
CLP based HPSG Parsing

Johannes Matiasek

Austrian Research Institute Arti�cial Intelligence

Schottengasse 3,

A-1010 Vienna, Austria

john@ai.univie.ac.at

Abstract

We describe a system for principle based parsing of HPSG employing constraint

logic programming techniques. Typed features structures are implemented as con-

straints on PROLOG variables and are instantiated in a lazy fashion. Grammar

principles as well as relational constraints are stated in a declarative way by means

of conditional constraints on feature structures. The procedural interpretation given

to these conditional constraints together with the data driven delay mechanism im-

plemented yields e�cient parsing behavior.

1 Introduction

In this paper we describe a principle based parser for HPSG. Recent developments in

theoretical and computational linguistics have moved from grammars de�ned over tree

structures to principle based ones. For these grammars the general, well understood parsing

algorithms developed for use with context free phrase structure grammar are of little use.

On the other hand, generate and test strategies using the grammar principles to eliminate

the ill-formed structures su�er from the huge search space of possible structures. Therefore

all the specialized principle based parsers written for GB (Berwick 1991) employ a covering

phrase structure grammar to restrict the search space. Although this strategy proved to

be viable, methods without the need to use theory-external devices would be preferable.

HPSG is better to handle in this respect, since the system of sorted feature structures

itself restricts the space of possible structures. The principles of grammar, formulated as

constraints over these feature structures apply also to structures not yet fully instantiated,

and therefore may also be used to guide the instantiation process. Nevertheless, to ob-

tain an e�cient system behavior and to avoid in�nite recursion it is inevitable to provide

some means to control the way in which instantiation and principle application interact

procedurally. Since we wanted to preserve as much as possible from the declarative spirit

of HPSG without running into e�ciency problems, in the implementation described here

this procedural guidance is achieved by a schema allowing for lazy principle application.

1

2 The HPSG formalism

HPSG (Pollard and Sag 1987, Pollard and Sag in press) di�ers from other, more tradi-

tional grammar formalisms in various important aspects. Unlike rule-based formalisms like

LFG (Kaplan and Bresnan 1982) or GPSG (Gazdar et al. 1985) it doesn't employ phrase

structure rules to generate the well-formed structures of language but rather uses universal

and language speci�c principles to eliminate ill-formed structures. This principle based

approach to language originated with GB-Theory (Chomsky 1981). However, HPSG de-

parts from GB in not using any derivational notions such as movement and in employing

feature structures instead of phrase structure trees as the primary device for linguistic rep-

resentation. Immediate dominance and linear precedence conditions (in almost all other

theories handled by phrase structure rules) are expressed in HPSG in the same way as all

the other grammatical principles, i.e., in the form of constraints on feature structures.

Consequently, there is very little left to do for traditional phrase structure grammar

based parsers/generators. Instead, parsing and generation can be viewed as constraint

solving. An utterance to be parsed corresponds to a partially speci�ed feature structure

(only the phonetic value being speci�ed), the parsing process amounts to checking the

satis�ability of this partial structure in conjunction with the constraints originating from

the principles of grammar and from the lexical entries.

Since HPSG has been introduced in Pollard and Sag 1987, some changes in the the-

ory as well as in the requirements on the formal basis of it have been made. I will

shortly sketch the main aspects of the formalism underlying HPSG in the version of

Pollard and Sag in press (more formally described in Carpenter et al. 1991) which has been

the basis of the implementation described here.

Linguistic objects in HPSG are modeled by typed (or sorted in the terminology of

Smolka 1988) feature structures. Every node of a feature structure is labelled by a type

symbol. The types themselves are partially ordered forming a lattice. All features ap-

pearing at a node of a feature structure must be appropriate for the type of that node.

Furthermore, the values that a feature may take are type restricted. If a feature is ap-

propriate for some type, it is also appropriate for all of its subtypes. Feature structures

are well-typed if every feature that appears is appropriate and takes an appropriate value.

Well-typedness can be ensured by type inference and well-typed uni�cation can be de�ned

(see Carpenter et al. 1991).

The principles of grammar impose further restrictions on linguistic objects. To be well-

formed, a feature structure has to satisfy all principles of grammar (applied to all nodes

of it), i.e, every node meeting the preconditions associated with a principle has to satisfy

the constraints imposed by it. Often these preconditions are speci�ed by a certain type,

so Carpenter et al. 1991 require these constraints simply to be associated with types. But

the way grammatical principles are stated in Pollard and Sag in press suggests a formal

speci�cation by means of conditional feature structures as this has been the general practice

in Pollard and Sag 1987. The implementation described below allows for the latter case.

The constraints imposed by the principles range from simple ones, e.g., requiring only

the identity of two substructures as the Head Feature Principle to rather complex relational

2

constraints

1

as in the Subcategorization Principle which constrains the subcat-value of the

head daughter (of a headed phrase) to be the result of appending the list of the synsem-

values of the complement daughters to the subcat-value of the phrase.

3 About CLP

Constraint logic programming has been developed during the past few years to circumvent

some di�culties arising from from the fact that uni�cation in logic programming languages

such as PROLOG is de�ned syntactically over Herbrand-terms. This prevents for example

syntactically distinct but (in the sense of an underlying theory) semantically equivalent

terms to be uni�ed. Various extensions to syntactic uni�cation have been proposed, one

of them being so-called semantic uni�cation. The basis for the work described here is

an extended PROLOG implementation

2

employing attributed variables as mechanism for

semantic uni�cation.

Attributed variables are an additional data-type allowing logical variables to be directly

quali�ed by arbitrary user-de�ned attributes. This way constraints on variables can be

easily speci�ed by attaching appropriate attributes. Uni�cation of two attributed variables

or of an attributed variable with a term is handled in a special way. For either case the

user has to supply a predicate, which explicitly speci�es how the attributes interact and

how they have to be interpreted with respect to uni�cation. Syntactic uni�cation succeeds

only if this combination|or veri�cation|of the attributes involved is successful. These

constraint solving clauses may be speci�ed by conditional rewrite rules for attributes

3

,

providing a means to integrate constraint solvers into PROLOG in a declarative way.

A most natural way to integrate typed feature structures into PROLOG is to view

these structures as constraints and implement feature structure uni�cation as attribute

rewriting. A further advantage with this approach is the possiblity of implementing delay

mechanims without having to use metainterpreters and thus gaining e�ciency. Therefore

this method has been adopted for implementing the system described here.

4 A principle based HPSG parser

Two goals have been pursued when developing the system described here:

� The syntax for specifying the grammar should be as close to standard HPSG notation

as possible.

� The amount of extra-grammatical speci�cation required to make e�ective use of the

grammar in a parser should be kept at a minimum. While there may be possibilities

1

Such recursively de�ned relational constraints may lead to problems with in�nite recursion if no hints

on how to process them are provided.

2

DMCAI CLP 2.1(Holzbaur 1992) is a enhanced version of SICStus Prolog providing extensible

uni�cation.

3

in the enhanced version of DMCAI CLP, see Pfahringer and Matiasek 1992

3

to process a principle based grammar in a rule based fashion by transforming the

principles in a particular way or using extra devices such as covering phrase structure

grammars, the approach taken here employs the principles directly.

Despite these demands the system is required to operate with reasonable e�ciency. How

these goals have been achieved will be demonstrated below by describing the de�nition

language for the type scheme of feature structures and how uni�cation of feature structures

is implemented as constraint solving. A schema of lazy principle application is given which

allows to employ the principles directly in the parsing process without running the risk of

getting trapped in in�nite loops or loose e�ciency due to too early a commitment to a

particular choice.

4.1 The type scheme

The signature specifying the type scheme of sorted feature structures has to be de�ned

before any feature structures can be used. The lattice of types is de�ned via the operator

..>/2, part of which is shown below.

object ..> sign.

sign ..> word.

sign ..> phrase.

phrase ..> headed_phrase.

Appropriateness conditions and sortal restrictions on feature values are de�ned via the

operator ==>/2. For each type introducing a feature or further restricting the value of an

inherited feature this de�nition has to be made. For non-atomic types that only inherit

the appropriateness conditions from their supertypes an empty list has to be given.

sign ==> [phon: phon,

synsem: synsem].

word ==> []. % inherit only

phrase ==> [dtrs: const_struc]. % add feature dtrs

headed_phrase ==> [dtrs: headed_struc]. % value restrict dtrs

These two operators are su�cient for de�ning the signature. The predicates necessary

to compute the transitive closure of ..>, the set of supertypes of a given type etc. are

de�ned in the usual way independent of the particular grammar

4

.

4.2 Feature structures as constraints on variables

The implementation of typed feature structures in our system makes use of the CLP

facilities provided by the enhanced PROLOG system described above. Feature structures

are implemented by the attribute fs(Type,Dag) where Dag is either a well-typed list of

4

For e�ciency reasons, these type hierarchy traversing predicates are compiled into PROLOG facts.

Together with clause indexing this enables processing of the type hierarchy in constant time.

4

feature-value pairs, the values being constrained variables, or the atom uninstantiated.

Instantiation of feature structures can be done in a lazy fashion which saves considerable

amounts of space and time in cases where uni�cation fails due to incompatible types.

Uni�cation of two feature structures is performed when PROLOG tries to unify two

attributed variables constrained by these feature structures, and thus de�ned by means of

rewrite rules for attributes. A preliminary version of these rules

5

not yet accounting for

delayed principle application is:

fs(T1,uninstantiated),fs(T2,uninstantiated) => fs(T3,uninstantiated):-

glb(T1,T2,T3).

fs(T1,uninstantiated),fs(T2,Dag2) => fs(T3,Dag3) :-

glb(T1,T2,T3),

unify_dags(T3,[],Dag2,Dag3).

fs(T1,Dag1),fs(T2,Dag2) => fs(T3,Dag3) :-

glb(T1,T2,T3),

unify_dags(T3,Dag1,Dag2,Dag3).

unify dags/4merges the two input lists unifying the values of features occuring in both

lists. Since these values are constrained variables, recursion is handled automagically by

the rewrite rules above. The appropriateness conditions for the resulting type are checked

on the y to assure well-typedness of the resulting dag

6

.

Given the possibility of having uninstantiated feature structures there must also be

means to explicitly instantiate them. Instantiation is triggered by referring to a substruc-

ture within an uninstantiated feature structure. For this purpose appropriate operators

have been de�ned. For example, X::synsem:loc:cat:head===noun enforces a subtyping

of the syntactic head of X to type noun, in a similar way structure sharing of substructures

can be enforced by using simple PROLOG variables as coreference tags in path equa-

tions. Since type inference applies during instantiation only well-typed feature structures

are produced. These path expressions are used to specify lexical entries and to state the

grammatical principles, to which we will turn below.

4.3 Principles of Grammar

Grammatical principles in our implementation of HPSG are formulated as conditional

constraints and apply to all nodes of a feature structure. For de�ning these conditional

constraints, the operator ===>/2 separating antecedent and consequent has been de�ned.

This operator is expanded at read time in the way described below. As an example we

5

using the conditional rewrite rule syntax described in Pfahringer and Matiasek 1992.

6

this corresponds to the subfunction of TypInf of Carpenter et al. 1991 responsible for appropriately

restricting the types of the feature values.

5

show how the Head Feature Principle is represented in our system:

head_feature_principle(X) :-

X::=headed_phrase

===>

X::synsem:loc:cat:head===H,

X::dtrs:head_dtr:synsem:loc:cat:head===H.

A procedural interpretation of these conditional constraints is, that

� if a node satis�es the antecedent of the conditional then the consequent has to be

enforced,

� if a node and the antecedent of the conditional fail to unify, then the consequent

simply does not apply.

The case not made explicit above is the one which prevents conditional feature struc-

tures to be processed straightforwardely, i.e., the case when a node is compatible with the

antecedent of a conditional but is not subsumed by it. In precisely that case principle

application has to be delayed.

Delayed Application of Grammatical Principles

The idea behind implementing this kind of principle application blocking is to annotate

the variables that are \responsible" for the unabiliy to decide on the antecedent of the

principle that has to be applied

7

. We can now introduce fs(Type,Dag,Goals) as the �nal

representation for feature structures in our system replacing fs/2. Goals is a list of goals

which have to be invoked in case either Type or Dag get restricted due to uni�cation with

another feature structure.

The rewrite rules have to be augmented accordingly by calls to start goals/1 which

calls all goals in the list, e.g.

fs(T1,Dag1,Goals1),fs(T2,Dag2,Goals2) => fs(T3,Dag3,[]) :-

...

start_goals(Goals1), start_goals(Goals2).

Note the empty Goals in the resulting attribute description. Principles that cannot be

applied due to insu�cient speci�cation of the resulting feature structure reinsert themselves

into that list.

This insertion of delayed goals is triggered by the special treatment of the conditions

in the antecedent of the principles, which are restricted to be path equations. These

are translated appropriately at read time via term expansion/2, embedding them into

a predicate implementing the following behavior: If during descending the path of the

7

This is a generalization of the block declaration of SICStus Prolog which only allows to check, whether

an argument is instantiated or not.

6

path equation a substructure is uninstantiated or the type found at the path target is a

supertype of the type speci�ed in the condition, the goal is delayed by attaching it to the

goals list of that variable.

Implementing application of grammatical principles that way no additional procedural

devices have to be introduced to prevent too early a commitment to a particular choice or

in�nite loops due to blind instantiation. The declarative speci�cation of the principles as

they are su�ces.

Recursive Relations

Some principles of HPSG involve relational constraints (such as append) expressible only

by recursive de�nitions

8

. The conditional syntax with application blocking used in de�ning

the grammatical principles is useful also to de�ne these recursive relations. The antecedent

part of these de�nitions is used for de�ning the sortal constraints on the arguments and for

specifying the blocking conditions for the relation, as can be seen in the following example.

fs_append(X,Y,Z) :-

X::=list,Y::=list,Z::=list

===> fs_empty_append(X,Y,Z),fs_nonempty_append(X,Y,Z).

fs_empty_append(X,Y,Z) :-

X::=elist,Y::=list,Z::=list

===> Y = Z.

fs_nonempty_append(X,Y,Z) :-

X::=nelist,Y::=list,Z::=list

===> X::first===First,Z::first===First,X::rest===XRest,Z::rest===ZRest,

fs_append(XRest,Y,ZRest).

The advantages of this conditional de�nition are twofold. First, the disjunctive relation

append can now be written as conjunctively applying the two specialized cases. Second,

in�nite loops due to uninstantiated variables can never occur.

4.4 Parsing as constraint interaction

In order to e�ectively produce a parse of an utterance the system must not be too lazy in

instantiating structures and applying principles. One source of fully instantiated structures

is the lexicon. The other possibility to enforce instantiation of structures is to use principles

as generators. This can be done by keeping the preconditions of the principle to an absolute

minimum (e.g. specifying only the type of the structures to which it applies). That way

no delay in the application of the principle occurs and the constraints enforced by it are

instantiated immediately.

Thus the conditional principle syntax and lazy application scheme makes it possible to

specify declaratively within the grammar which degree of instantiation is required before

a principle applies|making it either act as a �lter for or a generator of structures.

8

Lists are represented using the usual �rst/rest notation as in Shieber 1986.

7

5 Comparison with other approaches

Recently some other systems especially designed for HPSG parsing have been developed.

Comparing our approach to the implementation of HPSG described in Balari et al. 1990,

our approach bene�ts from what could be called indexing. Every variable is related to

exactly those constraints that are relevant for this variable and to no other constraint

whatsoever. So rewriting can be done just at the right point in time, namely when the

variable is augmented by an additional constraint or instantiated during uni�cation, and

rewriting need only consider the relevant, small subset of all constraints. CLG(2) just

augments predicates with two arguments for the list of constraints at clause entry and

exit, and \applies a rewriting process to the whole list from time to time".

The systemmost directly comparable with ours is the one by Franz 1990. It implements

the whole apparatus of HPSG including well-typedness constraints and parsing is performed

via satis�ablity checking. The drawback of the system is its rather slow performance. We

had no possibility of benchmarking both systems on the same platform but rough estimates

indicate that our system performs faster by a factor of at least 100. The main reason for

this e�ciency gain in our system is the reduction of the search space by reformulating

disjunctive constraints as simultaneously applying conditional constraints being applied

lazily (as the fs append example above shows).

6 Conclusion and Further Work

We have described a system for principle based parsing of HPSG employing CLP tech-

niques. Typed features structures are implemented as constraints on PROLOG variables

and are instantiated in a lazy fashion. Grammar principles as well as relational constraints

are stated in a declarative way by means of conditional constraints on feature structures.

The procedural interpretation given to these conditional constraints together with the data

driven delay mechanism implemented yields e�cient parsing behavior.

The system is fully implemented and has been sucessfully tested with an HPSG

grammar covering a substantial fragment of German (on details of the grammar see

Heinz and Matiasek to appear).

There remain of course possiblities to improve performance further. Handling of dis-

junctions is a crucial point in e�ciently processing natural language and has therefore

attracted a lot of attention (Trost 1992). Disjunctions originating from grammar princi-

ples often can be guised as conjunctively applying conditional constraints, enumeration of

the remaining relatively few choices via backtracking leads to acceptable runtimes. Han-

dling disjunctions stemming from the lexicon the same way usually leads to combinatorial

explosion of search space and consequently also of runtime as serious lexicons tend to con-

tain an abundance of such disjunctions. Simple disjunctions, i.e., disjunctions of atomic

values can be handled easily in the CLP framework by introducing domain attributes as ad-

ditional constraints and providing the appropriate attribute rewrite rules. Unfortunately,

such simple disjunctions are rather rare. Currently we are investigating a schema of repre-

8

senting more general disjunctions locally and postponing decision as long as there is some

other deterministic computation to be done. This strategy has the advantage of either

reducing the choices remaining or at least reducing the amount of computation involved

in backtracking. The existing delay mechanism will be used to implement this behavior.

Acknowledgements

This research has been sponsored by the Austrian Fonds zur F�orderung der wissenschaft-

lichen Forschung, Grant No. P7986-PHY. Financial support for the Austrian Research

Institute for Arti�cial Intelligence is provided by the Austrian Ministry of Science and

Research. I would like to thank Bernhard Pfahringer for fruitful discussions and comments,

Christian Holzbaur for providing DMCAI CLP, Harald Trost for helpful comments and for

pushing me to write this paper and Prof. R. Trappl for his continuing support.

References

Balari, S., G. B. Varile, L. Damas, and N. Moreira. 1990. CLG(n): Constraint Logic Grammars.

In Proceedings of the 13th COLING, 7{12. Helsinki.

Berwick, R. 1991. Principles of Principle-Based Parsing. In Principle-Based Parsing, ed.

R. Berwick, S. Abney, and C. Tenny. Dordrecht: Kluwer.

Carpenter, B., C. Pollard, and A. Franz. 1991. The Speci�cation and Implementation of

Constraint-Based Uni�cation Grammars. In Proceedings of the Second International Work-

shop on Parsing Technology, 143{153. Cancun, Mexico.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.

Franz, A. 1990. A Parser for HPSG. Technical Report CMU-LCL-90-3, Carnegie Mellon Univer-

sity, Pittsburg, PA.

Gazdar, G., G. P. E. Klein, and I.Sag. 1985. Generalized Phrase Structure Grammar. Cambridge,

Mass.: Harvard University Press.

Heinz, W., and J. Matiasek. to appear. Argument Structure and Case Assignment in German. In

HPSG for German, ed. J. Nerbonne, K. Netter, and C. Pollard. Stanford: CSLI Publications.

Holzbaur, C. 1992. DMCAI CLP Reference Manual. Technical Report TR-92-24, Austrian

Research Institute for Arti�cial Intelligence, Vienna.

Kaplan, R., and J. Bresnan. 1982. Lexical-Functional Grammar: A Formal System for Grammat-

ical Representation. In The Mental Representation of Grammatical Relations, ed. J. Bresnan.

Cambridge, Mass.: MIT Press.

Pfahringer, B., and J. Matiasek. 1992. A CLP Schema to Integrate Specialized Solvers and its

Application to Natural Language Processing. Technical Report TR-92-37, Austrian Research

Institute for Arti�cial Intelligence, Vienna.

9

Pollard, C., and I. Sag. 1987. Information-Based Syntax and Semantics, Vol. 1: Fundamentals.

CSLI Lecture Notes 13. Stanford, CA: CSLI.

Pollard, C., and I. Sag. in press. Head-Driven Phrase Structure Grammar. To be published by

University of Chicago Press and CSLI Publications.

Shieber, S. 1986. An Introduction to Uni�cation-Based Approaches to Grammar. CSLI Lecture

Notes 4. Stanford, CA: CSLI.

Smolka, G. 1988. A Feature Logic with Subsorts. Technical Report LILOG-Report 33, IBM-

Germany, Stuttgart.

Trost, H. (ed.). 1992. Coping with Linguistic Ambiguity in Typed Feature Formalisms. Vienna.

Proceedings of a workshop held at ECAI'92.

10

