
A CLP Schema to Integrate Specialized

Solvers and its Application to Natural

Language Processing

Bernhard Pfahringer, Johannes Matiasek

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

Tel: +43-1-533 61 12

bernhard@ai.univie.ac.at, john@ai.univie.ac.at

December 28, 1992

Abstract

The problem of combining di�erent constraint solvers has been men-

tioned among others by [25], [13], [17], [20] without giving satisfactory

solutions. We propose a general framework for implementing specialized

reasoners/constraint solvers in a logic programming environment using se-

mantic uni�cation. It allows for a modular and declarative de�nition of the

interactions of such reasoners. This is achieved by by using attributed vari-

ables [15] as a data-structure relating a variable to the set of all constraints

for this variable. Conditional rewrite rules specify simpli�cation and pos-

sible interactions of these constraints. A few examples will demonstrate

constraints relating to single variables and interactions thereof. We will

demonstrate, how this framework leads to a very natural and concise for-

mulation of principles, grammar and lexicon in a hpsg like formalism. Fur-

thermore the necessity of extending the framework to handle constraints

relating two or more variables will be discussed.

1

1 Introduction

In the past few years several mechanisms allowing user-de�ned extensions to

syntactic uni�cation over Herbrand-terms have been proposed and implemented.

1

One attempt to integrate such extensions is socalled semantic uni�cation. We

will briey sketch three di�erent methods described in the literature and discuss

their drawbacks.

� Kornfeld's E-uni�cation: [16] proposes the following way of extending uni-

�cation. Any failed uni�cation triggers an attempt to prove the equality

of the terms using some de�ned equality theory. But [8] shows that this

approach is unsound, incomplete, and unnecessarily ine�cient.

� Metaterms [13] and Metastructures [21] are both aimed at overcoming

some of the problems with E-Uni�cation. Since both approaches are very

similar, we will restrain our discussion to metaterms. Metaterms are in-

troduced as an additional data-type into the respective Prolog system in

addition to logical variables, constants, and terms. Built-in uni�cation

now has to treat two additional cases correctly: attempts to unify two

metaterms and attempts to unify a metaterm with an ordinary term. This

is done by calling two special user-de�ned predicates, metametaunify/2

and metatermunify/2, which are supposed to check for unifyability and

to update the data-structures (metaterms) accordingly. Metaterms come

in two avors, dereferable and non-dereferable. As a convention, derefer-

able metaterms must have a variable as their �rst argument which will be

considered the value of the metaterm when bound to a non-metaterm. Uni-

�cation will dereference such chains of metaterms before trying to unify the

respective terms. This speci�cation is cognitively too complex and involved

when compared to the typical usage of a metaterm: restricting the domain

of possible values for a given logical variable.

� Attributed Variables [15] provide a much simpler solution to the problem

than metaterms. An implementation in a modi�ed version of SicstusProlog

[5] is described in [14]. Instead of metaterms attributed variables (abbrevi-

ated as avars from now on) are introduced as an additional data-type, which

allow logical variables to be directly quali�ed by arbitrary user-de�ned at-

tributes. Once again uni�cation has to be extended to defer the two special

cases (unify two avars and unify an avar with a term) to user-de�ned predi-

cates. Unifying an ordinary variable and an avar succeeds with the ordinary

variable getting bound to the avar. This schema for uni�cation is identi-

cal to the one proposed by [17] in their constraint logic programming shell

(CLPS). Instead of avars they introduce the similar notion of solver-vars.

1

We assume basic knowledge of constraint logic programming throughout this paper

2

So for implementing single solvers in Prolog (or at least supplying a convenient

interface) plain avars are an adequate language construct. Let us have a look at

two very simple solvers handling �nite domains [11] and a very simple form of

dif/2 [6] to understand problems of this approach in section 2. Section 3 will

introduce our framework to remedy problems. Section 4 will apply this framework

to natural language processing and �nally section 5 will discuss results and give

an outlook.

2 Finite Domains, Dif

Finite domains are �nite sets de�ning the set of legal values for a given variable

[11], [12]. Treatment of domain-variables is super�cially simpli�ed here, allowing

only for attaching domains to variables and for uni�cation of such variables.

Using the modi�ed SicstusProlog proposed in [14], this can be speci�ed by the

following clauses:

domain(X,L) :- attach_attribute(X,dom(X,L)).

combine_attributes(dom(X1,L1),dom(X2,L2)) :-

detach_attribute(X1),

X1 = X2,

intersection(L1,L2,L3),

L3 \== [],

(L3 = [SingleValue] ->

detach_attribute(X2),

X2 = SingleValue

; update_attribute(X2,dom(X2,L3))

).

verify_attribute(dom(X,L),Value) :-

memberchk(Value,L),

detach_attribute(X),

X=Value.

Attach attribute/2,detach attribute/2, and update attribute/2 are system-

supplied predicates. combine attributes/2 and verify attribute/2 are the

names of the predicates the user is supposed to de�ne for handling the above-

mentioned special cases of uni�cation. dom(Var,Values) is the single attribute

used here.

There are a few problems with this schema though. The �rst observation

is that the user predicates have to take care of all low-level updates in data-

structures. A more serious aw can be noticed after introducing the next sim-

3

pli�ed solver. This solver allows to specify that two given variables should never

unify or that a given variable should be distinct from a given constant.

dif(X,Y) :-

attach_attribute(X,dif(X,[Y])),

attach_attribute(Y,dif(Y,[X])).

combine_attributes(dif(X1,Dif1),dif(X2,Dif2)) :-

all_different(Dif1,X2),

all_different(Dif2,X1),

append(Dif1,Dif2,Dif3),

detach_attribute(X1),

X1=X2,

update_attribute(X2,dif(X2,Dif3)).

verify_attribute(dif(X,Dif),Value) :-

all_different(Dif,Value),

detach_attribute(X),

X=Value.

all_different([],_).

all_different([V|Vs],X) :- X \== V, all_different(Vs,X).

This speci�cation allows for constraints like dif(X,a) or dif(X,Y), but it is not

capable of handling correctly combinations of constraints coming from separate

solvers. Goals like the following simple fail:

?- dif(X,Y), domain(X,[1,2,3]).

no

The reason for this undesirable behavior is the system's inability of unifying the

two attributes dif/2 and dom/2. Every variable is restricted to have at most

one attribute! So, if attributes are simply to be collected or if interactions of

attributes have to be taken care of, additional attributes must be invented rep-

resenting combinations of base attributes and of course additional clauses for

combine attributes/2 and verify attribute/2 must be speci�ed, too, deter-

mining behavior of the new attributes. So the above example could introduce an

attribute dom dif/3:

combine_attributes(dom(X1,L1),dif(X2,Dif2)) :-

detach_attribute(X1),

X1 = X2,

update_attribute(X2,dom_dif(X2,L1,Dif2)).

4

combine_attributes(dom(X1,L1),dom_dif(X2,L2,Dif2)) :-

....

combine_attributes(dif(X1,L1),dom_dif(X2,L2,Dif2)) :-

....

combine_attributes(dom_dif(X1,L1,Dif1),dom_dif(X2,L2,Dif2)) :-

....

verify_attribute(dom_dif(X,L,Dif),Value) :-

all_different(Dif,Value),

memberchk(Value,L),

detach_attribute(X),

X=Value.

This solution is not satisfying for a number of problems. First, the number of

additional clauses needed is large. In fact, it grows exponentially with the number

of di�erent attributes to be combined for a single variable. Secondly, due to the

calling conventions of combine attributes/2 and verify attribute/2, these

predicates cannot be called recursively to achieve composition. Cut-and-paste of

appropriate code fragments is the only solution. Specifying possible interactions

of attributes, which could presumably cut down the search space early on, is

even more complicated, as it requires detailed knowledge of the protocol of the

respective base attributes. The work-around proposed in both [13] and [25],

namely introducing one monolithic attribute taking care of everything, is not a

modular design and it is questionable if a speci�cation of the correct behavior of

this single monolithic attribute can be derived automatically from the de�nitions

of the base attributes, at least when using such complex low-level speci�cations

as given above. So, is there a better, more declarative way of specifying attributes

and possible interactions?

3 Conditional Rewrite Rules

We propose the following solution. The restriction to exactly one attribute per

variable must be lifted. Every variable may be quali�ed by a set of attributes.

Consistency checking and simpli�cation (of combinations) of attributes to a kind

of normalform must be speci�ed by conditional rewrite rules. Single attributes

are checked for consistency with rules of the following syntax:

Attr => fail :- Guard | Body.

The (possibly empty) guard and body can be built of arbitrary goals with the

sole restriction that these goals must not directly or indirectly add any attribute

5

to the variable under consideration. Secondly, rules are needed for detecting the

case of an attribute being so constrained that only a single value can ful�l the

given constraint:

Attr => value(V) :- Guard | Body.

If such a case is detected, the variable can be uni�ed immediately to this sole

possible value, i� all other attributes of the variable also license this value. The

essential point of our proposal is the following. In general rules can reduce pairs

of attributes to a single attribute (thus subsuming the above two examples as

special cases):

Attr1,Attr2 => Attr3 :- Guard | Body.

The procedural semantics of this is that two attributes Attr1 and Attr2 get

rewritten to Attr3 by means of this speci�c rule, if proving Guard and Body suc-

ceeds. Success of only the Guard and consequent failure of the Body indicates an

inconsistent set of constraints, thereby failing the original uni�cation attempt.

As above, Guard and Body must not add attributes to the variable under consid-

eration (a restriction that must be partially lifted when dealing with constraints

relating two or more variables). Allowing pairs of attributes to be rewritten to

a single attribute allows of course for an arbitrary number of attributes to be

rewritten to a single attribute and it is this feature that constitutes the power

of this schema! This should be compared to languages like ALF [9], where func-

tional logic programs are proved by means of conditional rewrite rules, but which

rewrite only single goals, thereby achieving power equivalent to Prolog programs

annotated with wait-declarations like described in [19]. Additionally we still need

a way of specifying compatibility of single attributes with non-attribute values

(the verify attribute/2 pendant). A special predicate verify/2, for which

the user must de�ne clauses for each attribute, takes care of this. So the above

two simple solvers look like the following in this new framework:

dom([]) => fail.

dom([X]) => value(X).

dom(L1),dom(L2) => dom(L3) :- intersection(L1,L2,L3).

dif(X,Difs) => fail :- strict_member(X,Difs) |.

dif(X,Difs1),dif(X,Difs2) => dif(X,Difs3) :-

append_nodup(Difs1,Difs2,Difs3).

verify(dom(L), Value) :- memberchk(Value,L).

verify(dif(X,Difs), Value) :- check_difs(Difs, Value).

Now this is considerably simpler than using plain avars. The system ensures that

variables are uni�ed, that their respective sets of constraints are consistent and

6

that these sets get simpli�ed (achieved by the user-speci�ed rewrite rules) and

when unifying vars with values, ensuring that such values are valid with respect

to the respective constraints by proving the verify/2 predicate.

So let us see, what the following query yields, assuming we have de�ned

appropriate interface predicates domain/2 and dif/2:

?- domain(X,[1,2,3]), dif(X,3).

attributes(X,[dom([1,2,3]),difs(X,[3])])

This is of course a correct solution, but not as far simpli�ed as possible, therefore

probably leading to redundant search when encountered during proofs. Fortu-

nately, this can be remedied easily in our framework. We only have to add one

more rewrite rule:

dom(L),difs(_,D) => dom(L1) :- remove_difs(L,D,L1).

Now the same query yields:

?- domain(X,[1,2,3]), dif(X,3).

attributes(X, [dom([1,2])])

The formulation of the above examples in our framework compares very favor-

ably to the one given in [13] with respect to the amount and complexity of user

code. Certainly our framework is more adequate from a speci�cational point of

view. But there remains a second question to be answered. Can comparable e�-

ciency be achieved? We have done a proof-of-concept implementation. Avars are

used as a low-level device to implement an interpreter handling our generalized

rewrite rules. As a testbed for simple domain-variables we chose the KARDIO

system [3], where diagnosis considerably bene�ts from pruning of the search space

due to domain variable interactions. First results were not encouraging, runtimes

were 2.5 times larger than for the low-level implementation. But using partial

evaluation on the interpreter and the rewrite rules, we were able to reduce the

overhead to a mere 40 percent. One has to keep in mind that in this example we

do not bene�t from complex interaction between di�erent types of attributes as

there is only one type, namely domains. In the next section we will show a more

complex and therefore more interesting application of this schema in the context

of Natural Language Processing where bene�ts of interaction become clear.

4 Application to Natural Language Processing

Recent grammatical formalisms for natural language leave little to do for tradi-

tional phrase structure grammar based parsers/generators. Instead they model

7

language by (possibly typed) feature structures and rely on uni�cation as the op-

eration to combine these feature structures. Phrase structure rules are replaced

by the lexicon and by universal and language speci�c principles [2]. Subcatego-

rization requirements (i.e. which arguments a word may take) are speci�ed in the

lexicon. The principles constrain the feature structures themselves, thus restrict-

ing the possible combinations and shapes of feature structures to the grammatical

ones.

This is especially true for hpsg[23, 24], where a system of typed feature

structures is used as a basis for the description of language. A language (more

precisely the sign tokens of that language) can be described by the conjunction

of the universal and language speci�c principles conjoined with the disjunction

of the lexical signs and grammar rules of that language [23, p. 44].

Although formalisms such as hpsg provide very elegant and descriptive means

to describe language, problems may arise, if one wants to implement such a for-

malism directly. Either some procedural guidance has to be provided to constrain

the search space or|what we believe is more adequate, since no extragrammati-

cal devices are needed|some delay mechanisms preventing too early commitment

to particular choices or in�nite recursion have to be established.

We will show that the CLP-framework described above provides a basis for

an e�cient, direct implementation of an hpsg grammar.

2

4.1 Implementing typed feature structures as constraints

on variables

First we will describe the kind of feature structures hpsg deals with (following

the conventions of [24]). Feature structures are typed , i.e. every node is labelled

with the type it belongs to. These types form a lattice, part of which is shown

below.

object ..> sign.

sign ..> word.

sign ..> phrase.

phrase ..> headed_phrase.

A further requirement is that feature structures have to be well-typed , that means

every (non-atomic) type determines which attibutes are admissible for it, and

which types the values of these attributes must belong to, e.g.

sign ==> [phon: phon,

synsem: synsem].

2

The implementation described here is used within the natural language consulting system

Vie-DU (cf. [4]) being developed at the Austrian Research Institute for Arti�cial Intelligence,

for further details of the grammar itself see [10].

8

word ==> [].

phrase ==> [dtrs: const_struc].

headed_phrase ==> [dtrs: headed_struc].

Subtypes inherit the slots of their supertypes. The speci�cations have to be

consistent with the type lattice of course.

Feature structures are implemented by the attribute fs(Type,Dag) where

Dag is either a well-typed list of feature-value pairs, the values being constrained

variables, or the atom uninstantiated. So instantiation of feature structures

can be done in a lazy fashion, which can save considerable amounts of space and

time in cases where uni�cation fails due to incompatible types.

Uni�cation of two feature structures is performed by the following rewrite

rules:

fs(T1,uninstantiated),fs(T2,uninstantiated)=>fs(T3,uninstantiated):-

glb(T1,T2,T3).

fs(T1,uninstantiated),fs(T2,Dag2) => fs(T3,Dag3) :-

glb(T1,T2,T3),

instantiate(T1,Dag1),

unify_dags(Dag1,Dag2,Dag3).

fs(T1,Dag1),fs(T2,Dag2) => fs(T3,Dag3) :-

glb(T1,T2,T3),

unify_dags(Dag1,Dag2,Dag3).

For unify dags/3 there is not very much left to do: only the two input lists

have to be merged unifying the values of equal features. Since these values are

constrained variables, recursion is handled automagically by the rewrite rules

above.

One possibility to get an uninstantiated feature structure instantiated is the

uni�cation with an already instantiated feature structure as can be seen above,

the other one is to refer to a substructure within an uninstantiated feature struc-

ture. For this purpose, i.e. to express path equations, appropriate operators have

been de�ned. For example X::synsem:loc:cat:head===noun enforces a subtyp-

ing of the syntactic head of X to type noun, in a similar way structure sharing

of substructures can be enforced by using simple Prolog variables as coreference

tags in path equations. These syntactic constructs are useful to specify lexical

entries and to state the grammatical principles, to which we will turn below.

4.2 Delayed Application of Grammatical Principles

Grammatical principles in hpsg are formulated as conditional feature structures

and virtually apply to all nodes of a feature structure. As an example we show

how the well-known Head Feature Principle of hpsg is represented in our system:

9

head_feature_principle(X) :-

X::=headed_phrase

===>

X::synsem:loc:cat:head===H,

X::dtrs:head_dtr:synsem:loc:cat:head===H.

The (procedural) interpretation of these principles is, that

� if a node satis�es the antecedent of the conditional then the consequent has

to be enforced,

� if a node and the antecedent of the conditional fail to unify, then the prin-

ciple simply does not apply.

The case not made explicit above is the one which prevents the principles to be

integrated straightforwardely, i.e. the case when a node is compatible with the

antecedent of a principle but does not satisfy it. In precisely that case principle

application has to be delayed.

The idea behind implementing this kind of principle application blocking is

to annotate the variables that are \responsible" for the unabiliy to decide on

the antecedent with the principle that has to be applied. Therefore we arrive

at a representation of feature structures by the attribute fs(Type,Dag,Goals)

(replacing fs/2), where Goals is a list of goals which have to be invoked in case

either Type or Dag get restricted due to uni�cation with another feature structure.

The rewrite rules above have to be augmented by calls to start goals, which

calls all goals in the list, e.g.

fs(T1,Dag1,Goals1),fs(T2,Dag2,Goals2) => fs(T3,Dag3,[]) :-

...

start_goals(Goals1), start_goals(Goals2).

Note the empty Goals in the resulting attribute description. Principles that

cannot be applied due to insu�cient speci�cation of the resulting feature structure

reinsert themselves into that list.

This insertion of delayed goals is triggered by the special treatment of the

conditions in the antecedent of the principles, which are restricted to be path

equations. If during descending the path of the path equation a substructure is

uninstantiated or the type found at the path target is a supertype of the type

speci�ed in the condition, the goal is delayed by attaching it to the goals list of

that variable.

Implementing application of grammatical principles that way no additional

procedural devices have to be introduced to prevent too early commitment to

a particular choice or in�nite loops due to blind instantiation. The declarative

speci�cation of the principles as they are su�ces.

10

Comparing our approach to the implementation of hpsg described in [1], we

note the following advantage of our approach: In contrary to their problems of

gaining reasonable e�ciency our approach bene�ts from what could be called

indexing. Every variable is related to exactly those constraints that are relevant

for this variable and to no other constraint whatsoever. So rewriting can be

done just at the right point in time, namely when the variable is augmented by

an additional constraint or instantiated during uni�cation, and rewriting need

only consider the relevant, small subset of all constraints. CLG(2) just augments

predicates with two arguments for the list of constraints at clause entry and exit,

and \applies a rewriting process to the whole list from time to time".

4.3 Feature Structures and Disjunction

Handling of disjunctions appears to be a crucial point in e�ciently processing

natural language and has therefore attracted a lot of attention in the last few years

[26]. Disjunctions result from two di�erent sources, namely the grammar and

the lexicon. For disjunctive grammar rules usually enumeration of the di�erent

choices via backtracking leads to acceptable runtimes, as the number of such

disjunctions is typically rather small. To handle disjunctions coming from the

lexicon the same way, usually leads to combinatorial explosion of search space and

consequently also of runtime, as serious lexicons tend to contain an abundance of

such disjunctions. One can distinguish two types of disjunction, namely simple

disjunctions of atomic values and hard disjunctions of arbitrary feature structures.

Simple ones can be interpreted e�ciently with the above described domain/2

attribute. So we can specify, e.g., that the only possible values for case of German

proper nouns having no -s su�x are nominative, dative, or accusative:

X::synsem:loc:cat:head:case===Case, domain(Case,[nom,dat,acc]).

There is just one additional rewrite rule to be speci�ed telling the system to fail

in case a domain attribute and a feature structure attribute have to be uni�ed:

dom(L),fs(T,D) => fail.

This rule is not even necessary, but improves control as it allows for early detection

of failure. Alternatively such atomic disjunctions could be expressed by additional

types in the hierarchy, but we think that our solution is more natural, keeping the

hierarchy free of arbitrary sets of names, viewing it as a terminology for building

structures. Unfortunately such simple disjunctions are rather rare. A slightly

more general version allowing for arbitrary ground feature structures, which must

be free of path equations, can be speci�ed in analogy to the work described

in [22] generalizing �nite domains to ground n-ary relations. More interesting

are of course disjunctions involving arbitrary feature structures including path

equations. We are just experimenting with a schema of postponing these as long

11

as there is some other deterministic computation to be done. This behavior can

be achieved by (ab)using the above described blocking mechanism. Additionally

we are investigating the merits of eager satis�ability testing on such disjunctions

for early detection of non-local inconsistencies, but still without going to full

expansion to disjunctive normalforms.

5 Discussion and Further Research

We have outlined a framework for a reasoning architecture integrating special-

ized solvers in a logic programming environment via rewriting sets of attributes

of variables. Conditional rewrite rules allow for a declarative and modular spec-

i�cation of such an integration. Furthermore they open the possibility of using

well-known algorithms and results from research in rewrite rule systems such

as proving properties like termination [7], completeness, etc. for solvers and

combinations thereof. Right now we are investigating more interesting/complex

constraint theories exhibiting interactions of two or more variables. These seem

to �t into our framework, too, albeit less elegantly. We have already done a gen-

eralization of domain variables to ground relational tables capturing relational

dependencies of two or more variables. The tricky point is to ensure having up-

dates behave as atomic actions. One approach we currently investigate is split-

ting the body of the rewrite rules into two separate parts, where the latter part

is allowed to add attributes thereby partially lifting the above made restrictions.

Additionally we are working on the compilation and optimization of the rewrite

rules. The ultimate goal is to reduce the overhead to less than ten percent when

the constraint stores contain just a few attributes (especially for the case of single

attributes) and to reasonably bound the search for larger constraint stores using

ideas from production systems [18]. Regarding application in natural language

processing the most interesting phenomena is of course handling of disjunctions.

Once we have completed a reasonably sized lexicon, empirical comparisons will

be performed to other approaches like those discussed in [26].

Acknowledgements

This work was supported by the Austrian Federal Ministry of Science and Re-

search. The second author was supported by the Austrian Fonds zur F�orderung

der wissenschaftlichen Forschung, Grant No. P7986-PHY.

We are indebted to Igor Mozetic for providing the KARDIO model, to Chris-

tian Holzbaur for providing the modi�ed SicstusProlog, and especially to Robert

Trappl for creating a very special working environment.

12

References

[1] Balari S., Varile G.B., Damas L., Moreira N.: CLG(n): Constraint Logic

Grammars, in Karlgren H.(ed.), Proceedings of the 13th International Con-

ference on Computational Linguistics, University of Helsinki, Finland, pp.7-

12, 1990.

[2] Berwick R.: Principles of Principle-Based Parsing, in Berwick R., Abney S.,

Tenny C.: Principle-Based Parsing, Kluwer, Dordrecht, 1991.

[3] Bratko I., Mozetic I., Lavrac N.: Kardio - A Study in Deep and Qualitative

Knowledge for Expert Systems, MIT Press, Cambridge, MA, 1989.

[4] Buchberger E., Garner E., Heinz W., Matiasek J., Pfahringer B.: VIE-DU

- Dialogue by Uni�cation, in Kaindl H.(ed.), 7.

�

Osterreichische Arti�cial-

Intelligence-Tagung, Springer, Berlin, pp.42-51, 1991.

[5] Carlsson M., Widen J.: Sicstus Prolog Users Manual , Swedish Institute of

Computer Science, SICS/R-88/88007C, 1990.

[6] Colmerauer A.: Opening the Prolog III Universe, BYTE , August 1987.

[7] Dershowitz N.: Termination, Proceedings Rewriting Techniques and Appli-

cations, Springer, Heidelberg, 1985

[8] Elcock E.W., Hoddinott O.: Comments on Kornfeld's "Equality for Prolog":

E-uni�cation as a Mechanism for Augmenting the Prolog Search Strategy,

in Proceedings of the Fifth National Conference on Arti�cial Intelligence

(AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986.

[9] Hanus M.: Improving Control of Logic Programs by Using Functional Logic

Languages, in Bruynooghe M. and Wirsing M.(eds.), Programming Language

Implementation and Logic Programming, Springer, LNCS 631, 1992.

[10] Heinz, W. and J. Matiasek: Argument Structure and Case Assignment in

German, in J. Nerbonne, K. Netter and C. Pollard (eds.), German Grammar

in HPSG, CSLI Lecture Notes, CSLI, Stanford, to appear.

[11] Hentenryck P.van, Dincbas M.: Domains in Logic Programming, in Proceed-

ings of the Fifth National Conference on Arti�cial Intelligence (AAAI-86),

Morgan Kaufmann, Los Altos, CA, 1986.

[12] Hentenryck P.van: Constraint Satisfaction in Logic Programming, MIT

Press, Cambridge, MA, 1989.

13

[13] Holzbaur C.: Speci�cation of Constraint Based Inference Mechanisms

through Extended Uni�cation, Institut fuer Med.Kybernetik u. AI, Univer-

sitaet Wien, Dissertation, 1990.

[14] Holzbaur C.: A Variant of SicstusProlog featuring Extensible Uni�cation,

Institut fuer Med.Kybernetik u. AI, Universitaet Wien, 1992.

[15] Huitouze S.le: A new data structure for implementing extensions to Prolog,

in Deransart P., Maluszunski J.(eds.), Programming Language Implementa-

tion and Logic Programming, Springer, Heidelberg, 136-150, 1990.

[16] Kornfeld W.A.: Equality for Prolog, in Proceedings of the 8th International

Joint Conference on Arti�cial Intelligence, Morgan Kaufmann, Los Altos,

CA, 1983.

[17] Lim P., Stuckey P.: A Constraint Logic Programming Shell, in Deransart

P., Maluszunski J.(eds.), Programming Language Implementation and Logic

Programming, Springer, Heidelberg, 1990

[18] Miranker D.P., Brant D.A., Lofaso B., Gadbois D.: On the Performance of

Lazy Matching in Production Systems, in Proceedings of the 8th National

Conference on Arti�cial Intelligence, AAAI Press, Menlo Park, CA, 1990.

[19] Naish L.: Negation and Control in Prolog, University of Melbourne, 85/12,

1985.

[20] Nelson G., Oppen D.: Simpli�cation by Cooperating Decision Procedures,

TOPLAS , 1(2), April 1980.

[21] Neumerkel U.: Extensible Uni�cation by Metastructures, Proc. META90,

1990.

[22] Pfahringer B.: CLP(gRel): Explicit Manipulation of (ground) Relational De-

pendencies in Logic Programming, OeFAI Technical Report 92-03, Vienna,

1992

[23] Pollard, C. and I. Sag: Information-Based Syntax and Semantics, Vol. 1:

Fundamentals, CSLI Lecture Notes 13, CSLI, Stanford, 1987.

[24] Pollard, C., and I. Sag, Head-Driven Phrase Structure Grammar, To be

published by University of Chicago Press and CSLI Publications, in press.

[25] Schroedl S.: FIDO: Implementation eines Constraint Logic Programming

Systems Finite Domains, Diploma Thesis, University of Saarbruecken, Ger-

many, 1991

[26] Trost H.(ed.): Coping with Linguistic Ambiguity in Typed Feature For-

malisms, Proceedings of a workshop held at ECAI'92, 1992.

14

