michalski, 1991] has

emerged.

MTL is a Multistrategy approach to learning in the Plausible Reasoning

framework of [Collins and Michalski, 1989]. The approach is adaptive in the

sense that it is able to apply di�erent learning strategies for di�erent learning
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tasks. When provided with some input information the system builds up a

Plausible Justi�cation Tree, a structure quite similar to a proof tree (as used

in EBL), but allowing di�erent kinds of inferences | deduction, induction,

abduction and analogy | to occur at the edges of the tree. The inferences

can be formalized by using constructs from the Plausible Reasoning theory

by [Collins and Michalski, 1989], as e.g. determinations (see section 4.2).

During the construction and the following generalization of the tree, di�er-

ent kinds of new knowledge can be inferred: new concept de�nitions, new

rules, new facts, abstractions etc. In certain base cases the MTL method

reduces to EBL, abductive learning, empirical induction or analogical rea-

soning. Further research has to be done to allow inconsistent information in

the knowledge base.

Other systems try to integrate Explanation-Based Learning and Neu-

ral Nets [Shavlik and Towell, 1989] or EBL and Case-Based Learning

[Wilkins, 1990]. For more on multistrategy learning systems and a more

detailed account of the general framework see [Michalski and Tecuci, 1992].



7 Conclusion

The main purpose of this paper was to analyze the important role that qual-

itative knowledge in various forms can play in Machine Learning research

and give a review of previous research in this �eld. The need for simple,

approximate, noise- and error-tolerant knowledge representations has been

stressed not only for Machine Learning. Various approaches towards the use

of qualitative knowledge for applications in Machine Learning have been dis-

cussed in this paper. The static representation of domain knowledge can be

approximated by explaining only a subset of the domain (chapter 3) or by

�nding less detailed, but more understandable and simpler representation for-

malisms (chapter 4). Both methods can be used to support abstraction, i.e.

dynamically changing from one representation level to a more approximate

one in order to allow more e�cient problem solving (chapter 5). Although

in all areas several papers have been published (we have tried to include the

most important ones, but could not have been complete) there is still a lot

to be done.

The relatively new area of Inductive Logic Programming now allows to

e�ciently induce concept descriptions formulated in �rst-order logic (see

e.g. [Muggleton, 1991] or [Quinlan, 1990]). This gain in expressiveness over

traditional propositional learning algorithms has already contributed sig-

ni�cantly to learning in qualitative domain theories [Giordana et al., 1991,

Bratko et al., 1991, Feng, 1991, Coiera, 1993].

The logical next step is to further extend the representational power of the

induced concepts by allowing qualitative language constructs or by relaxing

the correctness constraint in order to generate more e�cient rules. Prelim-

inary research in [Giordana and Saitta, 1990] and [Drastal et al., 1989] has

suggested that �nding an appropriate level of abstraction for the representa-

tion of the target concept can facilitate learning.

The false proof problem is an important issue when using abstractions

for more e�cient problem-solving behavior. Many systems try to solve this

problem by restricting the representation languages in a way that does not al-
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low the problem to arise. The downward solution property [Tenenberg, 1987]

or the ordered monotonicity property [Knoblock, 1990b] are examples of this

approach (see section 5.2). But to gain even more bene�t from abstraction

techniques, these constraints on the representation language and/or the ab-

straction mapping should be relaxed and other methods for dealing with

this problem should be developed. Research on using rule approximations

as reported in [Fawcett, 1989, Knoblock, 1989, Keller, 1988, Cohen, 1990,

Tadepalli, 1989] and on qualitative extensions of the representation language

[DeJong, 1989, Widmer, 1992a, Mozeti�c and Holzbaur, 1991, Bennett, 1989]

in traditional Explanation-Based Learning environments shows that a trade-

o� between correctness and e�ciency is an important issue. Applications of

this �nding to induction are still waiting to be investigated.

Early research in Machine Learning has mostly concentrated on devel-

oping learning algorithms for inductive or deductive generalization. The

insight that each of the generalization methods has their speci�c strengths

and that a learning system should exploit di�erent strategies dependent on

the current learning situation, has led to the development of a theory for

Multistrategy Learning (chapter 6). Similarly research is currently concen-

trated on enhancing their learning systems with one of the discussed methods

of introducing qualitative knowledge. Each of the knowledge representation

methods discussed in this paper has their strengths and weaknesses and a

powerful learning system should be able to �nd the appropriate method by

itself.



References

[AGA, 1990] Working Notes of the AAAI Workshop on Automatic Generation of

Approximations and Abstractions, Boston, Massachusettes, 1990.

[AI-, 1984] Arti�cial Intelligence, 24, 1984. Special Volume: Qualitative Reason-

ing About Physical Systems.

[AI-, 1991] Arti�cial Intelligence, 51, 1991. Special Volume: Qualitative Reason-

ing About Physical Systems II.

[Angluin and Laird, 1988] D. Angluin and P. Laird. Learning from noisy exam-

ples. Machine Learning, 2(4):343{370, 1988.

[Baker et al., 1987] Michelle Baker, Mark H. Burstein, and Allan M. Collins. Im-

plementing a model of human plausible reasoning. In Proceedings of the 10th

International Joint Conference on Arti�cial Intelligence, pages 185{188, Milano,

Italy, 1987.

[Bennett, 1989] Scott W. Bennett. Learning approximate plans for use in the real

world. In Proceedings of the 6th International Workshop on Machine Learning,

pages 224{228, Ithaca, New York, 1989.

[Bergadano and Giordana, 1988] F. Bergadano and A. Giordana. A knowledge

intensive approach to concept induction. In Proceedings of the 5th International

Conference on Machine Learning, pages 305{317, Ann Arbor, Michigan, 1988.

[Bergadano et al., 1989] F. Bergadano, A. Giordana, and S. Ponsero. Deduction in

top-down inductive learning. In Proceedings of the 6th International Workshop

on Machine Learning, pages 23{25, Ithaca, New York, 1989.

[Berliner and Campbell, 1984] Hans Berliner and Murray Campbell. Using chunk-

ing to solve chess pawn endgames. Arti�cial Intelligence, 23:97{120, 1984.

[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and

Manfred K. Warmuth. Occam's razor. Information Processing Letters, 24:377{

380, 1987.



52 REFERENCES

[Bratko et al., 1989] I. Bratko, I. Mozeti�c, and N. Lavra�c. KARDIO: a Study in

Deep and Qualitative Knowledge for Expert Systems. MIT press, 1989.

[Bratko et al., 1991] Ivan Bratko, Stephen Muggleton, and Alen Var�sek. Learning

qualitative models of dynamic systems. In Proceedings of the 8th International

Workshop on Machine Learning, pages 385{388, Evanston, Illinois, 1991.

[Buntine, 1988] Wray L. Buntine. Generalized subsumption and its applications

to induction and redundancy. Arti�cial Intelligence, 36:149{176, 1988.

[Carbonell, 1986] Jaime G. Carbonell. Derivational analogy: A theory of recon-

structive problem solving and expertise acquisition. In Ryszard S. Michalski,

Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Ar-

ti�cial Intelligence Approach, Vol. II, pages 371{392. Morgan Kaufmann, Los

Altos, California, 1986.

[Chase et al., 1989] Melissa P. Chase, Monte Zweben, Richard L. Piazza, John D.

Burger, Paul P. Maglio, and Haym Hirsh. Approximating learned search con-

trol knowledge. In Proceedings of the 6th International Workshop on Machine

Learning, pages 218{220, Ithaca, New York, 1989.

[Chien, 1989] Steve A. Chien. Using and re�ning simpli�cations: Explanation-

based learning of plans in intractable domains. In Proceedings of the 11th In-

ternational Joint Conference on Arti�cial Intelligence, pages 590{595, 1989.

[Christensen, 1990] Jens Christensen. A hierarchical planner that creates its own

hierarchies. In Proceedings of the 9th National Conference on Arti�cial Intelli-

gence, pages 1004{1009, Boston, MA, 1990.

[Church and Church, 1983] Russell M. Church and Kenneth W. Church. Plans,

goals, and search strategies for the selection of a move in chess. In Chess Skill in

Man and Machine, chapter 6, pages 131{156. Springer-Verlag, 2 edition, 1983.

[Clark and Matwin, 1993] Peter Clark and Stan Matwin. Using qualitative models

to guide inductive learning. In Proceedings of the 10th International Conference

on Machine Learning, Amherst, Massachusetts, 1993. Submitted.

[Clark and Niblett, 1987] Peter Clark and Tim Niblett. Induction in noisy do-

mains. In Ivan Bratko and N. Lavra�c, editors, Progress in Machine Learning,

Wilmslow, UK, 1987. Sigma Press.

[Clark and Niblett, 1989] Peter Clark and Tim Niblett. The CN2 induction algo-

rithm. Machine Learning, 3(4):261{283, 1989.



REFERENCES 53

[Cohen, 1990] William W. Cohen. Learning approximate control rules of high

utility. In Proceedings of the 7th International Conference on Machine Learning,

pages 268{276, Austin, Texas, 1990.

[Cohen, 1992] William W. Cohen. Abductive explanation-based learning: A so-

lution to the multiple inconsistent explanation problem. Machine Learning,

8:167{219, 1992.

[Coiera, 1989a] Enrico Coiera. Generating qualitative models from example be-

haviours. DCS Report 8901, School of Electr. Eng. and Computer Sc., Univ. of

New South Wales, Sydney, Australia, 1989.

[Coiera, 1989b] Enrico Coiera. Reasoning with Qualitative Disease Histories for

Diagnostic Patient Monitoring. PhD thesis, Department of Computer Science,

University of New South Wales, 1989.

[Coiera, 1992] Enrico Coiera. The qualitative representation of physical systems.

The Knowledge Engineering Review, 7(1):55{77, 1992.

[Coiera, 1993] Enrico Coiera. Qualitative superposition of unmodelled systems.

Submitted to IJCAI-93, 1993.

[Collins and Michalski, 1989] Allan Collins and Ryszard S. Michalski. The logic

of plausible reasoning: A core theory. Cognitive Science, 13:1{49, 1989.

[Crawford et al., 1990] J. Crawford, A. Farqhuar, and B. Kuipers. QPC: A com-

piler from physical models into qualitative di�erential equations. In Proceedings

of the 9th National Conference on Arti�cial Intelligence, pages 365{372, Boston,

MA, 1990.

[Danyluk, 1987] Andrea Pohoreckyj Danyluk. The use of explanations for

similarity-based learning. In Proceedings of the 10th International Joint Con-

ference on Arti�cial Intelligence, Milano, Italy, 1987.

[Danyluk, 1989] Andrea Pohoreckyj Danyluk. Finding new rules for incomplete

theories: Explicit biases for induction with contextual information. In Pro-

ceedings of the 6th International Workshop on Machine Learning, pages 34{36,

Ithaca, New York, 1989.

[Davies and Russell, 1987] T. R. Davies and S. J. Russell. A logical approach to

reasoning by analogy. In Proceedings of the 10th International Joint Conference

on Arti�cial Intelligence, pages 264{270, Milano, Italy, 1987.



54 REFERENCES

[deGroot, 1965] Adriaan D. deGroot. Thought and Choice in Chess. Mouton, The

Hague, 1965.

[DeJong, 1989] G. DeJong. Explanation-based learning with plausible inferencing.

In Proceedings of the 4th European Working Session on Learning, pages 1{10,

Montpellier, France, 1989.

[deKleer and Brown, 1984] J. deKleer and J. S. Brown. A qualitative physics

based on con
uences. Arti�cial Intelligence, 24:7{83, 1984.

[Dontas and Zemankova, 1988] K. Dontas and M. Zemankova. APPLAUS: An

implementation of the collins-michalski theory of plausible reasoning. In Pro-

ceedings of the 3rd International Symposium on Methodologies fo Intelligent

Systems, Torino, Italy, 1988.

[Doyle, 1986] R. J. Doyle. Constructing and re�ning causal explanations from an

inconsistent domain theory. In Proceedings of the 5th National Conference on

Arti�cial Intelligence, Philadelphia, PA, 1986.

[Drastal et al., 1989] G. Drastal, G. Czako, and S. Raatz. Induction in an ab-

straction space. In Proceedings of the 11th International Joint Conference on

Arti�cial Intelligence, pages 708{712, Detroit, Michigan, 1989.

[Ellman, 1988] Tom Ellman. Approximate theory formation: An explanation-

based approach. In Proceedings of the 7th National Conference on Arti�cial

Intelligence, pages 570{574, Minneapolis, Minnesota, 1988.

[Falkenhainer et al., 1989] Brian Falkenhainer, Kenneth D. Forbus, and Dedre

Genter. The structure mapping engine: Algorithm and examples. Arti�cial

Intelligence, 41(1), 1989.

[Falkenhainer, 1987] Brian Falkenhainer. Scienti�c theory formation through ana-

logical inference. In Proceedings of the 4th International Workshop on Machine

Learning, pages 218{229, Irvine, California, 1987.

[Falkenhainer, 1990] Brian Falkenhainer. A uni�ed approach to explanation and

theory formation. In J. Shrager and P. Langley, editors, Computational Models

of Discovery and Theory Formation. Morgan Kaufmann, Los Altos, California,

1990.

[Fawcett, 1989] Tom E. Fawcett. Learning from plausible explanations. In Pro-

ceedings of the 6th International Workshop on Machine Learning, pages 37{39,

Ithaca, New York, 1989.



REFERENCES 55

[Feng, 1991] Cao Feng. Inducing temporal fault diagnostic rules from a qualitative

model. In Proceedings of the 8th International Workshop on Machine Learning,

pages 403{406, Evanston, Illinois, 1991.

[Fikes and Nilsson, 1971] R. E. Fikes and N. Nilsson. STRIPS: A new approach

to the application of theorem proving to problem solving. Arti�cial Intelligence,

2(3{4):189{208, 1971.

[Flann and Dietterich, 1989] Nicholas S. Flann and Thomas G. Dietterich. A

study of explanation-based methods for inductive learning. Machine Learning,

4:187{266, 1989.

[Flann, 1989] Nicholas S. Flann. Learning appropriate abstractions for planning

in formation problems. In Proceedings of the 6th International Workshop on

Machine Learning, pages 235{239, Ithaca, New York, 1989.

[Flann, 1990] Nicholas S. Flann. Applying abstraction and simpli�cation to learn

in intractable domains. In Proceedings of the 7th International Conference on

Machine Learning, pages 277{285, Austin, Texas, 1990.

[Forbus and Gentner, 1986] Kenneth D. Forbus and Dedre Gentner. Learning

physical domains: Toward a theoretical framework. In Ryszard S. Michalski,

Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Ar-

ti�cial Intelligence Approach, Vol. II, chapter 12, pages 311{348. Morgan Kauf-

mann, Los Altos, California, 1986.

[Forbus, 1984] Kenneth D. Forbus. Qualitative process theory. Arti�cial Intelli-

gence, 24:85{169, 1984.

[Gentner and Landers, 1985] Derdre Gentner and R. Landers. Analogical remind-

ing: A good match is hard to �nd. In Proceedings of the International Conference

on Systems, Man and Cybernetics, pages 76{79, Tucson, Arizona, 1985.

[Gentner, 1983] Dedre Gentner. Structure-mapping: A theoretical framework fo

analogy. Cognitive Science, 7(2):155{170, 1983.

[Giordana and Saitta, 1990] A. Giordana and L. Saitta. Abstraction: A general

framework for learning. In Working Notes of the AAAI Workshop on Auto-

matic Generation of Approximations and Abstractions, pages 245{256, Boston,

Massachusettes, 1990.

[Giordana et al., 1991] A. Giordana, L. Saitta, and D. Roverso. Abstracting con-

cepts with inverse resolution. In Proceedings of the 8th International Workshop

on Machine Learning, pages 142{146, Evanston, Illinois, 1991.



56 REFERENCES

[Giunchiglia and Walsh, 1989] Fausto Giunchiglia and Toby Walsh. Abstract the-

orem proving. In Proceedings of the 11th International Joint Conference on

Arti�cial Intelligence, pages 372{377, 1989.

[Giunchiglia and Walsh, 1992a] Fausto Giunchiglia and Toby Walsh. Theories of

abstraction: A historical perspective. In AAAI-92 Workshop on Approximation

and Abstraction of Computational Theories, San Jos�e, California, 1992.

[Giunchiglia and Walsh, 1992b] Fausto Giunchiglia and Toby Walsh. A theory of

abstraction. Arti�cial Intelligence, pages 323{389, 1992.

[Hammond et al., 1991] Kristian J. Hammond, Colleen M. Seifert, and Kenneth C.

Gray. Functionality in analogical transfer: A hard match is good to �nd. The

Journal of the Learning Sciences, 1(2):111{152, 1991.

[Hammond, 1990] Kristian J. Hammond. Explaining and repairing plans that fail.

Arti�cial Intelligence, 45(1{2), 1990.

[Hsu et al., 1990] F.-h. Hsu, T. S. Anantharaman, M. S. Campbell, and

A. Nowatzyk. Deep thought. In T. Anthony Marsland and Jonathan Scha-

e�er, editors, Computers, Chess, and Cognition, pages 55{78. Springer-Verlag,

New York, 1990.

[Hsu, 1987] F.-h. Hsu. A two-million moves/s CMOS single-chip chess move gen-

erator. IEEE Journal of Solid-State Circuits, 22(5):841{846, 1987.

[Keller, 1987] Richard M. Keller. Concept learning in context. In Proceedings of

the 4th International Workshop on Machine Learning, Irvine, California, 1987.

[Keller, 1988] Richard M. Keller. Learning approximate concept descriptions.

Technical Report KSL-88-57, Stanford University, Knowledge Systems Labo-

ratory, Stanford, California, 1988. Reprinted in [AGA, 1990].

[Klein and Finin, 1987] David Klein and Tim Finin. What's in a deep model? A

characterization of knowledge depth in intelligent safety systems. In Proceedings

of the 10th International Joint Conference on Arti�cial Intelligence, Milano,

Italy, 1987.

[Knoblock, 1989] Craig A. Knoblock. Learning hierarchies of abstraction spaces.

In Proceedings of the 6th International Workshop on Machine Learning, pages

241{245, Ithaca, New York, 1989.



REFERENCES 57

[Knoblock, 1990a] Craig A. Knoblock. Abstracting the tower of hanoi. InWorking

Notes of the AAAI Workshop on Automatic Generation of Approximations and

Abstractions, pages 13{23, Boston, Massachusettes, 1990.

[Knoblock, 1990b] Craig A. Knoblock. Learning abstraction hierarchies for prob-

lem solving. In Proceedings of the 9th National Conference on Arti�cial Intelli-

gence, pages 923{928, Boston, MA, 1990.

[Knuth and Moore, 1975] Donald E. Knuth and R. W. Moore. An analysis of

alpha-beta pruning. Arti�cial Intelligence, 6(4):293{326, 1975.

[Kodrato� and Tecuci, 1987] Yves Kodrato� and Gheorghe Tecuci. DISCIPLE-

1: Interactive apprentice system in weak theory �elds. In Proceedings of the

10th International Joint Conference on Arti�cial Intelligence, pages 271{273,

Milano, Italy, 1987.

[Kodrato� and Tecuci, 1989] Yves Kodrato� and Gheorghe D. Tecuci. The central

role of explanations in DISCIPLE. In Katharina Morik, editor, Knowledge

Representation and Organization in Machine Learning, pages 135{147. Springer-

Verlag, Berlin, 1989.

[Korf, 1980] Richard E. Korf. Toward a model of representation changes. Arti�cial

Intelligence, 14:41{78, 1980.

[Kuipers, 1986] B. J. Kuipers. Qualitative simulation. Arti�cial Intelligence,

29:289{338, 1986.

[Laird et al., 1987] J. E. Laird, A. Newell, and Paul S. Rosenbloom. SOAR: An

architecture for general intelligence. Arti�cial Intelligence, 33:1{64, 1987.

[Lavra�c et al., 1991] N. Lavra�c, S. D�zeroski, and M. Grobelnik. Learning non-

recursive de�nitions of relations with linus. In Proceedings of the European

Working Session on Learning, Porto, Portugal, 1991.

[Lebowitz, 1986] M. Lebowitz. Integrated learning: Controlling explanation. Cog-

nitive Science, 10(2):219{240, 1986.

[Lenat and Feigenbaum, 1991] D. B. Lenat and E. A. Feigenbaum. On the thresh-

olds of knowledge. Arti�cial Intelligence, 47:185{250, 1991.

[Levy, 1986] David N. Levy, editor. Computer Chess Compendium. Batsford Ltd.,

London, 1986.



58 REFERENCES

[Marsland and Schae�er, 1990] T. Anthony Marsland and Jonathan Schae�er, ed-

itors. Computers, Chess, and Cognition. Springer-Verlag, New York, 1990.

[McCarthy, 1990] John McCarthy. Chess as the drosophila of AI. In T. Anthony

Marsland and Jonathan Schae�er, editors, Computers, Chess, and Cognition,

pages 227{237. Springer-Verlag, New York, 1990.

[Michalski and Tecuci, 1992] Ryszard S. Michalski and Gheorghe D. Tecuci, edi-

tors.Machine Learning: A Multistrategy Approach, Vol. IV. Morgan Kaufmann,

San Mateo, CA, 1992.

[Michalski et al., 1986] R. S. Michalski, I. Mozeti�c, J. Hong, and N. Lavra�c. The

multi-purpose incremental learning system AQ15 and its testing application

to three medical domains. In Proceedings of the 5th National Conference on

Arti�cial Intelligence, pages 1041{1045, Philadelphia, PA, 1986.

[Michalski, 1980] Ryszard S. Michalski. Pattern recognition and rule-guided infer-

ence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:349{

361, 1980.

[Michalski, 1983] Ryszard S. Michalski. A theory and methodology of inductive

learning. Arti�cial Intelligence, 20, 1983.

[Michalski, 1992] Ryszard S. Michalski. Inferential theory of learning: Developing

foundations for multistrategy learning. In Ryszard S. Michalski and Gheorghe D.

Tecuci, editors, Machine Learning: A Multistrategy Approach, Vol. IV. Morgan

Kaufmann, San Mateo, CA, 1992.

[Minton, 1984] Steve Minton. Constraint-based generalization: Learning game-

playing plans from single examples. In Proceedings AAAI-84, pages 251{254,

Austin, Texas, 1984.

[Minton, 1990] Steve Minton. Quantitative results concerning the utility of

explanation-based learning. Arti�cial Intelligence, 42:363{392, 1990.

[Mitchell et al., 1986] T. M. Mitchell, R. M. Keller, and S. Kedar-Cabelli.

Explanation-based generalization: A unifying view. Machine Learning, 1(1):47{

80, 1986.

[Mostow et al., 1990] Jack Mostow, Thomas Ellman, and Armand Prieditis. A

uni�ed transformational model for discovering heuristics by idealizing in-

tractable problems. In Working Notes of the AAAI Workshop on Automatic



REFERENCES 59

Generation of Approximations and Abstractions, pages 290{301, Boston, Mas-

sachusettes, 1990.

[Mozeti�c and Holzbaur, 1991] Igor Mozeti�c and C. Holzbaur. Extending

explanation-based generalization by abstraction operators. In Proceedings of

the 5th European Working Session on Learning, pages 282{297, Porto, Portu-

gal, 1991.

[Mozeti�c, 1986] Igor Mozeti�c. Knowledge extraction through learning from exam-

ples. In Tom M. Mitchell, Jaime G. Carbonell, and Ryszard S. Michalski, edi-

tors, Machine Learning: A Guide to Current Research, pages 227{231. Kluwer

Academic Publishers, 1986.

[Mozeti�c, 1987a] Igor Mozeti�c. Learning of qualitative models. In Progress in

Machine Learning. Sigma Press, Wilmslow, England, 1987.

[Mozeti�c, 1987b] Igor Mozeti�c. The role of abstractions in learning qualitative

models. In Proceedings of the 4th International Workshop on Machine Learning,

Irvine, California, 1987.

[Muggleton and Buntine, 1988] Stephen H. Muggleton and Wray L. Buntine. Ma-

chine invention of �rst-order predicates by inverting resolution. In Proceedings

of the 5th International Conference on Machine Learning, pages 339{352, 1988.

[Muggleton and Feng, 1990] Stephen H. Muggleton and Cao Feng. E�cient in-

duction of logic programs. In Proceedings of the 1st Conference on Algorithmic

Learning Theory, pages 1{14, Tokyo, Japan, 1990.

[Muggleton, 1991] Stephen H. Muggleton. Inductive logic programming. New

Generation Computing, 8:295{318, 1991.

[Newell et al., 1960] A. Newell, J. Shaw, and H. Simon. Report on a general

problem-solving program for a computer. In Proceedings of the International

Conference on Information Processing, UNESCO, Paris, 1960.

[Pazzani and Kibler, 1992] Micheal Pazzani and Dennis Kibler. The utility of

knowledge in inductive learning. Machine Learning, 9:57{94, 1992.

[Pazzani, 1988] M. Pazzani. Selecting the best explanation for explanation-based

learning. In Proceedings of the 1988 Spring Symposium on Explanation-based

Learning, pages 165{169, Stanford University, California, 1988.



60 REFERENCES

[Pazzani, 1989] Michael J. Pazzani. Explanation-based learning with weak domain

theories. In Proceedings of the 6th International Workshop on Machine Learning,

pages 72{74, Ithaca, New York, 1989.

[Pazzani, 1990] M. J. Pazzani. Integrating explanation-based and empirical learn-

ing methods in OCCAM. In Proceedings of the 3rd European Working Session

on Learning, pages 147{166, Glasgow, Scotland, 1990.

[Pearce, 1988] D. A. Pearce. The induction of fault diagnosis systems from qual-

itative models. In Proceedings of the 7th National Conference on Arti�cial In-

telligence, pages 353{357, Minneapolis, Minnesota, 1988.

[Plaisted, 1981] D. Plaisted. Theorem proving with abstraction. Arti�cial Intelli-

gence, 16:47{108, 1981.

[Plotkin, 1970] G. D. Plotkin. A note on inductive generalisation. In B. Meltzer

and Donald Michie, editors, Machine Intelligence 5, pages 153{163. Elsevier

North-Holland, New York, 1970.

[Plotkin, 1971] G. D. Plotkin. A further note on inductive generalisation. In

B. Meltzer and Donald Michie, editors, Machine Intelligence 6, pages 101{124.

Elsevier North-Holland, New York, 1971.

[Quinlan, 1990] John Ross Quinlan. Learning logical de�nitions from relations.

Machine Learning, 5:239{266, 1990.

[Rajamoney and DeJong, 1987] Shankar Rajamoney and Gerald F. DeJong. The

classi�cation, detection and handling of imperfect theory problems. In Proceed-

ings of the 10th International Joint Conference on Arti�cial Intelligence, pages

205{207, Milano, Italy, 1987.

[Roos, 1992] Nico Roos. A logic for reasoning with inconsistent knowledge. Arti-

�cial Intelligence, 57:69{103, 1992.

[Rosenbloom and Laird, 1986] Paul S. Rosenbloom and J. E. Laird. Mapping

explanation-based generalization onto SOAR. In Proceedings of the 5th Na-

tional Conference on Arti�cial Intelligence, Proceedings of the 5th National

Conference on Arti�cial Intelligence, 1986.

[Rosenbloom and Newell, 1986] Paul S. Rosenbloom and Allen Newell. The chunk-

ing of goal hierarchies: A generalized model of practice. In Ryszard S. Michalski,

Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Ar-

ti�cial Intelligence Approach, Vol. II, pages 247{288. Morgan Kaufmann, Los

Altos, California, 1986.



REFERENCES 61

[Russell and Grosof, 1987] S. J. Russell and B. N. Grosof. A declarative approach

to bias in concept learning. In Proceedings of the 6th National Conference on

Arti�cial Intelligence, 1987.

[Russell, 1986a] S. J. Russell. Analogical and Inductive Reasoning. PhD thesis,

Stanford University, 1986.

[Russell, 1986b] S. J. Russell. A quantitative analysis of analogy by similarity. In

Proceedings of the 5th National Conference on Arti�cial Intelligence, Philadel-

phia, PA, 1986.

[Russell, 1987] S. J. Russell. Analogy and single-instance generalization. In Pro-

ceedings of the 4th International Workshop on Machine Learning, Irvine, Cali-

fornia, 1987.

[Sacerdoti, 1974a] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces.

Arti�cial Intelligence, 5(2):115{135, 1974.

[Sacerdoti, 1974b] Earl D. Sacerdoti. A Structure for Plans and Behavior. Amer-

ican Elsevier, New York, 1974.

[Saitta et al., 1991] L. Saitta, M. Botta, S. Ravotto, and S. Sperotto. Improving

learning by using deep models. In Proceedings of the First International Work-

shop on Multistrategy Learning, pages 131{143, Harper's Ferry, West Virginia,

1991.

[Scherzer et al., 1990] T. Scherzer, L. Scherzer, and D. Tjaden. Learning in bebe.

In T. Anthony Marsland and Jonathan Schae�er, editors, Computers, Chess,

and Cognition, pages 197{216. Springer-Verlag, New York, 1990.

[Sebag and Schoenauer, 1990] Mich�ele Sebag and Marc Schoenauer. Incremental

learning of rules and meta-rules. In Proceedings of the 7th International Con-

ference on Machine Learning, pages 49{57, Austin, Texas, 1990.

[Sebag and Schoenauer, 1992] Mich�ele Sebag and Marc Schoenauer. Learning to

control inconsistent knowledge. In Proceedings of the 10th European Conference

on Arti�cial Intelligence, pages 479{483, Vienna, Austria, 1992.

[Shannon, 1950] Claude E. Shannon. Programming a computer for playing chess.

Philosophical Magazine, 41(7):256{275, 1950. Reprinted in [Levy, 1986].

[Shapiro, 1981] Ehud Y. Shapiro. An algorithm that infers theories from facts. In

Proceedings of the 7th International Joint Conference on Arti�cial Intelligence,

pages 446{451, 1981.



62 REFERENCES

[Shapiro, 1982] Ehud Y. Shapiro. Algorithmic Program debugging. The MIT Press,

Cambridge, 1982.

[Shavlik and Towell, 1989] Jude W. Shavlik and Geo�rey G. Towell. An approach

to combining explanation-based and neural learning algorithms. Connection

Science, 1(3), 1989.

[Srinivasan et al., 1992] A. Srinivasan, S. H. Muggleton, and M. E. Bain. Distin-

guishing noise from exceptions in non-monotonic learning. In Proceedings of the

2nd International Inductive Logic Programming Workshop, Tokyo, 1992.

[Tadepalli, 1986] Prasad Tadepalli. Learning in intractable domains. In Machine

Learning: A Guide to Current Research. Morgan Kaufmann, Los Altos, Cali-

fornia, 1986.

[Tadepalli, 1989] Prasad Tadepalli. Lazy explanation-based learning: A solution

to the intractable theory problem. In Proceedings of the 11th International Joint

Conference on Arti�cial Intelligence, 1989.

[Tadepalli, 1990] Prasad Tadepalli. On quantifying approximation. In Working

Notes of the AAAI Workshop on Automatic Generation of Approximations and

Abstractions, pages 257{266, Boston, Massachusettes, 1990.

[Tecuci and Kodrato�, 1990] Gheorghe Tecuci and Yves Kodrato�. Apprentice-

ship learning in imperfect domain theories. In Yves Kodrato� and Ryszard S.

Michalski, editors, Machine Learning: An Arti�cial Intelligence Approach, Vol.

III, pages 514{551. Morgan Kaufmann, San Mateo, California, 1990.

[Tecuci and Michalski, 1991] Gheorghe D. Tecuci and Ryszard S. Michalski. A

method for multistrategy task-adaptive learning based on plausible justi�ca-

tions. In Proceedings of the 8th International Workshop on Machine Learning,

pages 549{553, Evanston, Illinois, 1991.

[Tenenberg, 1987] J. Tenenberg. Preserving consistency across abstraction map-

pings. In Proceedings of the 10th International Joint Conference on Arti�cial

Intelligence, pages 1011{1014, Milano, Italy, 1987.

[Unruh and Rosenbloom, 1989] Amy Unruh and Paul S. Rosenbloom. Abstraction

in problem solving and learning. In Proceedings of the 11th International Joint

Conference on Arti�cial Intelligence, pages 681{687, 1989.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. Communications of the

ACM, 27:1134{1142, 1984.



REFERENCES 63

[Var�sek, 1992] Alen Var�sek. Qualitative model evolution. In Proceedings of the

12th International Joint Conference on Arti�cial Intelligence, pages 1311{1316,

1992.

[Weld and deKleer, 1990] D. S. Weld and J. deKleer. Readings in Qualitative Rea-

soning about Physical Systems. Morgan Kaufmann, San Mateo, California, 1990.

[Widmer, 1989a] Gerhard Widmer. An incremental version of Bergadano & Gior-

dana's integrated learning strategy. In Proceedings of the Fourth European

Working Session on Learning, Montpellier, France, 1989.

[Widmer, 1989b] Gerhard Widmer. A tight integration of deductive and induc-

tive learning. In Proceedings of the 6th International Workshop on Machine

Learning, Ithaca, New York, 1989.

[Widmer, 1991] Gerhard Widmer. Using plausible explanations to bias empirical

generalization in weak theory domains. In Proceedings of the 5th European

Working Session on Learning, Porto, Portugal, 1991.

[Widmer, 1992a] Gerhard Widmer. Learning with a qualitative domain theory

by means of plausible explanations. In Ryszard S. Michalski and Gheorghe D.

Tecuci, editors, Machine Learning: A Multistrategy Approach, Vol. IV. Morgan

Kaufmann, San Mateo, CA, 1992.

[Widmer, 1992b] Gerhard Widmer. Qualitative perception modeling and intelli-

gent musical learning. Computer Music Journal, 16(2):51{68, 1992.

[Wilkins, 1982] David E. Wilkins. Using patterns and plans in chess. Arti�cial

Intelligence, 18:1{51, 1982. Reprinted in [Levy, 1986].

[Wilkins, 1990] David C. Wilkins. Knowledge base re�nement as improving an

incorrect and incomplete domain theory. In Yves Kodrato� and Ryszard S.

Michalski, editors, Machine Learning: An Arti�cial Intelligence Approach, Vol.

III, pages 493{513. Morgan Kaufmann, San Mateo, California, 1990.

[Williams, 1988] B. Williams. MINIMA | A symbolic approach to qualitative

algebraic reasoning. In Proceedings of the 7th National Conference on Arti�cial

Intelligence, pages 264{269, Minneapolis, Minnesota, 1988.

[Zweben and Chase, 1988] Monte Zweben and Melissa P. Chase. Improving op-

erationality with approximate heuristics. In Proceedings of the AAAI Spring

Symposium on Explanation-Based Learning, pages 100{106, Palo Alto, Califor-

nia, 1988.


