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Abstract

The paper is concerned with supervised learning

of numeric target concepts. The task is to learn

to predict or determine the exact values of some

numeric target variables. Training examples

may be described by both symbolic and numeric

predicates. General domain knowledge may be

available in qualitative form. The paper presents

a general learning model for such domains. The

model integrates a symbolic learning compo-

nent, which is based on a multi–instance plausi-

ble explanation algorithm, and an instance–

based learning component, which stores

instances with precise values and predicts new

values by interpolation. The symbolic compo-

nent can use available qualitative background

knowledge; it learns sub–concepts that partition

the space for the underlying instance–based

method. A realization of the model in a system

named IBL–Smart is then described. The sys-

tem has been applied to a complex task from the

domain of tonal music, and some experimental

results are reported that demonstrate the effec-

tiveness of the method.

Key words: Knowledge–based learning,

instance–based learning, integrated learning,

qualitative models.

1  Introduction

It is being recognized by more and more re-

searchers that qualitative background knowl-

edge is naturally available in many domains,

and that learning algorithms are needed that can

effectively use such knowledge, even if it is in-

complete and inconsistent, and generally ab-

stract and imprecise. Some approaches to this

problem have been proposed in the recent past,

most of them centering around the notion of in-

complete or plausible explanations (see, e.g.,

Tecuci, 1991; Tecuci & Michalski, 1991; Wid-

mer, 1991). All these methods and systems as-

sume that the target concepts are discrete classes

of objects, to be described by classification rules

which assign a new object to its appropriate

class.

However, there are also many learning prob-

lems with numeric target concepts, i.e., where

the task is to predict more or less precisely the

values of some numeric variables. The training

instances may be described by both symbolic

and numeric predicates. In such domains, too,

general domain knowledge may be available



that relates certain parameters, but maybe only

in a qualitative, imprecise way. As an example,

consider typical prediction tasks such as stock

market prediction or the prediction of energy

consumption or demand in some power plant.

One can easily conceive of partial qualitative

models of these domains that would capture

some of the relevant domain knowledge. Intelli-

gent learners should be able to utilize such ab-

stract knowledge.

With few exceptions (e.g., regression trees –

Breiman et al., 1984), ‘classical’ symbolic

learning methods cannot be used for such nu-

meric  problems (unless the domain of the nu-

meric target concept can be abstracted into dis-

crete, qualitative subranges without loss of rele-

vant information). In particular, plausible ex-

planation methods capable of utilizing qualita-

tive domain knowledge, like those mentioned

above, are not applicable to such domains; they

assume discrete target concepts, and it is not

clear how the qualitative background knowl-

edge should be related to the precise numeric in-

formation in the data.

The topic of this paper is a new learning model

(and an implemented system) that can learn nu-

meric target concepts while taking maximum

advantage of available qualitative domain

knowledge, given that the problem and the tar-

get concepts satisfy some basic assumptions.

The approach consists essentially in using a

symbolic learner to partition the space for an

instance–based, numeric method that is used to

predict precise values of the target variables.

The symbolic learner produces plausible ex-

planations for discrete subconcepts; the ex-

planations (and the extracted rules) are based

both on qualitative background knowledge and

on empirical information from the training data.

The underlying instance–based method stores

the examples in several independent instance

spaces and uses the learned symbolic rules to

decide which instance space is relevant to a giv-

en example. Values for new examples are then

predicted by numeric interpolation in those

instance spaces that are classified as relevant by

the associated symbolic rules.

The motivation for this research was a practical

and complex problem in the domain of tonal

music, namely, learning to apply expressive in-

terpretation to a given piece of music, i.e., to dy-

namically vary tempo and dynamics in order to

produce a musically satisfying performance.

The target concepts in this problem are neces-

sarily numeric (exactly how much variation

should be applied to a given note), and there is

some natural domain knowledge that is relevant

to the task. The domain knowledge comes from

music theory and is inherently qualitative and

incomplete, but describable in explicit form.

The model has been implemented in a learning

system named IBL–Smart (for reasons that will

become obvious soon). We will first present the

general learning model, then describe its real-

ization in the system IBL–Smart, and illustrate

its applicability with a description of our partic-

ular musical application and some experimental

results. Our approach was strongly inspired by

ideas presented in (DeJong, 1989), and the last

section will relate our system to that and other

work.

2  The General Model

2.1  Statement of the learning problem

This paper deals with supervised learning of nu-

meric target concepts. More precisely, the class

of learning problems we are interested in can be

defined as follows:



Given: a set E of training examples, described

in terms of a set of operational predicates P,

where we distinguish symbolic predicates

PS and numeric predicates (attributes) PN.

Thus, PS � PN = P. Also attached to each

example e�E is a numeric attribute T(e,v)

(the target attribute) with known value v.

(This replaces the classification in symbol-

ic supervised concept learning.) As v is a

function of (the description of) the

instance, we will also write v = T(e). Note

that so far, there are no negative instances in

this scenario.

Find: a set of general rules that predict, for any

given object o described by predicates �P,

a numeric value v = T(o), based on the de-

scription of o.

(As in symbolic concept learning, we might

require these rules to be complete (predict a

value for every example) and correct (pre-

dict the correct value for each example)

with respect to the training data (cf. Mi-

chalski, 1983). However, this may not be

100% desirable or feasible in every ap-

plication domain.)

In addition, there may be some domain–specific

background knowledge (BK) relating the target

concept T(X,V) (or some abstractions of T – see

below) to some of the operational predicates P

in specific ways, possibly via some intermediate

non–operational predicates. This knowledge

might be in the form of rules, as in standard EBL

domain theories (Mitchell et al., 1986) or in the

form of qualitative knowledge items as in (Wid-

mer, 1993). The knowledge need not be correct

or complete, nor need it be quantitative and pre-

cise. An additional constraint then is to find

solutions (rules) that conform as closely as pos-

sible to BK while also consistently describing

the training data E.

The learning model we are going to introduce in

the next section includes a symbolic learning

component that can utilize qualitative back-

ground knowledge for generating plausible ex-

planations. For this method to be applicable, we

need to make the following

Assumptions:

1) We assume that there are some discrete, qual-

itative sub–concepts Ti(X) of the target con-

cept T(X,V) that can naturally be distin-

guished, where a sub–concept is defined by a

more or less clearly distinguished subrange

of the function value V.

2) We further assume that it is these discrete

sub–concepts that are related to operational

predicates P by the available background

knowledge BK.

3) Finally, we assume that examples of the dis-

crete sub–concepts Ti can be distinguished

using the operational predicates P.

For example, in our energy demand prediction

task, such subconcepts might be 	���	�	�

������	����� or ��
�	�����������������	�

�����; in the musical domain described below,

there are natural qualitative subconcepts such as

��	��	�������	� and ������	�������	� (in-

crease or decrease, respectively, in loudness rel-

ative to the current level) or ���		���������	�

and ��������������	� (increase or decrease in

tempo).
1)

The motivation for this assumption is that these

discrete, qualitative, symbolic sub–concepts

will be the target concepts for the symbolic

1)

   The boundaries between these subconcepts will

sometimes have to be defined somewhat arbitrarily.

This is not necessarily a problem, as the results of the

symbolic learning component are not used for classifi-

cation, but only to find appropriate sets of instances for

comparison. Section 2.2 will make that clearer.



learning component. Each of the original train-

ing instances will be assigned to one of the sub–

concepts Ti, depending on its value v = T(e), and

the symbolic learner will learn general rules for

each sub–concept. Note that in this way we also

introduce negative instances for each target con-

cept Ti, namely, all examples assigned to some

Tj where j�i.

2.2  The learning model

Returning to our general learning problem, one

way to approach it would be to simply do

instance–based learning in the entire descrip-

tion space spanned by all the available attributes

P, symbolic and numeric. That is, training

instances would be stored along with their com-

plete descriptions, and the value v = T(o) for

some new object o would be predicted by some

nearest neighbor method in the space of stored

instances, possibly with some numeric inter-

polation. There are several problems with this

approach. First, it is not always clear how to de-

vise a similarity metric that combines symbolic

and numeric attributes in a meaningful way, es-

pecially when the attributes are of various types

and inhomogeneous with respect to domain size

etc. Second, the only way to integrate available

qualitative background knowledge into the

learning process is via the similarity metrics.

This may not be the most natural way to express

one’s domain knowledge. Moreover, instance–

based approaches suffer from the problem that

they do not produce comprehensible concept

descriptions. On the other hand, it is clear that

some kind of instance–based interpolation com-

ponent is needed in such domains, as the task is

to predict numeric values from continuous do-

mains, which is impossible with discrete, sym-

bolic concept descriptions.

The model were are proposing here consists of

two components: a symbolic learning compo-

nent that learns to distinguish different types of

situations and can utilize all the available do-

main knowledge, and an instance–based com-

ponent which stores the instances with their pre-

cise numeric attribute values and can predict the

target value for some new object by numeric in-

terpolation over known instances. The connec-

tion between these two components is as fol-

lows: each rule (conjunctive hypothesis)

learned by the symbolic learning component de-

scribes a subset of the instances; these are as-

sumed to represent one particular subtype of the

concept to be learned. All the instances covered

by a rule are given to the instance–based learner

to be stored together in a separate instance

space. Predicting the target value for some new

object then involves matching the object against

the symbolic rules and using only those numeric

instance spaces (interpolation tables) for predic-

tion whose associated rules are satisfied by the

object. In this way, the system learns several dis-

tinct instance spaces where different laws and

regularities may apply. In fact, different

instance spaces may contain examples with con-

flicting values.

More precisely, the target concepts for the sym-

bolic learning component are the discrete, qual-

itative sub–concepts Ti mentioned in section

2.1. The symbolic learner learns general condi-

tions that characterize or discriminate between

these discrete classes. These conditions may re-

fer to both symbolic and numeric predicates.

The symbolic learner tries to use all the avail-

able qualitative background knowledge. The re-

sult produced by this component is a set of gen-

eral rules that group the examples into clusters

by assigning them to different sub–classes of the

target concept.



The numeric, instance–based component takes

the original training instances E as clustered by

the symbolic learner, and creates a separate

instance space from each cluster. Instances are

stored with all their numeric attributes and with

their precise numeric target values. The dimen-

sions of such an instance space are thus defined

by the numeric attributes PN. For some new ob-

ject o, the target value v = T(o) can then be pre-

dicted by selecting the appropriate instance

space (by using the generated symbolic rules as

filters), and applying some numeric interpola-

tion method over the stored instances.

Several comments seem to be in order here:

First, we assume that the symbolic learning

component may refer to predicates from both

PS and PN for its hypotheses. It is not realistic

(nor necessary) to expect that the discrete sub–

concepts Ti can always be distinguished by ref-

erence to symbolic predicates only. Second, we

do assume that after clustering the examples ac-

cording to sub–concepts (and sub–sub–con-

cepts, if these are disjunctive), interpolation

over the numeric attributes in the resulting

instance spaces is sufficient to predict sensible

target values. In other words, we assume that the

rules learned for the sub–concepts Ti contain all

the relevant symbolic information. The dimen-

sions of the instance spaces are only attributes

from PN. Any other solution would require

some non–standard interpolation scheme to ar-

rive at numeric prediction values. If additional

domain knowledge about attribute relevance is

available, the number of numeric dimensions

may still be reduced, or some specialized simi-

larity measures may be used for interpolation.

3 Realization of the Model:

IBL–Smart

The general method has been implemented in a

system named IBL–Smart and has been tested in

the context of a complex musical problem. In

accordance with the model, IBL–Smart consists

of two components. The first of these –– the

symbolic learner –– has been specifically de-

signed to be able to use qualitative domain

knowledge.

3.1  The symbolic learning component

The symbolic learner in IBL–Smart is a multi-

ple–instance plausible explanation system

based on the search algorithm of ML–Smart

(Bergadano & Giordana, 1988). It performs

top–down discrimination, integrating and inter-

leaving deductive and inductive operationaliza-

tion steps. The basics of the search are described

below (section 3.1.1). For IBL–Smart, we have

extended ML–Smart’s discrimination algo-

rithm to also use qualitative background knowl-

edge in the form of general dependency state-

ments and directed qualitative dependency rela-

tions. This is described in section 3.1.2.

3.1.1  The basic search algorithm

The learner starts with a nonoperational defini-

tion of the target concept (some discrete sub–

concept Ti) and performs stepwise operational-

ization (specialization) by growing a heuristic

best–first search tree. Each node/partial hypoth-

esis in the search tree is accompanied by its ex-

tension, i.e., the positive and negative examples

covered by the operational part of the expres-



sion. This makes it possible to use coverage

measures as part of the search heuristic.

As in ML–Smart, each step in the search is ei-

ther

(1) a deductive application of a rule from the

domain theory –– replacing a non–opera-

tional literal by its sufficient conditions as

defined by the rule;

 (2) an inductive generalization step –– drop-

ping a predicate when the node covers too

few positive instances and thus the hypoth-

esis seems too restricted; or

 (3) an inductive specialization step –– adding

some predicate to the operational part of the

hypothesis in order to exclude some nega-

tive instances.

Deductive operationalization steps (1) are pre-

ferred. Inductive specialization (3) is done when

deductive operationalization is not possible

(e.g., when no rule is available or applicable to

the examples). Inductive generalization (2) is

attempted whenever the current node covers too

few positive instances (according to some

threshold) and thus the hypothesis seems too re-

strictive. The system then looks for a condition

that, if dropped, would increase the number of

instances covered by the hypothesis. All in all,

the search algorithm integrates deduction and

induction in a fine–grained manner.

The search is guided by a heuristic measure

(evaluation function) H that measures the rela-

tive ‘goodness’ of nodes. The heuristic decides

both which node is to be expanded next, and

how. Among other things (see below), it takes

into account the coverage of the expression, i.e.,

the ratio positive / negative instances covered by

the node, and also the absolute number of posi-

tive instances covered.

The discrimination algorithm has been ex-

tended to utilize also numeric attributes in dis-

crimination steps. For numeric attributes, the

system looks for a binary split point that best

discriminates between positive and negative

instances, as it is done in some decision tree

learners (e.g., Cestnik et al., 1987; Fayyad &

Irani, 1992). The general evaluation function H

of the search algorithm is used to determine

what is the best split.

3.1.2  Using qualitative background

         knowledge

The search algorithm as described above corre-

sponds closely to the original ML–Smart meth-

od as presented in (Bergadano & Giordana,

1988). In our system IBL–Smart, the algorithm

has been extended so as to also utilize qualita-

tive background knowledge, where available.

IBL–Smart domain theories may contain two

types of qualitative knowledge items:

(1) General dependency statements of the form

����	���
	������ simply state that some

predicate � may be operationalized by us-

ing a set of specified predicates ��. This

type of general knowledge items has al-

ready been proposed in (Bergadano, Gior-

dana and Ponsero, 1989). In IBL–Smart,

such statements tell the search algorithm to

use an entire set of predicates in one opera-

tionalization step: successors of a node are

created for all possible combinations of

values for the predicates �� occurring in

some positive instances covered by the

node.

Such dependency statements are similar,

but not identical, to determinations (Rus-

sell, 1987). They permit IBL–Smart to per-

form strictly constrained forms of look–

ahead, and thus help overcome blindness



effects that would arise if the algorithm per-

formed purely empirical step–wise special-

ization. For instance, they can be used to

describe relational clichés as proposed in

(Silverstein & Pazzani, 1991).

(2) Directed dependency statements of the

form � ���	�
� can be paraphrased as “the

values of 	 and 
 are positively propor-

tionally related” or “high (or low) values of

	 tend to produce high (or low) values of 
,

all other things being equal”. Negative de-

pendency (���	�
)) is defined analogous-

ly. Such statements are, of course, re-

stricted to functional predicates (or attrib-

utes) that assign values to objects. They

were already used in (Widmer, 1991) and

are similar to Michalski’s M–descriptors

(Michalski, 1983). The notation was bor-

rowed from Forbus’ qualitative propor-

tionalities (Forbus, 1984).

In the search algorithm of IBL–Smart, di-

rected dependencies are used like general

dependencies (create successors for all pos-

sible value combinations), and the addi-

tional knowledge about the direction of in-

fluence is used in the search heuristic H:

when evaluating some operationalization

based on a �� or �� relation, the heuristic

also rates the degree to which the particular

values involved match the direction of the

dependency (which is assumed to be lin-

ear). Knowing that ���	�
� and operation-

alizing condition 
����� �, an operational-

ization 
����� �� ������� 	���� �� � for specif-

ic values � and � will be regarded the more

plausible the more the relative positions of

� and � in their respective domains agree:


����� ����� ������� 	���� �� ����� is rated as

more plausible than 
����� ����� ������

	���� �� ��� (see also Widmer, 1993.). Hy-

potheses constructed by IBL–Smart will

tend to include those attributes that most

closely approximate such linear constraints

between the data and the background

knowledge.

Note that, as with strict deductive rules, such

qualitative dependency statements need not

necessarily be entirely correct in order to have a

positive impact on the search. If a dependency

statement is correct, it will lead to faster conver-

gence; if it is too general (the given predicates

are not sufficient to completely discriminate be-

tween positive and negative instances), subse-

quent empirical discrimination steps will refine

it. And if it is overly restrictive (some predicates

are not necessary), this may be repaired by em-

pirical generalization steps, where the predi-

cates that are too restrictive are removed from

the hypothesis to arrive at a more general partial

concept description.

By taking into account both such inference–de-

pendent plausibility measures and information

about the numbers of positive and negative

instances covered by a node, the search heuristic

combines weak, imprecise background knowl-

edge with empirical information from the train-

ing data, producing hypotheses that tend to cor-

respond to the background knowledge as much

as the data permit and overriding the back-

ground knowledge if the data are in conflict with

the knowledge.

3.2  The numeric instance–based component

The result of this learning step is a concept hy-

pothesis for a discrete, qualitative sub–concept

in the form of a DNF expression, where each

conjunct describes one particular subtype of the

sub–concept. The instance–based learner now

collects all the training instances covered by a

particular conjunct and builds an instance store
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	����
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Fig. 1: Sketch of IBL–Smart

�����������
������� ������

in the form of an interpolation table, using these

examples. In the absence of knowledge about

the relevance of the numeric attributes (PN) to

the target value, the dimensions of the interpola-

tion table are chosen to be all the numeric attrib-

utes (� PN) shared by the selected instances

(not all instances may have defined values for all

attributes), and the output dimension is the val-

ue of the target variable V = T(X).

When given a new instance for which to predict

the value of the target variable, the system

matches the instance against all learned rules,

retrieves those instance spaces whose associated

rules are matched, and computes a value for the

instance’s target value by interpolation in each

of the retrieved spaces. If the instance matches

more than one rule, and thus target values are

computed in several spaces, the target values are

simply averaged. Lacking more specific knowl-

edge about the relationships between the vari-

ous numeric parameters, we use the Euclidean

distance as the similarity measure and perform

linear interpolation. Figure 1 summarizes the

basic structure of IBL–Smart.

4 An Application of IBL–Smart:

Learning Expressive Interpretation

IBL–Smart has been applied to a complex prob-

lem from the domain of tonal music, namely, ex-

pressive performance or interpretation of writ-

ten music. By this we understand the variations

in tempo and loudness that a performer applies

(consciously or unconsciously) to the notes of a

piece during performance. When played exactly

as written, most pieces of tonal music would

sound utterly mechanical and lifeless.

There are basically three dimensions to expres-

sive performance: variations in tempo (“ruba-

to”), in loudness (“dynamics”) and in the dura-

tion of notes as actually played, as opposed to

the notated length (“articulation”).

In this presentation, we will restrict ourselves to

the dimension of dynamics. As mentioned in the

introduction, this concept is inherently numeric,

as the task is to decide not just whether or not to

play some note louder or softer, but exactly by

how much. Nevertheless, there are two discrete,

qualitative sub–concepts that can naturally be

distinguished: �������������� and ��������



�������� – whether a note is to be played louder

or softer, respectively, than some standard level.

These are the target concepts for the plausible

explanation component. The precise amounts

by which the loudness is to be varied are numer-

ic multiplication factors that are to be learned by

the instance–based component. 2)

Training instances are derived from actual per-

formances of piano pieces recorded on an elec-

tronic piano via a MIDI interface. At the mo-

ment, we are restricting ourselves to single line

melodies (with additional information about the

underlying harmonic structure of the piece).

That is, the input is a sequence of notes, de-

scribed in terms of various predicates and ac-

companied by explicit information about the de-

gree of crescendo or diminuendo that was ap-

plied to it by the performer. Each note of a

played piece is a training instance.

The description language consists of predicates

that describe various features of a note and

structural features of its surroundings. There are

currently 41 operational predicates, of which 21

are symbolic (like ���������������������) and

20 are numeric (like ����������������). Some of

2)

   A clarifying remark to readers who feel that we are

trivializing the artistic phenomenon of expressive mu-

sical performance by claiming that a computer pro-

gram can easily learn to replicate such behaviour, or

that these phenomena can be explained by some simple

domain theory: We are not talking here about the high-

ly artistic details in variation that distinguish a great pi-

anist or other performer. We are convinced, however

(and there is much support for this hypothesis from var-

ious areas of musicology), that expressive performance

does have a large ‘rational’ component, in that one of

its purposes is to convey an understanding of musical

structure to a listener. It is this rational part for which

we can find partial plausible explanations and which

we can expect a computer to learn, provided it is

equipped with the necessary musical knowledge and a

suitable vocabulary.

these predicates are computed by a pre–proces-

sing component which performs a music–theo-

retic analysis of the given piece in terms of some

relevant musical structures (e.g., phrases and

various types of ‘processes’ such as linear me-

lodic lines (ascending or descending), rhythmic

patterns, etc.). Many numeric attributes then de-

scribe the relative position of a note in a phrase

or in a ‘process’. Note that the number of attrib-

utes defined for a given note varies: some notes

occur in many patterns, others only in some. So

not all numeric attributes are defined for every

note.

The background knowledge for this problem is

mainly in the form of directed and undirected

dependency statements. The domain theory is a

hierarchy of such dependency statements and

some crisp rules. The top level of the theory re-

lates the phenomenon of loudness variations to

some abstract musical notions by a set of depen-

dencies like

������������ ������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	� ����������������
��

������������ ������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � 	� �������������������������
��

������������ ������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	� ���������������
��

The first of these can be paraphrased as

“Whether crescendo should be applied to a note

(and if so, the exact amount X) depends, among

other things, on the structural importance (sa-

lience) Y of the note.”

and analogously for the other ones.

The abstract notions ��������, ��������������

����, and ������� are then again related to low-

er–level musical effects, all the way down to

some surface features of training instances, for

example:



Fig. 2: Beginnings of three little minuets by J.S.Bach

���� �����
�	���������������

� � � � � � � � ��
��������������� � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� �
������	��
��������������

� � � � � � � � ��
��������������

“The degree of stability Y of a note is positively

proportionally related (among other things) to

the metrical strength X of the note” etc.

where �����
�	������� is a numeric and �
��

�����	��
������ is a symbolic attribute (with a

discrete, ordered domain of qualitative values).

Both are defined as operational.

Given this domain theory and some played

pieces, the plausible explanation component

learns mixed symbolic/numeric rules that dis-

criminate various types of situations where a

crescendo or a diminuendo occurs. These rules

are sets (disjunctions) of conjunctive condi-

tions; each conjunct describes a particular class

of crescendo/diminuendo situations. For each

conjunct, a numeric interpolation table (in-

stance space) is created which contains all the

instances covered by the conjunct. The set of all

numeric attributes shared by all the instances

covered by a conjunct defines the dimensions of

the respective interpolation table.

5 An Experiment

Several experiments with comparatively simple

piano pieces have been performed. In one ex-

periment, we chose three well–known minuets

from J.S.Bach’s Notenbüchlein für Anna Mag-

dalena Bach as training and test pieces. The be-

ginnings of the three minuets are shown in Fig-

ure 2. All three pieces consist of two parts. The

second part of each piece was used for training:

they were played on an electronic piano by the

author, and recorded through a MIDI interface.

After learning, the system was tested on the first

parts of the same pieces. In this way, we com-

bined some variation in the training data (three

different pieces) with some uniformity in style

(three pieces from the same period and with

similar characteristics; test data from the same

pieces as training data, though different).

The training input consisted in 212 examples

(notes), of which 79 were examples of crescen-



do, and 120 were examples of diminuendo (the

rest were played in a neutral way). The system

learned 14 rules (conjuncts) and, correspond-

ingly, 14 interpolation tables characterizing cre-

scendo situations, and 15 rules for diminuendo.

Quite a number of instances were covered by

more than one rule. For illustration, here is a

simple rule for crescendo:

��� ��������!����� ���
��!������ !����!����!�����
�� �� 
���
������&� !�����!&���!��������
���#��" ���!��#�����!�����
�����!������"���
��%!���!��#�����!��	��
�����!����	���$���

“Apply some crescendo to the current note if

the metrical strength of the note is > 4

and the underlying harmony is stable

and the direction of the melody from

the previous to the current note is up

and the direction of the melody from the

current note to the next is down”

The quality of the learning results is not easy to

measure, as there is no precise criterion to de-

cide whether some performance is right or

wrong. Judging the correctness is a matter of lis-

tening. Unfortunately, we cannot attach a re-

cording to this paper so that the reader can ap-

preciate the results. Instead, Figure 3 depicts a

part of one of the training pieces (the second part

of the first minuet in G major as played by the

author), and also shows the performance created

by the system for a test piece (the first part of the

same minuet) after learning. The figures plot the

relative loudness with which the individual

notes were played. A level of 1.0 would be neu-

tral, values above 1.0 represent crescendo (in-

creased loudness), values below 1.0 diminuen-

do.

The reader familiar with standard music nota-

tion may appreciate that there are strong similar-

ities in the way similar types of phrases are

played by the human teacher and the learner.

(Note, for instance, the crescendo in lines rising

by stepwise motion, and the decrescendo pat-

terns in measures with three quarter notes).

Generally, the results were very good, given the

limited amount of training data and the surface

differences between training and test pieces.

Readers not familiar with music notation will

have to take our word for it. We are planning ex-

periments with other, non–musical domains

where the results will be more easily interpret-

able and testable.

In a comparative experiment, we also tested a

system restricted to learning only in an

instance–based way, that is, with interpolation

tables, but without the symbolic explanation

component. This learner used all the available

attributes, both numeric and symbolic. The fol-

lowing distance metric was used: all numerical

attributes were scaled between 0 and 1, and for

symbolic attributes, the distance was defined to

be 0 in the case of a match and 1 otherwise. As

not all training instances share all numeric di-

mensions, the system learned as many inter-

polation tables as there were combinations of

numeric attributes occurring in the training data

(18 for crescendo, 12 for decrescendo). The re-

sults on the same data were considerably worse.

The learner did not distinguish as well between

different types of situations, and the results are

rather blurred, as can also be seen from Figure 4,

which shows the same test piece as played by the

second system.



Fig. 3: Parts of a training piece as played by teacher (top) and
 test piece as played by learner after learning (bottom)

Fig. 4: Part of test piece as played after instance–based learning only



6 Discussion, Related Work, and

Related Matters

First, let us briefly recapitulate the main charac-

teristics of the learning model: (1) The model

can learn precise numeric concepts via an

instance–based method while using available

qualitative background knowledge through a

symbolic learning component. (2) The symbol-

ic learning component defines and separates dif-

ferent independent regions in numeric instance

space where different regularities may apply.

This allows the instance–based learner to build

specialized instance stores, which may yield

very specific prediction behaviour. And (3), as a

side effect, learning rules for discrete sub–con-

cepts clusters the examples around meaningful

abstractions, which may be useful for other

tasks.

The definition of abstract sub–concepts Ti

introduces a natural distinction between sym-

bolic and numeric learning, and also produces

negative instances for the symbolic learner.

That the background knowledge is used only by

the symbolic component seems natural, given

that it is qualitative and thus may explain ab-

stract, symbolic concepts (at best), but certainly

not precise numeric values and relationships. 3)

Of course, this does not preclude the use of addi-

tional knowledge to guide or constrain numeric

learning in the instance–based component.

3)

   For instance, in music, we may be able to explain why

a performer applied some crescendo at a certain point

(for instance, in order to stress a musically important

event), but we can never explain why she chose exactly

that precise degree of crescendo. A system can only re-

cord these precise degrees and try to replicate the same

behaviour in similar situations. What is similar is deter-

mined by the rules learned by the symbolic component.

It should be remembered that this is a general

learning model: the system presented here ––

IBL–Smart –– is just one particular incarnation

of a more general approach. We have found it

convenient to use a best–first search algorithm

like the ML–Smart learner as the basis for our

plausible explanation component, as it explicit-

ly constructs a search tree and allows us to inte-

grate various sources of knowledge into the

learning process via the search heuristic (evalu-

ation function). However, with appropriate

modifications and extensions, other symbolic

learners capable of utilizing incomplete and in-

consistent knowledge –– for instance, FOCL

(Pazzani & Kibler, 1992) –– might be used just

as well in this framework.

Similarly, more elaborate strategies could be

used in the instance–based component. (Aha et

al., 1991) have described a number of instance–

based learning methods that could be applied

within a framework such as ours. Also, avail-

able domain knowledge about the relative de-

gree of relevance of numeric attributes or about

the domains and typical values of numeric vari-

ables could be used to devise more sophisticated

similarity metrics, tailored to the particular ap-

plication.

With respect to related work, we acknowledge

the important influence on this project by some

of the ideas expressed in (DeJong, 1989). De-

Jong had presented a system that combined a

very weak notion of plausible inference over

single cases with numeric variables. Our ap-

proach departs from his, among other things, in

the variety of types of background knowledge

and in the use of a heuristically guided, search–

based, multi–instance explanation algorithm

that allows much more control over the learning

process. Not only does this search introduce a

strong notion of empirical plausibility by taking



into account the distribution of instances; the

use of an explicit search heuristic also makes it

possible to exploit the qualitative knowledge

contained in qualitative dependencies (���� ��)

to compute the relative plausibility of argu-

ments. The best–first search is very likely to find

explanations that are most plausible overall

(both with respect to the knowledge and the

data). DeJong’s system, on the other hand, sim-

ply assumed that the syntactically simplest ex-

planation was also the most plausible one.

As an additional advantage of this multi–

instance explanation approach, we note also that

there is a natural way to deal with certain types

of noise in the training data. The evaluation

function of the search algorithm incorporates

two thresholds: it accepts only nodes (con-

juncts) that cover some minimum number of

positive instances, and the termination criterion

allows the search to halt when a certain percent-

age (< 100 %) of positive instances are covered.

Thus, the system can ignore rare instances that

look like exceptions, but are really the result of

noise. By varying these thresholds, the system

can be tuned to the characteristics of different

application domains.

In fact, the musical experiments described in the

previous section were characterized very

strongly by noise in the data, originating from

the author’s imperfect piano technique, from the

imprecise boundaries between the abstract sub–

concepts crescendo and diminuendo, and from

imprecision inherent in the domain itself (there

are simply no 100% laws as to how some pas-

sage must and will be played; variation will in-

variably happen). The system concentrated on

learning typical variations.

Of course (and this is also implied by the name),

our system also owes a lot to the work on inte-

grated deductive–inductive learning in ML–

Smart (Bergadano & Giordana, 1988). We have

extended the ML–Smart algorithm to also uti-

lize background knowledge in the form of di-

rected dependency statements (which are a very

natural kind of knowledge in many domains).

With respect to the system described in (Wid-

mer, 1991; 1993), which also constructs plausi-

ble explanations of individual training instances

on the basis of qualitative background knowl-

edge, we note that explaining multiple instances

at a time adds a strong empirical justification to

plausible explanations. The price is non–incre-

mentality. However, it is likely that, using tech-

niques described in (Widmer, 1989), IBL–

Smart can be made to learn incrementally with-

out losing too much in effectiveness.
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