
E�ective Learning in Dynamic Environments

by Explicit Context Tracking

Gerhard Widmer

Dept. of Medical Cybernetics and Arti�cial Intelligence,

University of Vienna, and

Austrian Research Institute for Arti�cial Intelligence,

Schottengasse 3, A-1010 Vienna, Austria

e-mail: gerhard@ai.univie.ac.at

Miroslav Kubat

Institute of Biomedical Engineering,

Graz University of Technology

Brockmanngasse 41, A-8010 Graz, Austria

e-mail: mirek@fbmtds04.tu-graz.ac.at

Abstract

Daily experience shows that in the real world, the meaning of many concepts

heavily depends on some implicit context, and changes in that context can cause

radical changes in the concepts. This paper introduces a method for incremental

concept learning in dynamic environments where the target concepts may be context-

dependent and may change drastically over time. The method has been implemented

in a system called FLORA3. FLORA3 is very exible in adapting to changes in

the target concepts and tracking concept drift. Moreover, by explicitly storing old

hypotheses and re-using them to bias learning in new contexts, it possesses the ability

to utilize experience from previous learning. This greatly increases the system's

e�ectiveness in environments where contexts can reoccur periodically. The paper

describes the various algorithms that constitute the method and reports on several

experiments that demonstrate the exibility of FLORA3 in dynamic environments.

Key words: Incremental learning, context-dependent concepts, concept drift.

1

1 Introduction

One of the basic tasks of Machine Learning is to provide methods for deriving descriptions

of abstract concepts from their positive and negative examples. So far, many powerful al-

gorithms have been suggested for various types of data, background knowledge, description

languages, and some special `complications' such as noise or incompleteness.

Nevertheless, relatively little attention has been devoted to the inuence of varying

contexts. Daily experience shows that in the real world, the meaning of many concepts

can heavily depend on some given context, such as season, weather, geographic coordinates,

or simply the personality of the teacher. `Ideal family' or `a�ordable transportation' have

di�erent interpretations in poor countries than in the North, the meaning of `nice weather'

varies with season, and `appropriate dress' depends on time of day, event, age, weather, and

sex, among other things. So time-dependent changes in the context can induce changes in

the meaning or de�nition of the concepts to be learned. Such changes in concept meaning

are sometimes called concept drift (especially when they are gradual).

To discover concept drift, the learner needs feedback from its classi�cation attempts,

to update the internal concept description whenever the prediction accuracy decreases.

This was the experimental setting of the system FLORA, whose idea was �rst published

in Kubat (1989), with a theoretical analysis in Kubat (1991). The system, though very

simple, was successfuly applied in an expert-system-driven control mechanism for load

re-distribution in computer networks (Kubat, 1992).

Frankly spoken, the original program FLORA was not very sophisticated from the ma-

chine learning (ML) point of view because it did not contain such commonML mechanisms

as explicit generalization operators or search heuristics. These came later, in the frame

of FLORA2 (Widmer & Kubat, 1992) where some kind of intelligence was implemented

(generalization, check for subsumption, and exible reaction to the speed of drift).

Still, even this later version lacked an important attribute of intelligent behavior: the

ability to use experience from previous learning. Whenever an old context reoccured, the

system just blindly tried to re-learn it, waiving any previous experience. The consequence

was that even if the same context re-appeared a thousand times, the system always needed,

on average, the same number of examples to modify the concept description. This short-

coming motivated another upgrade of the system, FLORA3, which is able to adapt to

concept drift while utilizing past experience and deals with recurring contexts much more

e�ectively.

The next section discusses, in more detail, the issues of hidden contexts and concept

drift, and the relevance of this problem in real-world applications. Then, the system

FLORA2 is described. Section 4 is dedicated to the main contribution of this paper,

the algorithm for context tracking, which di�erentiates FLORA3 from her predecessors.

Section 5 reports on experimental results demonstrating the utility of the idea.

2

2 Dynamic environments, hidden contexts, and con-

cept drift

When speaking about concept drift, one might distinguish two di�erent types of drift

(though they are not always clearly separable): Real concept drift reects real changes

in the world and can be exempli�ed by the changes in fashion|`fancy skirt' or `modern

music'|or language|the semantic variation of such words as left-wing policy, conser-

vatism, or liberalism.

Virtual concept drift, on the other hand, does not occur in reality but, rather, in the

computer model reecting this reality. In a practical setting, this kind of e�ect can emerge

when the representation language is poor and fails to identify all relevant features, or when

the order of training examples for learning is skewed, so that di�erent types of instances

are not evenly distributed over the training sequence.

Many potential sources of virtual concept drift can be identi�ed. Most typically, the

teacher is to blame, having only a particular context in mind and considering only the

related pieces of information to be relevant; or the teacher's knowledge is limited. Also,

the teacher may have good knowledge but some of the features may depend on values that

cannot be measured, or the measurements are too expensive.

Sometimes, the agent learns by experimentation and simply does not come across all

reasonable examples. For illustration, consider an autonomous agent or robot moving

through a foreign world and trying to induce rules to survive (see the experiments reported

in Section 5). In a complex world where not all relevant features are explicit, there is no

choice but to put up with variables and predicates that can be acquired by the robot's

devices. Their number is of course limited. Obviously, slightly di�erent laws are valid in

di�erent parts of the world. If you want to grow a palm tree, you will surely apply di�erent

techniques in Africa and on the Arctic Circle.

Another aspect of the problem is that the agent does not a priori know how many

contexts exist in the world, how to discern them, what is their ordering, and what impact

they excercise on the concept drift. Sometimes, the drift consists in changed values of some

variables, sometimes also the relevance of individual variables or predicates can dramati-

cally change. Moreover, the transition is usually only gradual with rather fuzzy boundaries

between two di�erent concept interpretations. All this must be taken into account when

building a exible learning system.

The core idea underlying the philosophy of FLORA is that more recent pieces of in-

formation should receive higher levels of trust, in the belief that the older the examples,

the higher the danger that they relate to an outdated context (the agent has meanwhile

moved from the Arctic Circle to the Equator). The system always maintains a set of

current (positive and negative) examples that represent its current world and that should

be correctly described by the current concept hypothesis. The set of these examples is

called window (FLORA, sitting in a coach, observes through it the world passing by).

One by one, new examples are encountered and used to update the internal knowledge

structures; at the same time, however, older examples are distrusted and deleted from the

3

examples

�

�

�

�

��

� �

� �

context 1

context 2

knowledge

window

?

Figure 1: The window of the system FLORA moving across the stream of examples

window. This, too, causes changes to the concept description. In this way, the current

context is approximated|the system trusts only those examples that are currently inside

the window. That enables FLORA to recognize a concept drift and adjust itself to it.

The latest descendant of the family, FLORA3, possesses the ability to store encountered

contexts for future use, whenever it discovers (or suspects) drift. Evidently, this makes

sense only if the same (or similar) contexts reappear in the future, which is certainly the

case in many realistic applications where the number of possible contexts is �nite. For

instance, there are four seasons that follow one by one in a cyclic order and cause regular

changes to many natural phenomena. The speci�c environment where a robot is expected

to work might consist of several rooms, each with its own characteristics. Even in fashion

we can see that some phenomena reappear periodically, among them short skirts, preferred

dress fabrics, or hair style. The same goes for contexts in political life|autocracy versus

oligarchy versus democracy, lesser or greater inuence of the church, and the like. Each of

them implies di�erent heuristics for de�ning law, guidelines for everyday life, and morale

(these reappear, too).

3 The basic FLORA framework: learning and forget-

ting

In this section we briey review the basic learning mechanisms in the FLORA framework,

as it was already realized in FLORA2 (Widmer & Kubat, 1992). The following section

will then describe the more advanced features of FLORA3.

The principle of the FLORA algorithm is shown in Figure 1. The rectangle `knowledge'

stands for the current concept description, the rectangle `window' contains the currently

trusted examples. Each time a new example arrives, it is added to the window; from time

to time, the oldest or, alternatively, least relevant example is deleted from the window.

Both events necessitate updates to the concept description.

4

Figure 2: Transitions among the description sets.

The concept description is represented by three description sets, ADES, PDES, and

NDES. The description sets are collections of description items|conjunctions of attribute-

value pairs. Thus a description set can be interpreted as a DNF expression. ADES is a

set of `accepted' description items (DIs) covering only positive examples in the window

(not necessarily all of them) and no negative examples; PDES is a set of `potential' DIs,

covering both positive and negative examples; NDES is a set of `negative' DIs, covering

only negative examples. Any DI for which we cannot �nd at least one example in the

window is deleted. (Widmer & Kubat, 1992) gives an intuitive motivation for these three

sets.

Obviously, each example that is being added to or deleted from the window may be

described by a number of DI's. This entails the following consequences:

Adding a positive example to the window can cause new description items to be included

in ADES, or some existing items to be `con�rmed', or existing items to be transferred from

NDES to PDES.

Adding a negative example to the window can cause new description items to be in-

cluded inNDES, or some existing items to be `reinforced', or existing items to be transferred

from ADES to PDES.

Forgetting an example can cause existing description items to be `weakened', or even

deleted from the current description set, or moved from PDES to ADES (if the example

was negative) or to NDES (if the example was positive).

Fig.2 summarizes these updates. The arrows indicate possible migrations of description

items between sets after learning (L) or forgetting (F) from a positive (+) or negative ({)

instance, respectively.

To operationalize this learning schema, let us recapitulate the learning algorithm of

FLORA2 as it was presented in Widmer and Kubat (1992). Assume that the three de-

scription sets already exist (at the beginning they might also be empty) and that they are

encoded in the following form:

ADES = fADes

1

=AP

1

; ADes

2

=AP

2

; : : :g

PDES = fPDes

1

=PP

1

=PN

1

; : : :g

NDES = fNDes

1

=NN

1

; : : :g

(1)

where ADes

i

(PDes

i

, NDes

i

) are description items;AP

i

and PP

i

represent the number

of positive examples matching the respective DIs; and PN

i

and NN

i

represent the number

of negative examples matching the respective DIs. The counters AP

i

; PP

i

; PN

i

, and NN

i

5

help to decide whether to move the respective item to another description set, or, if it is

equal to zero, whether to drop it altogether.

In order to prevent combinatorial explosion, the sizes of these description sets must

somehow be restricted. In FLORA2, the set ADES is not a set of all possible description

items. It is constructed by stepwise careful generalization (see below) and, in e�ect, rep-

resents one non-redundant DNF formula that expresses the current concept hypothesis.

The same holds for NDES. Redundancy is eliminated by checking for subsumption within

description sets: ADES is kept maximally general (that is, if some description item ADes

i

subsumes some ADes

j

, only ADes

i

is kept in ADES). In PDES, only the most speci�c

descriptions are kept, and NDES is again maintained maximally general. Inconsistency is

avoided by checking for subsumption between description sets. In this way, for instance,

over-generalization of ADES is avoided by checking it against PDES and NDES. These

conditions are tested whenever one of the description sets is modi�ed. The algorithms for

incremental learning and forgetting then proceed as follows:

Incremental learning:

Assume that the system is presented with a new training instance, with given classi�cation

C 2 fpositive; negativeg. Then the description sets are updated as follows (see also Figure

2):

If classi�cation C is positive:

For all ADes

i

/AP

i

in ADES:

if match(instance;ADes

i

) then AP

i

:= AP

i

+ 1;

For all PDes

i

/PP

i

=PN

i

in PDES:

if match(instance; PDes

i

) then PP

i

:= PP

i

+ 1;

For all NDes

i

/NN

i

in NDES:

ifmatch(instance;NDes

i

) then removeNDes

i

fromNDES and include it into PDES

as a triple NDes

i

=1=NN

i

and check the updated PDES for subsumptions;

If there is no ADes

i

in ADES that matches the new instance, then �nd a generaliza-

tion of one of the ADes

i

2 ADES such that (1) the generalization covers the new

instance; (2) the required degree of generalization is minimal and (3) the generaliza-

tion does not subsume any descriptions in PDES or NDES (this ensures consistency

against negative instances); as an extreme case, the description of the instance it-

self may be added to ADES; then check ADES for subsumptions (remove redundant

descriptions);

If classi�cation C is negative, the algorithm works analogously (just exchange ADES and

NDES in the above algorithm).

6

Incremental forgetting:

When an old instance is dropped from the current window and `forgotten', the description

sets are updated as follows (again, see Figure 2):

If the instance was a positive one:

For all ADes

i

/AP

i

in ADES:

if match(instance;ADes

i

) then AP

i

:= AP

i

� 1;

if AP

i

= 0 then remove ADes

i

from ADES;

For all PDes

i

/PP

i

=PN

i

in PDES:

if match(instance; PDes

i

) then PP

i

:= PP

i

� 1;

if PP

i

= 0 then remove PDes

i

from PDES and include it into NDES as a pair

PDes

i

=PN

i

and check the updated NDES for subsumptions;

If the instance was a negative one, the algorithm works analogously (just exchange ADES

and NDES in the above algorithm).

This algorithm provides the basis for learning in dynamic environments. However,

more is needed to achieve really exible and e�ective learning behaviour in domains with

substantial concept drift.

4 FLORA3: Explicit context tracking

The ability to forget, as described in the previous section, provides the fundamental basis

for the system's ability to adapt to concepts that change over time. Eventually, old in-

stances will drop out of the window and be forgotten. However, this will work well only

in domains where changes in the concepts are almost imperceptibly slow. When dramatic

or sudden concept shifts occur, the �xed window size prevents the system from reacting

exibly. Ideally, when the system notices (or suspects) a beginning concept drift, it should

shrink the window in order to discard old instances that now contradict the new concept.

FLORA3 includes a heuristic to automatically adjust the size of its window during learing.

This is the subject of the next section.

Also, in environments where contexts can re-occur (periodically or randomly), the sys-

tem would have to re-learn concepts that it had already learned at some earlier time. In

such environments it would be advantageous to keep old, outdated concepts around for

possible use in the future. In FLORA3, a mechanism for doing this has been developed. It

is tightly coupled to the window adjustment algorithm and will be described in the section

after next.

4.1 Automatic adjustment of window size

The behaviour of a FLORA-type system depends crucially on the size of the window. Too

narrow a window will cause relevant instances and information to be forgotten too early;

7

and when the window is too wide, the system will be very reluctant to follow a concept

drift: it will hang on to noisy or outdated instances and hypotheses too long. The optimal

window size, then, is a function of the current learning situation and should not be �xed

beforehand. Rather, the learning system should be intelligent enough to automatically

adjust its window size to the current demands. These demands are, of course, not clearly

de�nable; the adjustment decisions can be made only on a heuristic basis.

We have experimented with many di�erent heuristics for automatic window adjustment.

The latest version takes into account both the complexity of the current hypothesis (vis-a-

vis the number of instances covered) and the current estimated predictive accuracy of the

hypothesis, which is constantly monitored by the system. Speci�cally, FLORA3 uses the

following window adjustment heuristic (WAH):

Let N = number of (positive) instances covered by ADES and

S = size of ADES (in terms of number of literals)

Then:

If N=S < 1:2 (coverage of ADES is low)

or the current predictive accuracy is bad (< 70% and falling)

and if PDES is not empty (there are alternative hypotheses)

then decrease window size by 20% and forget the oldest instances

else if N=S > 6 (coverage extremely high)

and the current predictive accuracy is good (> 70%)

then reduce the window size by 1

else if N=S > 4 (coverage high)

and the current predictive accuracy is good (> 70%)

then freeze the current window size (i.e., forget one example each time a new one is

added)

else grow window by 1 (accommodate new instance without forgetting the oldest one)

where the predictive accuracy is an incrementally computed and updated measure of

how well the current hypothesis �ts the data: before learning from a new training instance,

FLORA3 �rst tries to classify the instance on the basis of its current hypothesis; the

predictive accuracy measure, then, is the ratio, over the last 20 instances, of correctly

classi�ed instances.

In more colloquial terms, the window adjustment heuristic operationalizes the idea that

the window should shrink (and old, now possibly outdated examples should be forgotten)

when a concept drift seems to occur, and should be kept �xed when the concept seems stable

enough. (When the concept is extremely stable, the window is even reduced stepwise by 1,

in order to avoid keeping in memory unnecessarily large numbers of instances.) Otherwise

the window should gradually grow until a stable concept description can be formed. The

occurrence of a concept drift can only be guessed at by the learner, and the two heuristic

indicators of such a drift used by FLORA3 are (1) the complexity of the descriptions in

the set ADES (where the intuition is that during the time of occurrence of a concept

8

drift, it will be di�cult to �nd a concise concept description that is consistent with all the

examples), and (2) drops in the predictive accuracy, which is constantly monitored.

The window adjustment heuristic depends on several parameters for its e�ect (e.g., the

thresholds for low and high coverage, the threshold for what is considered good predictive

accuracy, etc.). The ideal parameter settings will vary from one domain to the next; the

above values were the ones used in all our experiments. (Widmer & Kubat, 1992) discusses

in more detail the e�ects of this and similar heuristics on the learning process.

4.2 Storage and re-use of old contexts

As already noted, there are many natural domains where there is a �nite number of hidden

contexts that may reappear, either cyclically or in an unordered fashion. In such domains,

it would be a waste of e�ort to re-learn an old concept from scratch when it reappears.

Instead, concepts or hypotheses should be saved so that they can be re-examined at some

later time, when there are indications that they might be relevant again. The e�ect should

be faster convergence if the concept (or some similar one) has already occurred. FLORA3

includes a mechanism for doing just this. In designing this mechanism, several questions

had to be answered:

1) Which parts of a hypothesis should be stored?

2) Which hypotheses are worth saving?

3) When should old hypotheses/concepts be reconsidered?

4) How can the adequacy or `degree of �t' of an old concept be measured in a new

situation?

5) How is an old hypothesis/concept to be used in a new situation?

The answer to question 1) is quite simple: the concept description/hypothesis is a triple

fADES, PDES, NDESg and is saved as such, because these sets summarize the current

state of a�airs. The match counts associated with the description items in the sets are not

stored, because they will not be meaningful in some new situation.

In designing a solution to question 5), we note that when an old concept is retrieved

at some later point in time, it �nds itself in a new context: it will not agree with all the

training instances in the current window; some items in the concept's description sets will

be too speci�c, and others will be inconsistent with the data. Thus, it is not enough just

to recompute the counts for the various description items. Instead, all the instances in

the current window must be re-generalized. The retrieved concept is used as a model in

this re-generalization process: the counts associated with all the items in the description

sets are set to zero, and then the regular FLORA learning algorithm is invoked for every

training instance in the current window. Instances that �t items already in the concept's

description sets will con�rm these items, and generally, those partial generalizations in the

old concept that are in accordance with the new data will be used in the re-generalization

process. Others will not be con�rmed by the new instances and thus their counts will

remain at zero. After re-generalizing all instances in the window, all those description

9

items that still have counts of zero are removed as incorrect or irrelevant from the updated

concept.

As for questions 2) - 4) { which hypotheses deserve to be saved, and when; when

should old concepts be reconsidered; how is the appropriateness of an old concept to a new

situation measured { the criteria that can be used to make these decisions can only be of

a heuristic nature. Intuitively, only stable hypotheses/concepts should be saved, and the

system should reconsider some old concepts whenever it perceives some substantial concept

drift. It is the window adjustment heuristic (WAH) that tries to determine precisely these

circumstances. So in FLORA3, storage and re-examination of old hypotheses are tightly

linked to changes in the window size.

The complete algorithm for handling old contexts works as follows:

� When the current concept is stable (according to the WAH - see section 4.1):

save the current hypothesis (unless there is already a stored concept with the same

set of ADES descriptions).

� When FLORA3 suspects a concept drift, i.e., when the WAH enforces a narrowing

of the window: reconsider old, saved concepts and compare them to the current

hypothesis. This is done in three steps:

1) Find the best candidate among the stored concepts: an old concept becomes a

candidate if it is consistent with the current example. All the candidates are eval-

uated with respect to the ratio of the numbers of positive and negative instances

that they match (from the current window). The best candidate according to this

measure is chosen. If the best candidate is worse than the current hypothesis, the

current hypothesis is retained, otherwise:

2) Update the best candidate w.r.t. the current data: the retrieved concept descrip-

tion is updated by setting all the counts in the description sets to 0 and then

re-processing all the instances in the window according to this hypothesis (see

the above discussion).

3) Compare the updated best candidate to the current hypothesis: use some `mea-

sure of �t' to decide whether the updated candidate (= old concept) is better than

the current hypothesis; if so, replace the current hypothesis with the updated old

concept. In the current version of FLORA3, the measure of �t is simply the rel-

ative complexity of the description, as it is used also in the window adjustment

heuristic: a hypothesis is considered better if its ADES set is more concise. (Re-

member that ADES covers all positive and no negative instances, so the number

of instances covered is the same for the ADES sets in both the current hypothesis

and the updated best candidate.)

As one possible class of application domains for the FLORA systems is exible control

in real time systems (cf. Kubat, 1992), e�ciency of the learning algorithm is an important

criterion. The above algorithm tries to maintain e�ciency by limiting the number of

expensive re-processing episodes. First, old concepts are not reconsidered after every new

10

training instance; they are only retrieved when the window adjustment heuristic suspects

that a concept drift is taking place. And second, the expensive part of reconsidering an old

concept|the re-generalization of all the instances in the window|is done only for one of

them { the best candidate. Which old concept is the best candidate is determined through

a simple heuristic measure, the number of positive and negative matches (see above). This

is a very weak measure, of course, and can sometimes lead to an inappropriate candidate

being chosen. Thus, e�ciency is achieved at the possible expense of quality.

It seems worth pointing out once more exactly what the role of old concepts/hypotheses

is in this process: at the time of a suspected concept shift, an old concept is used to bias

the re-generalization of the examples in the window. It is not just retrieved and used as

the current concept hypothesis. Instead, the old concept is used as a model for the re-

generalization of the instances: it simply provides a list of generalizations that were useful

in the past and that might, at least in part, also be useful in the new context. This reects

the insight that when an old hidden context reappears, the target concepts will tend to be

similar, but not necessarily identical to how they appeared in the old context.

1

5 Experimental results

In (Widmer & Kubat, 1992) it was shown that FLORA2 (i.e., the basic learning algorithm

plus automatic window adjustment) compares very favourably with systems like STAG-

GER (Schlimmer & Granger, 1986), which was also designed to deal with problems of

concept drift. Here, we will concentrate on demonstrating that in domains with recur-

ring hidden contexts, learning can still be considerably improved by explicitly storing and

re-using old concepts.

We have done extensive experiments with FLORA3 in various arti�cial domains, where

we had full control over the rate and strength of concept drift.

2

In each case, we contrasted

two versions of FLORA3, one with and one without the algorithm for re-examining old

concepts (the latter one will be called FLORA2 here, as it corresponds essentially to the

system described in (Widmer & Kubat, 1992)).

For reasons of comparability, the �rst set of experiments used the same kind of data

and concepts that were originally introduced in (Schlimmer & Granger, 1986) and then

also used in (Widmer & Kubat, 1992), namely, a sequence of three (rather di�erent) target

concepts: (1) size = small ^ color = red, (2) color = green _ shape = circular and (3)

size = (medium_ large) in a simple blocks world. Training instances were generated ran-

domly according to the hidden concept, and after processing each instance, the predictive

performance was tested on 40 test instances (also generated randomly, according to the

1

Fashion certainly is a prime example of this phenomenon.

2

We also did experiments with `real world' data, namely, the well-known lymphography data from

Ljubljana. Ivan Bratko (personal communication) had suggested that there might be some perceptible

concept drift in this data set. However, when analyzing FLORA3's behaviour on these data, we could not

discern any noticeable drift, and in comparative learning experiments, FLORA3's performance on these

data lagged behind that of a non-incremental learner like CN2 (Clark & Niblett, 1989), so we concluded

that the lymphography data were not appropriate for studying issues of concept drift.

11

Figure 3: Predictive accuracy in two individual runs (experiment 1).

same underlying concept). The underlying concept was made to change after every 40

training instance, in the cyclic order 1-2-3-1-2-3-1-2-3. Thus, we created a situation of re-

curring concepts. This experiment was repeated many times, with training data generated

randomly every time. In the following plots, the solid line represents the results achieved

by FLORA3, and the dashed line gives the results for FLORA2. Figure 3 displays the

results of two typical individual runs, and Figure 4 shows the averaged results of 10 runs.

The dotted vertical lines indicate where the underlying concept changes.

In interpreting these results, we �rst note that both systems do recover very quickly (in

most cases) from changes in the underlying hidden concept. This is due to the basic learning

and forgetting operators and to the window adjustment heuristic. This was discussed

already in our previous publication on FLORA2.

What is more interesting here is that in situations where a concept re-occurs after a few

cycles, there is a marked superiority of FLORA3 over FLORA2 in re-adjusting to this old

concept. This can be seen most clearly from the two single-run plots, where FLORA3 re-

12

Figure 4: Predictive accuracy, averaged over 10 runs (experiment 1).

turns to the 100% mark much faster than does FLORA2. This strongly con�rms the utility

and importance of the context tracking mechanism in domains with recurring contexts.

The superiority of FLORA3 can also be seen in the averaged plot in Figure 4, albeit

less clearly. In the particular experiment summarized in this �gure, it happened that

in 2 out of the 10 random runs, FLORA3 performed worse than FLORA2 on the third

concept { in fact, very much worse (which caused the average to be pushed below the

curve for FLORA2). In both cases, the reason was that FLORA3 stored some overly

general hypotheses during the �rst occurrence of concept 3, which caused it to go astray

in subsequent occurrences of this same concept. As the context-tracking mechanisms of

FLORA3 are very heuristic in nature, irregularities like this will always happen. In the

current case, we take the severity of this disturbance in the averaged plot to be an e�ect

of the rather limited number of runs over which averaging was done.

Note that at the beginning (during the �rst occurrence of each concept, i.e, when no

context recurrence happens), FLORA3, with its explicit reconsideration of saved hypothe-

ses, actually seems to perform a bit worse than the simpler FLORA2 (see the �rst plot

in Figure 3). This has happened quite frequently in our experiments. There is a simple

explanation for this. The availability of stored contexts may in fact sometimes lead the

learning process astray: due to the heuristic nature of the context retrieval decisions, some

context may erroneously be selected because it seems to be better than the current hy-

pothesis. So the context tracking mechanism adds another degree of freedom - or source

of potential errors, if you will - to the learning algorithm. However, when old contexts

actually do reappear, the advantages of the context tracking approach begin to outweigh

the disadvantages, as can be seen from the following phases in the experiment.

In a second set of experiments, we started from a �ctitious scenario of an autonomous

agent by the name of FLORA3 exploring some unknown territory (planet), searching for

food and trying to predict where food might be found. On this planet, food can be found

13

Figure 5: Predictive accuracy on strange planet (experiment 2).

in containers distributed throughout the country, and these containers are characterized by

many attributes (such as their shape, color, size, weight, material, whether they hang on

trees or bushes, : : :). Some containers do contain food, others don't. Now this particular

planet is divided into several kingdoms, and the rules determiningwhether a container holds

food are di�erent in every kingdom.

3 4

Again, training data for this set of experiments

were generated randomly { in this case, not only the descriptions of the training instances,

but also FLORA's path through the various kingdoms.

This learning problem is more di�cult not only because it deals with a larger description

space, but also because we introduced two sources of noise into this world: the borders of

the kingdoms were designed to be imprecise, that is, in the vicinity of the border between

two kingdoms, the instance generator assumed that with a certain probability, concepts

(food containers) from both kingdoms could occur. And the second source of noise was

the fact that FLORA3's path (as a sequence of moves in arbitrary direction) was also

generated randomly, so there was, in most cases, no clear transition from one context to

another; rather, FLORA3 would sometimes wander back and forth between two kingdoms

before �nally venturing more deeply into one of them.

As an example of FLORA3's performance in this domain, Figure 5 shows the results

of one random run. The planet in this experiment had 6 di�erent kingdoms arranged in

a circle, and FLORA3 wandered through this circle twice. Note that in this �gure there

are no vertical lines to indicate the precise points where the underlying context changes,

because the two types of noise mentioned above make it di�cult to determine precisely

when FLORA3 is in a new context. (However, the reader is encouraged to examine the

3

Miroslav Kubat has a more elaborate story around this scenario, but space does not permit us to

repeat it here.

4

Readers less inclined towards fairytales might simply imagine a robot in a complex building with

di�erent types of rooms, where each room presents the robot with di�erent operating conditions.

14

plot and try to guess where FLORA3 is deeply in a particular kingdom.)

Basically, the results in this set of experiments con�rmed our expectations. The sys-

tems' behaviour is again characterized by quite exible adjustment to new contexts, with

FLORA3 markedly better in situations where old contexts reoccur. Due to the noise in

the training data and the larger hypothesis space, convergence was, of course, slower than

in the �rst type of experiments, and not always perfect, but our preliminary experience is

that FLORA3 seems to handle limited amounts of noise quite well.

6 Discussion and related work

To recapitulate briey, the two basic ideas that contributed to the success of FLORA3

are (1) recognizing and `forgetting' old, harmful knowledge, and (2) explicitly storing old

concepts and re-using them when a context transition seems to take place.

The idea of using forgetting to improve learning may seem counter-intuitive at �rst

sight, but it has been suggested in the literature by a number of authors. Indeed, a kind

of forgetting was implemented already in (Samuel, 1959) with the objective of avoiding

the danger of storing prohibitively many pieces of experience in the memory. Samuel used

refreshing (reinforcement) when a description item was utilized. The algorithm is very

simple: After regular intervals, the item's age is incremented by 1. If the age exceeds

a prespeci�ed threshold, the item is deleted|forgotten. Reinforcement, in turn, consists

in decrementing the age. Also Fikes, Hart, and Nilsson (1972) suggested that some sort

of forgetting should be considered to prevent an unmanageably large store of experience.

For some other considerations on forgetting, see Markovitch and Scott (1988), Torgo and

Kubat (1991), or Kubat and Krizakova (1992).

In the above references, forgetting was understood mainly as a measure to prevent un-

controlled growth of the occupied memory, with the subsequent problem of computational

tractability. Another motivation can be selection or �ltering of the most useful knowl-

edge to get rid of noise|this is the rationale behind pruning mechanisms in decision trees

(Niblett, 1987), which also represent a kind of forgetting.

The closest relative to our program is perhaps STAGGER (Schlimmer & Granger,

1986), because that system was designed explicitly to deal with concept drift. We showed

already in (Widmer & Kubat, 1992) that FLORA2 compared very favourably with STAG-

GER in terms of adjustment to concept drift. FLORA3's added capability to use experience

from past learning in new contexts leads to even more e�ective learning in environments

with recurring contexts.

Schlimmer and Granger mention as one of STAGGER's assets that it is sensitive to

the amount of previous training, that is, the longer it has been trained on some concept,

the more deeply ingrained will the concept be, and the more hesitant will STAGGER be

to abandon it and adjust to a new context. This seems to mirror some results from the

psychology of learning.

FLORA3 does not exhibit this type of behaviour: once a concept is deemed stable,

FLORA3 freezes the window size, which prevents the concept from becoming too deeply

15

ingrained. This allows the system to quickly follow radical concept shifts, no matter how

stable the previous hypothesis was thought to be. We regard this as an advantage of

our approach. FLORA3 is not meant to be a psychologically valid model of learning. Our

interests are in practical applications, such as robotics and control in dynamic environments

with limited information. There exibility seems to be of prime importance. The system

should be quick in adjusting to changes in the world. A related requirement is that the

learning algorithm be e�cient. And that is clearly the case. The basic learning and

forgetting operators are very simple, and also the method for reassessing old concepts has

been designed so as to keep the computational overhead small (see section 4.2).

One of the goals of our future work is a better formalization of the method and a more

thorough theoretical analysis of its convergence properties. For simplicity reasons, we have

so far relied on a very simple representation language. Once we have a better theoretical

framework, we hope to be able to extend the system so that it can deal also with more

complicated description languages, e.g., some subset of �rst order logic as it is used in

systems like FOIL (Quinlan, 1990) or LINUS (Lavra�c et al, 1991).

Acknowledgments

Thanks to Bernhard Pfahringer for very helpful comments on a �rst draft of this paper.

We also wish to thank Ivan Bratko for supplying the lymphography data. Support for the

Austrian Research Institute for Arti�cial Intelligence is provided by the Austrian Federal

Ministry for Science and Research. The second author was partially supported by the

Austrian Fonds zur Foerderung der Wissenschaftlichen Forschung under grant no. M003-

MED.

References

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning Journal

3(4) (1989), 261{283.

Fikes, R.E., Hart, P.E., and Nilsson, N. (1972). Learning and Executing Generalized Robot

Plans. Arti�cial Intelligence 3, 251{288.

Kubat, M. (1989). Floating Approximation in Time-Varying Knowledge Bases. Pattern

Recognition Letters 10, 223{227.

Kubat, M. (1991). Conceptual Inductive Learning: The Case of Unreliable Teachers. Arti�cial

Intelligence 52, 169{182.

Kubat, M. (1992). A Machine Learning Based Approach to Load Balancing in Computer

Networks. Cybernetics and Systems 23, 389{400.

Kubat, M. and Krizakova, I. (1992). Forgetting and Ageing of Knowledge in Concept Forma-

tion. Applied Arti�cial Intelligence 6, pp. 193{204.

Lavra�c, N., D�zeroski, S. and Grobelnik, M. (1991). Learning Nonrecursive De�nitions of

Relations with Linus. Proceedings of the 5th European Working Session on Learning (EWSL-

91), Porto.

16

Markowitch, S. and Scott, P.D. (1988). The Role of Forgetting in Learning. Proceedings of

the 5th International Conference on Machine Learning, Ann Arbor, MI, 450{465.

Niblett, T. (1987). Constructing Decision Trees in Noisy Domains. In Bratko, I.{Lavra�c, N.

(eds.) Progress in Machine Learning. Sigma Press, Wilmslow.

Quinlan, J.R. (1990). Learning Logical De�nitions from Relations. Machine Learning 5(3),

239{266.

Samuel, A.L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal 3, No.3.

Schlimmer, J.C. and Granger, R.H. (1986). Beyond Incremental Processing: Tracking Con-

cept Drift. Proceedings of the AAAI'86 Conference, Philadelphia, 502{507.

Schlimmer, J.C. and Granger, R.H. (1986). Incremental Learning from Noisy Data. Machine

Learning 1, 317{354.

Torgo, L. and Kubat, M. (1991). Knowledge Integration and Forgetting. Proceedings of the

Czechoslovak Conference on Arti�cial Intelligence, Prague, Czechoslovakia, June 25{27.

Widmer, G. and Kubat, M. (1992). Learning Flexible Concepts from Streams of Examples:

FLORA2. Proceedings of the 10th European Conference on Arti�cial Intelligence (ECAI-92),

Vienna, 363{367.

17

