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Abstract

Knowledge EXplorer is a system for exploratory analysis and knowledge acquisi-

tion in categorial data. The knowledge acquisition component induces knowledge in

the form of weighted rules. These rules can be directly used in an PROSPECTOR

like expert system.

1 Introduction

The Knowledge EXplorer is a system for exploratory analysis and knowledge acquisition

in categorial data which has been developed at the Dept. of Information and Knowledge

Engineering of the Prague University of Economics [7]. The original implementation was

done in Turbo Pascal for IBM PC's and compatibles. During my stay at the Austrian

Research Institute for AI, substantial parts of this system were implemented in C for the

Apollo workstations.

First part of this report describes basic ideas an algorithms of the system, the second

part is a brief manual for the new implementation. In the description of the system I

concentrated myself mainly on the knowledge acquisition component.
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2 System description

Knowledge EXplorer is designed for

� systematic basic analysis of multidimensional categorial data to �nd relations of

implications and equivalences between pairs of combinations of categories,

� rule (knowledge) base acquisition from multidimensional categorial data without

expert.

The �rst type of tasks, also called combinational data analysis was inspired by the

GUHA system, which was designed to �nd all relevant relations in data [6]. Knowledge

EXplorer performs several tasks which di�er according to desired type of relations:

� speci�c evaluation,

� complete exploration,

� analysis of conclusions,

� analysis of causes.

The basic idea of this tasks is to �nd all "interesting" relations in given data. What is

interesting speci�es the user by selecting the task and input parameters. All these tasks

can be viewed as exploratory data analysis methods.

The idea of knowledge acquisition is to �nd minimal set of rules, which describes given data

and which can directly be used for consultation. The knowledge acquisition component

consists not only of learning algorithm but also of a testing module and a consultation

module.

2.1 Basic notions

This section describes the terminology used in Knowledge EXplorer.

2.1.1 Data

Knowledge EXplorer works with categorial data in the form of a data matrix. Rows

correspond to objects, columns correspond to attributes.

2.1.2 Objects

Objects can be patients, animals, experiments, sites in a region etc. Sometimes objects

are called cases or observations.
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2.1.3 Attributes

Attributes are observed characteristics of objects. Sometimes attributes are called vari-

ables or features.

2.1.4 Categories

Values of attributes describe di�erent categories of objects. We will denote jc category of

objects which have value c in the attribute j. So e.g the attribute-value pair (sex; female)

corresponds to the category woman.

Knowledge EXplorer assumes, that all atributes are nominal i.e. their values are mu-

tually exclusive and without any ordering (e.g. hair color). When working with numerical

data (e.g. temperature), categorisation must be done before using the system.

2.1.5 Combinations

From logical point of view, combination C of categories is conjunction of propositions,

which correspond to single categories. Number of categories in a combination is the length

of the combination. We will denote

C = j

1

c

1

:::j

k

c

k

a combination of the length k. E.g. hair color = yellow&sex = female is a combination

of the length 2. Frequency of a combination C is the number of objects, which ful�l this

combination in data D. We will denote it k C k

D

.

2.1.6 Relations

For two combinations C

1

, C

2

with no common attribute we can formulate implications

C

1

=) C

2

, C

2

=) C

1

and equivalence C

1

() C

2

.

For every pair C

1

, C

2

we can create fourfold contingency table in the form:

C

2

non(C

2

)

C

1

a b

non(C

1

) c d

where

a is the number of objects which ful�l both C

1

and C

2

,

b is the number of objects which ful�l C

1

but don't ful�l C

2

,

c is the number of objects which don't ful�l C

1

but ful�l C

2

,

d is the number of objects which don't ful�l C

1

and don't ful�l C

2

.

so

k C

1

k

D

= a+ b

k C

2

k

D

= a+ c

We can de�ne validity of the implication C

1

=) C

2

as the relative frequency of C

1

which occur together with C

2

(conditional probability P (C

2

=C

1

))

k C

1

=) C

2

k

D

=

kC

1

&C

2

k

D

kC

1

k

D

=

a

a+b

.
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The validity of the equivalence C

1

() C

2

is de�ned as the relative frequency of C

1

and C

2

which occur together with C

1

or C

2

k C

1

() C

2

k

D

=

kC

1

&C

2

k

D

kC

1

k

D

+kC

2

k

D

�kC

1

&C

2

k

D

=

a

a+b+c

.

We can also de�ne coverage of the implication C

1

=) C

2

as the relative frequency of

C

2

which occur together with C

1

(conditional probability P (C

1

=C

2

))

k C

2

=) C

1

k

D

=

kC

1

&C

2

k

D

kC

2

k

D

=

a

a+c

.

So the validity of C

1

=) C

2

equals to the coverage of C

2

=) C

1

and vice versa. Validity

and coverage are in the range < 0; 1 > (< 0%; 100% >). If validity of C

1

=) C

2

equals

to p then validity of C

1

=) :C

2

equals to 1� p (100 � p%).

The validity of an implication expresses how strong the left-hand side combination is

related to the right-hand side combination (if all objects which ful�l the left-hand side ful�l

also the right-hand side, the validity equals to 1). The coverage of implication expresses

how strong the right-hand side combination is related to the left-hand side combination

(if all objects which ful�l the right-hand side ful�l also the left-hand side, the coverage

equals to 1).

2.1.7 Rules

Rules are in the form of implications with �xed right-hand side combination, the goal

given by the user. A weight is assigned to every rule.

The knowledge base can be directly used for consultations (prediction) in an expert system

with a PROSPECTOR like inference mechanism (PROSPECTOR like combining function

for composing evidences).

2.2 Exploration tasks

Exploration tasks di�er in what parts of relations (what combinations) are given by the

user and what parts are generated by the system. Within every task, instead of a com-

bination the user can give single attribute. In this case, the system will work with every

category of the given attribute as with a combination of the length 1.

2.2.1 Speci�c evaluation

Most simple task. For two given combinations C

1

and C

2

the system computes validities

of implications C

1

=) C

2

, C

2

=) C

1

and equivalence C

1

() C

2

.

This task has not been implemented in the Apollo version.

2.2.2 Complete exploration

Most complex task. The system �nds all implications and equivalences between pairs of

combinations, which ful�l user given criteria for length, frequency, validity and coverage.
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Every step the system generates a combination C, splits it into all possible pairs of

subcombinations C

1

, C

2

such that C = C

1

&C

2

and evaluates the numeric parameters of

the relations C

1

=) C

2

, C

2

=) C

1

and C

1

() C

2

. After this evaluation, the combination

C is extended by adding single category and the process repeats. The combinations are

generated in descending order of their frequencies.

The generate and evaluate cycle works in following steps:

1. make the most frequent combination in the list the actual combination C,

2. compute validity and coverage for every implication and equivalence created from

all possible subcombinations C

1

and C

2

,

3. expand the actual combination C by adding a category,

4. store the expanded combination in the list according to its frequency,

5. remove the actual combination C from the list.

This task has not been implemented in the Apollo version.

2.2.3 Analysis of conclusions

In this task, the system �nds all implications with �xed (given) left-hand side which ful�l

user given criteria for length, frequency, validity and coverage. The resulting implications

can be interpreted as description of conclusions of the given combination.

The system generates all possible right-hand sides (combinations of categories of at-

tributes not occuring in the left-hand side combination) and evaluates validities and cov-

erages of these implications. This process starts with the most frequent category and

procceeds in descending order of frequencies of generated right-hand sides.

The generate and evaluate cycle works in following steps:

1. make the most frequent combination in the list the actual right-hand side combina-

tion,

2. compute validity and coverage for the implication with the actual right-hand side

combination,

3. expand the actual right-hand side combination by adding a category,

4. store the expanded combination in the list according to its frequency,

5. remove actual right-hand side combination from the list.

2.2.4 Analysis of causes

In this task, the system �nds all implications with �xed (given) right-hand side which ful�l

user given criteria for length, frequency, validity and coverage. The resulting implications

can be interpreted as description of causes of the given combination.

The system generates all possible left-hand sides (combinations of categories of at-

tributes not occuring in the right-hand side combination) and evaluates validities and

coverages of these implications. This process starts with the most frequent category and

procceeds in descending order of frequencies of generated left-hand sides.

The generate and evaluate cycle works in following steps:
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1. make the most frequent combination in the list the actual left-hand side combination,

2. compute validity and coverage for the implication with the actual left-hand side

combination,

3. expand the actual left-hand side combination by adding a category,

4. store the expanded combination in the list according to its frequency,

5. remove actual left-hand side combination from the list.

2.3 Knowledge acquisition

Knowledge EXplorer performs symbolic empirical multiple concept learning from exam-

ples (cases), where the induced concept description is of the form of weighted decision

rules. The algorithm can deal with noisy data, unknown values, redundancy and contra-

dictions. The algorithm does not perform incremental learning. Like in analysis of causes,

the rules are generated for user-given right-hand side combination C

�

.

Knowledge EXplorer works in an iterative way each iteration testing and expanding

an implication Ant =) C

�

. This process starts with "empty rule" with weight as rela-

tive frequency of C

�

in data and stops after testing all implications which were created

according to user de�ned criteria. The implications are evaluated according to decreasing

frequency of Ant, so most reliable implications are tested �rst.

During testing, the validity (conditional probability P (C

�

=Ant)) of an implication is

computed. If this validity signi�cantly di�ers from the composed weight (value obtained

when composing weights of all subrules of the implication Ant =) C

�

), then this impli-

cation is added to the knowledge base. The weight of this new rule is computed from

the validity and the composed weight using inverse composing function. For composing

weights we use PROSPECTOR's combining function

2

x� y = (x � y)=(x � y + (1 � x) � (1 � y)).

During expanding, new implications are created by adding single categories to Ant.

These categories are added in descending order of their frequencies. New implications are

stored (according to frequencies of Ant) in an ordered list of implications. So Knowledge

EXplorer generates every implication only once and for any implication in question all its

subimplications have been already tested.

The system can learn rules for a single concept described as a goal combination (con-

junction of categories) or for multiple disjoint concepts, which correspond to di�erent

categories of a given attribute.

2.3.1 Algorithm

The algorithm can be described as follows:

Input: Data D, goal combination C

�

, required range of lengths < l

min

; l

max

> of

the left-hand side of a rule, required range of frequencies < f

min

; f

max

> of the left-hand

2

We modify classical PROSPECTOR's approach using correction principle suggested by H�ajek [5].
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side of a rule, required range of validities < P

min

; P

max

> of a rule and required range of

coverage < Q

min

; Q

max

> of a rule.

Output: Knowledge base KB;

Initialisation:

Let KB be a list consisting of empty implication 0 =) C

�

with the weight computed

3

from the relative frequency of C

�

in data D;

Let CAT be a list of categories jc such that k jc k

D

2 < f

min

; f

max

>, sorted in

descending order of k jc k

D

;

Let OPEN be a list of implications jc =) C

�

such that k jc k

D

2 < f

min

; f

max

>,

sorted in descending order according to k jc k

D

;

Computation:

while OPEN is not empty do

begin

select the top implication Ant =) C

�

from OPEN;

compute its validity P (C

�

=Ant) and coverage P (Ant=C

�

);

if (P (C

�

=Ant) 2< P

min

; P

max

> & P (Ant=C

�

) 2< Q

min

; Q

max

>) then

begin;

compute composed weight CW (C

�

; Ant) from the weights of all subrules of

Ant =) C

�

which are already in KB, using composition function �;

if validity signi�cantly di�ers

4

from composed weight then add Ant =) C

�

to KB with the weight w such that w � composed weight = validity

5

;

end;

if length(Ant) < l

max

then

for each jc from CAT such that k jc k

D

> k Ant k

D

begin;

generate new combination jc&Ant;

if k jc&Ant k

D

2< f

min

; f

max

> then

insert jc&Ant =) C

�

into OPEN just after the last implication C =) C

�

such, that k C k

D

� k jc&Ant k

D

;

end;

delete Ant =) C

�

from OPEN;

end;

3

When learning single concept, this weight equals to relative frequency, when learning multiple concept

a correction must be done so that the weight equals to 0.5 in case of uniform distribution of the goal

categories.

4

We test this di�erence using �

2

goodness-of-�t test

�

2

=

P

n

i=1

kAnt&C

�

k

D

� kAnt&C

�

k

D

kAntk

D

� CW

i

(C

�

;Ant)

� k Ant k

D

where n is the number of learned concepts.

5

For multiple concept learning, similar correction must be done as in the case of default rule.
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2.3.2 Knowledge base evaluation

The acquired knowledge base can be tested on its accuracy. The standard way, how to do

this is to use a testing data set. This approach allowes to compare results (classi�cation)

given by the expert with results

6

obtained from the learned rules. The resulting perfor-

mance of the system is expressed as the total successfulness (relative number of correctly

classi�ed examples).

Another way how to test the knowledge base, is the one-leave-out test. This test also

measurres the robustness of the knowledge base. The idea is to remove one example from

the training set, learn rules from the remaining examples and then test the rules using

the removed example. This process can be repeated for every example in the training set,

so acquiring as many (slightly di�erent) knowledge bases as is the number of examples in

the training set. This test has not been implemented in the Apollo version.

When visually interpreting the knowledge base, sometimes some "obvious" piece of

knowledge cannot be �nd. This is because the e�ect of the corresponding "missing" rule

can be composed from its (more general) subrules, which are already in the knowledge

base. So this rule is redundand and thus not inserted. Therefore, the knowledge base has

to be taken into account as a whole.

The generalisation (done by selecting implications using the �

2

test) is usually very

high. Typically, the resulting knowledge base consists only of a small fraction (several

percents) of all implications which ful�l the input criteria.

2.3.3 Comparison to another learning algorithms

There are a number of inductive learning programs such as programs of the TDIDT family

or the AQ family, that from given examples induce knowledge in the form of decision trees

or rules. Several of these programs can also deal with noisy or imperfect data.

As the AQ family algorithms (e.g. CN2 [3]), Knowledge EXplorer learns rules from

examples. The basic idea is to construct the knowledge base as a set of implications, which

is minimal and which is consistent with the training data set. This process starts with

apriori knowledge about the distribution of goal combination in data (the empty rule, in

CN2 called the default rule) and continues with more speci�c information (implications

found in data), checking the knowledge base on consistency with every new implication.

Unlike AQ systems, Knowledge EXplorer does not remove covered examples from the

training data set. So more than one rule can be learned for the same goal combination

from an example. This gives the user di�erent descriptions (di�erent points of view) of

the same concept.

6

The predictions of the system are expressed in the form of weights inferred for all goal concepts. The

weights are int the range < 0; 1 >. Weight 0:5 indicates undecided, weight > 0:5 indicates goal concept

predicted and weight < 0:5 indicates goal concept not predicted. The concept which is predicted with the

highest weight is presented as the result of the system.
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Another di�erence is that the learning algorithm assigns weights to every rule

7

. The

weight expresses the predictive power of a rule. During consultation, the weights are used

in a PROSPECTOR like expert system, so more than one goal concept can be predicted

for a given case. This can useful if the goal concepts are not mutually exclusive.

Because of the statistical test in the algorithm, Knowledge EXplorer needs "reason-

able" number of learning examples to work correctly.

8

When working with numerical attributes, data preprocessing (categorization) is nec-

essary. This categorization depends heavily on background knowledge about the problem

domain.

The results of consultation are given in the form of weights inferred for the goal

concepts. For a single case, like in classical expert systems more then one goal concept

can be recommended by the system.

3 Conclusion

Knowledge EXplorer is a system which o�ers both statistical (exploratory) and AI (ma-

chine learning) approach to data analysis. If the task is to describe dependencies within

given data, exploratory data analysis approach is suitable. If the task is to predict the

occurence of a goal combination for new cases, the machine learning approach is needed.

These components can interact, so using exploratory tasks we can �nd optimal parameters

for the knowledge acquisition procedure.

The relations obtained by the exploration tasks can be viewed as knowledge which is to

be used (visually interpreted) by a human, whereas the rules obtained during knowledge

acquisition are to be used by an expert system. In the �rst case, every single relation can

be a basis for human decision making, in the second case, the knowledge base has to be

used as a whole.

Knowlege EXplorer has been experimentally tested in various problem domains. The

exploration tasks have been used e.g. for evaluation of public opinion pool done during

Czechoslovak parliamentary elections in 1992 (together with the Parliament Institute) or

for analysis of demographical data about villiage settlements in South Moravia [1]. The

knowledge acquisition component has been tested as possible aditional algorithm for the

ALEX system [9] or as a system for acquiring knowledge about virological hepatitis tests.

Experiments done with the hepatitis data showed that the performance of Knowledge

EXplorer is comparable to the performance of TDIDT-like (KnowledgeSeeker) and AQ-

like (CN2) systems

9

.

7

When learning unordered rules in CN2, some numerical evaluation of rule using con�dence measure

is done too, but this is used only to select the best rule in case of possible clashes. Some work was also

done in creating rules with certainty factors from decision trees [8].

8

In the implementation for Apollo, the user can skip the test; in this case every implication which

ful�l the input parameters will be added into the knowledge base.

9

This experiments will be described in a separate report.
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A User manual

This part describes the current (January 1993) implementation of the system for the

Apollo workstations.

Some new features were introduced in the Apollo version in the comparison with the

standard PC implementation. These features are

� coverage of the implication as a new parameter,

� range of numerical input parameters (length, frequency, validity and coverage) in-

stead of thresholds,

� META parameters which control the complexity of searched space.

On the other hand, some standard procedures (speci�c evaluation, complete exploration

and one-leave-out test) have not been implemented yet. This will be done in the near

future.

A.1 Control

On the top level, you can see following menu of procedures:

***************************************

* *

* Knowledge EXplorer *

* a Knowledge Acquisition Tool *

* January 1993 *

***************************************

KEX>> Main Menu

A - Analysis of causes

C - Analysis of conclusions

K - Create konwledge base

T - Test konwledge base

O - Consultations

P - Knowledge base presentation

X - Exit the program

KEX>> Choise: _

To select desired procedure, give in corresponding letter. Every procedure has its own

prompt, so you are still informed what procedure is running.
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After selecting the procedure you will be asked for the input �le. If you want to work

with actual input �le (its name is displayed) simply press < Enter >.

0

Q

0

returns you to

the main menu.

After selecting the input �le you will be asked for the output �le. If you give no name

for this �le, the output will only be displayed on the screen.

Then you have to give in input parameters for the procedure (as described in the next

section) and the computation begins. After �nishing the computation, the system returns

to the main menu.

A.2 Data

The input data �le consists of

1. header,

2. attribute de�nition,

3. data matrix.

The header consists of three lines:

description_of_the_data

dscription_of_the_data

number_of_objects number_of_attributes

The attribute de�nition consists for every attribute of

name_of_the_attribute

number_of_categories

for every category

code_of_the_category name_of_the_category

The categories are coded using one-character symbols (usually letters). Do not use num-

bers to code categories, also don't use the character '.'. Missing values are coded as

0

?

0

.

Missing values are excluded from the analysis.

The data matrix consists of rows each row corresponding to one object. The objects are

coded as strings of codes of categories without any blanks.

For an example of input data �le see the section Example run.

A.3 Combination

Combination is required as input for analysis of causes, analysis of conclusions and for

knowledge base creation.

The combination is given in the sequence:
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number_of_attribute

code_of_category

This sequence repeats until you give

0

0

0

as the number of attribute.

If you want to do analysis for all categories of an attribute, simply give in the desired

number of attribute and

0

:

0

for the code of category.

A.4 Procedures

The procedures for analysis of causes, analysis of conclusions and for knowledge base

creation requires a lot of input parameters. These parameters allow to "tune" the system

well according to background knowledge about the data. This may be a little confusing

for an unskilled user. However, there are some standard strategies how to choose the

numerical parameters:

� full analysis (min length = 1, max length = number of attributes not occurring in

given combination, min freq = 1, max freq = number of objects, min validity = 0,

max validity = 100, min coverage = 0, max coverage = 100),

� minimal length analysis (min length = max length = 1, another parameters as for

full analysis),

� "no noise" analysis (min validity = 100, min coverage = 100)

10

The full analysis strategy does not ensure best results in knowledge base creation

procedure.

A.4.1 Analysis of causes

This procedure performs the analysis of causes.

Input:

Data file as described above

When reading data �le, the system display a table of frequencies of all categories in data.

Name of output file to save the results

Left-hand side combination as described above

If no combination is given, the system will generate all right-hand side combinations and

compute their frequencies.

10

Use 100 only if you are 100% sure that the data are without noise and the goal concepts are separable

using given attributes. Setting these parameters to 90 or 80 will also work well.)
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Range for length of the right-hand side combination

Range for frequency of the right-hand side combination

Range for validity of the implication

Range for coverage of the implication

Expand implications with coverage = 100% (n/y) ?

When answering

0

y

0

the system will generate all implications, some of them redundand

because with no new information for the user

11

. Answer

0

n

0

to reduce the search space..

Output: (always on the screen, when requested also into the output �le)

List of the found implications

Statistics of implications

Review of the number of all generated implications according to their length (rows) and

validities (columns).

A.4.2 Analysis of conclusions

This procedure performs the analysis of conclusions.

Input:

Data file as described above

When reading data �le, the system display a table of frequencies of all categories in data.

Name of output file to save the results

Right-hand side combination as described above

If no combination is given, the system will generate all left-hand side combinations and

compute their frequencies.

Range for length of the left-hand side combination

Range for frequency of the left-hand side combination

Range for validity of the implication

Range for coverage of the implication

Expand implications with validity = 100% (n/y) ?

When answering

0

y

0

the system will generate all implications, some of them redundand

because with no new information for the user

12

. Answer

0

n

0

to reduce the search space.

Output: (always on the screen, when requested also into the output �le)

List of the found implications

Statistics of implications

Review of the number of all generated implications according to their length (rows) and

validities (columns).

11

Coverage of the expanded implication will again be 100%.

12

Validity of the expanded implication will again be 100%.
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A.4.3 Create knowledge base

This procedure performs the knowledge acquisition.

Input:

Data file as described above

When reading data �le, the system display a table of frequencies of all categories in data.

Name of output file to save the results

Right-hand side combination as described above

Range for length of the left-hand side combination

Range for frequency of the left-hand side combination

Range for validity of the implication

Range for coverage of the implication

Insert empty rule (n/y) ?

Test implications (n/y) ?

The standard answer (for su�cient number of objects) is

0

y

0

to both questions. In this

case you will use the whole functionality of the learning algorithm. When answering

both questions with

0

n

0

, you will obtain as many rules as implications in the analysis of

conclusions (no generalisation is done). This may be reasonable for small training set.

Wether to insert empty rule may also depend on the learning task speci�cation.

Expand implications with validity = 100% (n/y) ?

When answering

0

y

0

the system will generate all implications, some of them redundand

because with no new information for the user

13

. Answer

0

n

0

to reduce the search space..

Output: (always on the screen, when requested also into the output �le)

List of the found rules

Statistics of implications

Review of the number of all generated implications according to their length (rows) and

validities (columns).

A.4.4 Test knowledge base

This procedure performs testing of the acquired knowledge base.

Input:

Knowledge base

Either a knowledge base �le created and saved by the knowledge base creation procedure

(in this case give in the name of the �le) or internally stored knowledge base which was just

created by the knowledge base creation procedure (in this case simply press < Enter >).

You will see a message, wether an internally stored knowledge base is available.

13

Validity of the expanded implication will again be 100%.
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File with test examples

This �le has the same structure as the data matrix in the data �le, i.e. each row corre-

sponds to one object (string of codes of categories), the �le has no header.

Name of output file to save the results

Output: (always on the screen, when requested also into the output �le)

Results of consultation for every example

(Only in the output �le.)

Review of results of testing

This review consists of a table where for every learned concept (a row in the table) the

number of classi�cations done by the system and the number of correct classi�cations is

given. Some examples in the testing set may be unclassi�ed; either the resulting weight

was in the range < 0:45; 0:55 > (the row "not decided" in the table, or there was no

aplicable rule in the knowledge base (the row "not predict." in the table)

14

. The resulting

performance of the system is given in the row "Total".

A.4.5 Consultation

This procedure performs consultations for single cases, given from the keyboard.

Input:

Knowledge base

Name of output file to save the results

For every consulted case

Input case

The input case is given as a sequence of codes of categories assigned to displayed names

of attributes.. Give the code

0

?

0

for unknown values.

Output: (For every consulted case)

List of activated rules

List of goal concepts with the inferred weights

14

If the knowledge base contains empty rule, prediction is always done.
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A.4.6 Knowledge base presentation

This procedure saves the knowledge base in a �le in more legible way.

Input:

Knowledge base

Name of output file to save the results

Unlike all other procedures the output �le must be given.

Output:

File with the knowledge base

A.5 Example run

To demonstrate, how to work with the system, we will use the example data from [2].

The input data �le looks like this:

ANIMALS.DAT file

Demo data from CN2

10 7

skin_covering

4

n none

h hair

f feathers

s scales

milk

2

y yes

n no

homeothermic

2

y yes

n no

habitat

3

l land

s sea

a air

reproduction

2

o oviparous

v viviparous
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breathing

2

l lungs

g gills

class

5

m mammal

f fish

r reptile

b bird

a amphibian

hyylvlm

nyysvlm

hyysolm

hyyavlm

snnsogf

snnlolr

snnsolr

fnyaolb

fnylolb

nnnlola

Let us start with the knowledge base acquisition for animals recognition. We will use the

no noise strategy with max. length = 2 and we will skip both empty rule and the test

15

.

KEX>> Choise: k

KB>> Current data are animals.dat.

KB>> Name of data (<ENTER> for no change, 'Q' for main menu):

KB>> Name of output file (<ENTER> for no file):

INPUT PARAMETERS

KB>> Attribute (0 for end): 7

KB>> Category (. for all): .

KB>> Combination: 7.

KB>> Min length (1): 1

15

This will give best results for our data. If we use full analysis strategy with empty rule and implication

test metaparameters set to

0

y

0

, because of small number of examples, the performance of the system

will be rather poor; we will obtain 20 rules (4 di�erent left-hand sides times 5 goal concepts) and the

successfulness of prediction will be 40% (positive rules onply for the concpt mammal). If we increase the

number of training examples to 100 (by copying 10 times our 10 examples), for the same input parameters

we will obtain 90 (18 times 5) rules and the successfulness of prediction will be 100% .
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KB>> Max length (NoAtt): 2

KB>> Min frequency (1): 1

KB>> Max frequency (NoObj): 10

KB>> Min validity (0%): 90

KB>> Max validity (100%): 100

KB>> Min coverage (0%): 90

KB>> Max coverage (100%): 100

When reading data �le he system displays the table of frequencies of all categories.

FREQUENCIES OF CATEGORIES

Att. cat. fr. cat. fr. cat. fr. cat. fr. cat. fr.

-----------------------------------------------------------

1 1n 2 1h 3 1f 2 1s 3

2 2y 4 2n 6

3 3y 6 3n 4

4 4l 4 4s 4 4a 2

5 5o 7 5v 3

6 6l 9 6g 1

7 7m 4 7f 1 7r 2 7b 2 7a 1

META PARAMETERS

KB>> Insert empty rule (n/y) ? n

KB>> Test implications (n/y) ? n

KB>> Expand implications with validity = 100% (n/y) ? n

GENERATED RULES

Frequencies

no. left right both Weight Implication

------------------------------------------------------------------------

1 4 4 4 0.8889 2y ==> 7m

2 2 2 2 0.8000 1f ==> 7b

3 2 2 2 0.8000 3y2n ==> 7b

4 2 2 2 0.8000 1s6l ==> 7r

5 1 1 1 0.6667 6g ==> 7f

6 1 1 1 0.6667 1n5o ==> 7a

7 1 1 1 0.6667 1n2n ==> 7a

8 1 1 1 0.6667 1n3n ==> 7a

9 1 1 1 0.6667 1n4l ==> 7a
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NUMBER OF GENERATED IMPLICATIONS

validity

length 0 (0,50) 50 (50,100) 100 sum

-----------------------------------------------------

1 0 0 0 0 3 3

2 0 0 0 0 6 6

-----------------------------------------------------

total 0 0 0 0 9 9

NUMBER OF GENERATED RULES 9

Because of given meta parameters, the number of rules equals to the number of im-

plications.

KB>> End of task.

Now we will test the knowledge base. In our demonstration, we use the same examples

as for the learning.

KEX>> Choise: t

TEST>> Current knowledge base is created from data animals.dat.

TEST>> Name of knowledge base (<ENTER> for no change, 'Q' for main menu):

TEST>> Name of test data file ('Q' for main menu): animals.con

TEST>> Name of file for results (<ENTER> for no file):

During computation the system displays the testing examples.

KNOWLEDGE BASE TESTING

no. object

-------------------------------------------------------------------------

1. hyylvlm

2. nyysvlm

3. hyysolm

4. hyyavlm

5. snnsogf

6. snnlolr

7. snnsolr

8. fnyaolb

9. fnylolb

10. nnnlola
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RESULTS OF RULE BASE TESTING IN DATA animals.con

pred total from which total from which

abs rel true false true false

----------------------------------------------------------------------------

7m 4 40% 4 0 100% 100% 0%

7f 1 10% 1 0 100% 100% 0%

7r 2 20% 2 0 100% 100% 0%

7b 2 20% 2 0 100% 100% 0%

7a 1 10% 1 0 100% 100% 0%

----------------------------------------------------------------------------

Total 10 100% 10 0 100% 100% 0%

----------------------------------------------------------------------------

not decided 0 0% **********************************************

not predict. 0 0% **********************************************

----------------------------------------------------------------------------

Total 10 100% 10 0 100% 100% 0%

TEST>> End of task.

Next part shows how to consult with the knowledge base giving cases from keyboard.

KEX>> Choise: o

CONSULT>> Current knowledge base is created from data animals.dat.

CONSULT>> Name of knowledge base (<ENTER> for no change, 'Q' for main menu):

CONSULT>> Name of file for results (<ENTER> for no file):

CONSULTATION

CONSULT>> New consultation (n/y) ? y

CONSULT>> skin_covering (n h f s ?): n

CONSULT>> milk (y n ?): n

CONSULT>> homeothermic (y n ?): n

CONSULT>> habitat (l s a ?): s

CONSULT>> reproduction (o v ?): o

CONSULT>> breathing (l g ?): l
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Input case = nnnsol?

Activated rules

no. left right both Weight Implication

------------------------------------------------------------------------

6 1 1 1 0.6667 1n5o ==> 7a

7 1 1 1 0.6667 1n2n ==> 7a

8 1 1 1 0.6667 1n3n ==> 7a

no. goal weight object

-------------------------------------------------------------------------

1. 7m 0.5000 nnnsol?

. 7f 0.5000 . . .

. 7r 0.5000 . . .

. 7b 0.5000 . . .

. 7a 0.8889 . . .

From three aplicable rules, resulting concept amphibian was inferred (with the weight

0:8889) for the input case.

CONSULT>> New consultation (n/y) ? n

CONSULT>> End of task.

To save the rules in legible form, we run the presentation procedure.

KEX>> Choise: p

KBPRES>> Current knowledge base is created from data animals.dat.

KBPRES>> Name of knowledge base (<ENTER> for no change, 'Q' for main menu):

KBPRES>> Name of file for results ('Q' for main menu): animals.rul

KBPRES>> Storing knowledge base.

KBPRES>> End of task.

This is how the rules are saved in the �le animals.rul:

RULES IN THE KNOWLEDGE BASE

RULE 1: IF milk == yes

THEN class == mammal (0.8889)
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RULE 2: IF skin_covering == feathers

THEN class == bird (0.8000)

RULE 3: IF homeothermic == yes

AND

milk == no

THEN class == bird (0.8000)

RULE 4: IF skin_covering == scales

AND

breathing == lungs

THEN class == reptile (0.8000)

RULE 5: IF breathing == gills

THEN class == fish (0.6667)

RULE 6: IF skin_covering == none

AND

reproduction == oviparous

THEN class == amphibian (0.6667)

RULE 7: IF skin_covering == none

AND

milk == no

THEN class == amphibian (0.6667)

RULE 8: IF skin_covering == none

AND

homeothermic == no

THEN class == amphibian (0.6667)

RULE 9: IF skin_covering == none

AND

habitat == land

THEN class == amphibian (0.6667)

We will end out tour through the Knowledge EXplorer. The use of the analysis of causes

and analysis of conclusions is similar to the use of the knowledge acquisition procedure

and therefore is not shown here.

KEX>> Choise: x

Thank you for using KEX.
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