
Mechanisms For Handling Sequences

With Neural Networks

Claudia Ulbricht, Georg Dor�ner

Austrian Research Institute for Arti�cial Intelligence, Schottengasse 3, Vienna, Austria

1

St�ephane Canu

Lyonnaise des Eaux Dumez, Rue du Fonds Pernant, Compi�egne, France

Didier Guillemyn

Babbage Institute for Knowledge and Information Technology, J.Plateaus. 22, Gent, Belgium

Gurutze Mariju�an, Javier Olarte

Elorduy, Sancho y CIA, S.A., Parque Tecnol�ogico de Zamudio, Zamudio, Spain

Clemente Rodr��guez, Ignacio Mart��n

LABEIN Technological Center, Parque Tecnol�ogico de Zamudio, Zamudio, Spain

Abstract

This paper is intended to give an overview of methods for handling

sequences with neural networks. Since many typical neural networks

cannot be used for processing temporal information they have to be

extended by some mechanism to be able to do so. Two types of mech-

anisms can be distinguished: non-recurrent mechanisms, such as win-

dows and time delays, and recurrent mechanisms based on feedback.

However, the properties of networks handling sequences are not only

dependent on the employed mechanism, but also on the underlying

network paradigm (e.g. multi-layer perceptron, Hop�eld network, Ko-

honen network, etc.). Each combination of a network paradigm with

a mechanism results in a di�erent temporal network having its own

features. The outcome of a comparative study within the ESPRIT-II

project NEUFODI (\Neural Networks for Forecasting and Diagno-

sis Applications")

2

suggested a division of these networks according

1

The Austrian Research Institute for Arti�cial Intelligence is supported by the Austrian

Ministery of Science and Research.

2

NEUFODI is partly funded by the EC commission as ESPRIT-II project No. 5433 and is

conducted in cooperation with BIKIT (Belgium), Lyonnaise des Eaux Dumez (France), Elorduy

y Sancho, and Labein (both Spain). The Austrian contribution is supported by a grant from

the Austrian Industrial Research Promotion Fund, Project No. 2/282.

1

to their overall characteristics into the following four categories: ex-

tended feedforward networks, single-step recurrent networks, extended

stabilizing networks, and extended competitive networks.

This paper provides a description of the advantages and disadvantages

of di�erent approaches. It also presents a few selected results out of

the comparative study. As such this paper can be used as a basis for

deciding which network to take for a given task.

1 Introduction

In order to deal with sequential input a neural network needs some kind of spe-

cially designed mechanism. Several single input patterns together, in their given

order, have to inuence the output in some way. Examples for such mecha-

nisms are windows, time delays, or feedback. They are described in detail in

section 3. However, not only the mechanism used, but also the underlying net-

work architecture determine the properties of a network that handles sequences.

Combinations of the two dimensions, the mechanism and the underlying net-

work paradigm, result in various approaches to handling sequences with neural

networks. Distinguishing these two dimensions turned out to be crucial for ana-

lyzing and describing the network properties.

The purpose of this paper is to give an overview of such networks. This is done

by providing a classi�cation and by presenting some of the results obtained in the

comparative study within the ESPRIT-II project NEUFODI (in section 4). The

study involved a wide variety of experiments to obtain empirical criteria about the

strengths and weaknesses of di�erent approaches. Finally, in section 5 preliminary

heuristics as to which approach is best suited for which type of application are

presented.

2 A Classi�cation

Based on the results of a comparative study, the network architectures for pro-

cessing sequences have been classi�ed into four categories: extended feedforward

networks, single-step recurrent networks, extended stabilizing networks, and ex-

tended competitive networks. They form two groups: non-attractor and attractor

networks. Possible combinations of these network paradigms with mechanisms

for handling sequences are shown in Table 1. The mechanisms for handling se-

quences that were investigated (windows (WI), time delays (TD), partial feedback

(PF), and full feedback (FF)) can be found in the columns. A network that can

2

handle sequences employs at least one sequential mechanism. Combinations of

several mechanisms are possible. For instance, a network with feedback can also

have an input window, thereby combining the capabilities of two mechanisms.

Although this classi�cation has its overlaps, it turned out to be of practical im-

portance because it roughly divides the di�erent models according to their overall

characteristics and to their suitability to di�erent types of applications.

Resulting Network Types Mechanism

WI TD PF FF

1

Extended Feedforward Networks

Non-

2

Attractor

Networks 3

Single-step Recurrent Networks

4

Attractor Extended Stabilizing Networks

Networks

Extended Competitive Networks 5

Table 1: A Network Classi�cation Scheme

The numbers in Table 1 indicate the types of networks selected for being tested

within the presented comparative study. One of the tested feedforward net-

works (1) has an input window, the other one is extended by time delays (2).

While the window a�ects only the input layer the time delays are distributed

over the whole network. The other three tested networks employ delayed feed-

back. If such networks are updated like feedforward networks (usually a single

update per time step) the networks keep their general feedforward characteristics.

Networks of this kind are also dubbed \recurrent feedforward networks," \simple

recurrent networks," or \partially recurrent networks" [Hertz et al., 1991]. The

tested partially recurrent network (3) has feedback loops from the hidden and

the output layer. The fully recurrent network (4) contains only a single layer in

which all units have feedback connections to all others. The competitive recurrent

network (5) belongs to the group of attractor networks. It is equipped with a

single feedback loop, but its main characteristics are determined by the competi-

tion in the layers. It employs special types of updating and training mechanisms.

Due to the competitive layers its behavior is in some ways comparable to that of

stabilizing networks converging to stable attractors.

The tested mechanisms are described in detail in the following section, and some

results of the experiments will be presented thereafter, in section 4.

3

3 Mechanisms

The mechanism used for handling sequences is independent of the underlying

network paradigm. Any combination of a network paradigm with a mechanism

results in a di�erent neural network. Usually, the whole network is discussed, but

in this section only one dimension (see Table 1), the mechanism, is taken into

consideration.

Two types of mechanisms can be distinguished: non-recurrent and recurrent

mechanisms. The di�erence is depicted in Figure 1. A simple three-layer feedfor-

1

2

3

4

5

1

2

3

4

5

Non-recurrent Mechanisms Recurrent Mechanisms

Memory

Layer 3

Layer 2

Layer 1

Layer 3

Layer 2

Layer 1

In: at time t

Out: at time t+1

In: at time t

Out: at time t+1

Out: at time t+1

Memory

Figure 1: Non-recurrent and Recurrent Mechanisms

ward structure is shown. The numbers denote the order in which the layers are

updated at time t. This time scale is determined by the input sequence which

contains a single sequence element per time step. It is not dependent on the

time scale of the network updates. For a single input pattern, information is

propagated through the network as it is usually done (steps 1-4). After that, the

content of one layer is copied to a memory (step 5), where it is stored for the next

updating cycle (at time t+1). When the next input pattern is active the content

of the memory layer is released. As long as no recurrent mechanism is employed,

information can only ow into the direction of propagation. It can only stay

in the network for a limited number of time steps. In a network employing a

recurrent mechanism, though, it can stay longer because it can be fed back |

either directly (to layer 2) or indirectly (to layer 1). One of the strengths of such

delayed feedback is that it allows information to stay within the system.

An important point is that the type of feedback used in stabilizing or competitive

networks is not delayed and is thus di�erent from that of the feedback needed

for processing sequential aspects. The former is part of the underlying network

paradigm and plays a role only at time step t (for instance, when the network

4

converges to a stable attractor). The latter, though, can be regarded as feedback

delaying information until time step t+1. These delayed feedback signals can

then reenter the network together with the next incoming sequence element.

3.1 Non-recurrent Mechanisms

Windows: An approach often investigated is that of employing a time window

which stores a restricted part of the sequence. An associative network analyses

this part of the sequence before the window is shifted by one or more elements

further in time. An example can be found in [Tom and Tenorio, 1989]. Such a

window can be modeled by collecting sequence elements arriving one after the

other in some input memory until they can be used by some regular associative

network at once. Thus, the temporal dimension is reduced to zero by parallelizing

sequence elements. Input windows are often used because they do not a�ect the

underlying network architecture. Any network paradigm and any tool can be

used by just adjusting the input data stream. However, it is also possible to

apply windows to several layers to repeat the windowing e�ect, as it is done in

the TRACE model of speech perception [McClelland and Elman, 1986]. Such

additional windows let the actual window size of the network grow.

A drawback of the windowing approach is that it results in relatively large net-

works. The reason is that the number of nodes and connections is directly de-

pendent on the size of the windows. At the same time invariance problems,

well-known in visual processing, arise. Single patterns in a sequence that can be

recognized at one point in time (i.e. at a certain position in the window) cannot

automatically be recognized at all other points.

Time Delays: The e�ects achieved with the windowing technique can also be

achieved with time delays. In so-called time delay networks, patterns can be

delayed (see for instance [Wan, 1990] or [Waibel, 1988]) so that signals originally

ordered in time arrive at a single unit in parallel at the same point in time. Thus,

they can be processed at once. If this internal mechanism is employed in more

than one layer scattered over the whole network multiple parallelizations occur

within the network.

Problems are similar to those of windowing techniques. The time period processed

is strictly limited by the number and arrangement of the time delays.

5

3.2 Recurrent Mechanisms

Since feedback used for sequence processing is delayed this approach is in some

ways comparable to the time delay approach. The only | but important |

di�erence is that feedback leads to recurrence. This is important because recur-

rence allows state formation which turned out to be relevant for a wide range of

tasks. In contrast to units in feedforward networks, the units of such networks

indirectly receive information of their own past activations. Thus, a new input

can be processed together with the context provided by the feedback signals of

the previous state. Both, the new input and the context determine the output

and the new state of the network. As a consequence, the output of a network

based on delayed feedback is a function not only of a sequence of inputs, but also

of the initial state.

The advantage of using recurrent mechanisms is that, theoretically, any past

sequence element can have an inuence on the output, whereas the capacity of

the memory of networks employing only non-recurrent mechanisms is limited by

the size of the windows or by the number of time delays. The memory of a

network with feedback has no de�nitive temporal limitation. The advantage of

such a memory has to be paid by incompleteness, though. Past inputs are not

kept in their complete original form, but only a few features can be extracted

and memorized. However, in reality the knowledge on past inputs and states

decays rapidly. On the one hand, this e�ect seems to be very reasonable because

the further back in time the less important events seem to be for the current

situation. On the other hand, some past events can be of great importance.

This poses the question which information should be stored and which should be

forgotten. Therefore a mechanism would be needed which can distinguish events

that are relevant for future decisions and those which are not. A possible way

to decide on this could be to let another network learn from experience which

features are relevant.

Two types of delayed feedback can be distinguished: partial and full feedback.

When all the units receive feedback from all the other units in the network (no

matter whether they directly receive feedback from themselves or not) one can

speak of full feedback. All other forms of feedback can be regarded as some type

of partial feedback. It is again important to note that this refers only to feedback

used as a mechanism for handling sequences, but not to feedback that is part of

the underlying network paradigm.

Partial Feedback: A typical form of partial feedback is achieved by adding

a few feedback loops to some layered network. Many such networks have been

investigated in detail. An example is the Jordan network [Jordan, 1986] in which

the output values together with the activation of the previous state layer deter-

6

mine the new activation of the state layer. Together with the input, the state

layer is fed forward to the hidden layer. Another type of feedback is used in

the Elman network [Elman, 1990]. A single feedback loop is placed around the

hidden layer. Feeding back the output has di�erent e�ects than feeding back the

content of a hidden layer. Which type of feedback should be used is very much

dependent on the type of data set.

The arrangement of the feedback loops is relevant for the performance of the

network. Feedback makes state formation possible, but whether a certain ar-

rangement is appropriate for a given task or not is dependent on the nature of

the task. Feedback of the network output leads to the problem that at the be-

ginning of the training phase, the network usually produces incorrect output. In

most cases, replacing these incorrect unit activations by the correct ones (given

in the training set and needed anyway for training) turned out to accelerate

the training procedure. This technique is usually referred to as \teacher-forced

learning" [Williams and Zipser, 1989].

Full Feedback: Adding more and more feedback connections eventually leads

to a fully connected network, in which the output of each unit is propagated to

all the other units (and maybe also to itself). In such a network, one can no

longer speak of layers, as all the units are part of a single layer. However, the

units do not necessarily play the same roles. Some of them might receive input

from outside while some others might be used as output units. Similar to above

the employed full feedback which is used as a mechanism for handling sequential

aspects is independent of the updating and training procedures of the underlying

network.

4 Comparative Results

The second goal of the study being reported in this paper was to experimentally

compare di�erent neural network approaches to handling sequences so as to ob-

tain empirical criteria about their advantages and disadvantages. Based on the

classi�cation introduced in section 2, �ve networks were chosen and implemented

{ a window network, a time-delay network, two single-step recurrent networks

(one is a partially recurrent combination of the Elman- and Jordan networks,

the other one a network with full feedback) and a competitive recurrent network.

The partially, the fully, and the competitive recurrent network were speci�cally

designed for this study ([Canu, 1992], [Guillemyn, 1992], [Ulbricht, 1992]).

The focus of the experiments was put on practical applications. However, certain

properties of networks handling sequences cannot be tested empirically if the

7

characteristics of the data sequence are not known. Therefore, in addition to

several real world time series, sequences generated by well-known mathematical

models and arti�cially created sequences were used for testing. Moreover, the

experiments were divided into two further classes depending on the task to be

solved { classi�cation of sequences and forecasting future sequence elements.

-100

-50

0

50

100

150

200
Real

F o r e c a s t

0

20

40

60

80

100

120

140

160

180

200

Real

Forecast

Figure 2: Window Network and Time Delay Network

The arti�cial data mainly served to test criteria such as fault-tolerance or the

capacity to process sequences of a certain order. Not surprisingly, the limits of

rigid approaches like windowing or time delay techniques were con�rmed. Among

the model-generated data there were sequences such as those generated by a

parity automaton, a hidden Markov process, or an ARIMA time series. Both

test phases yielded some very conclusive results concerning the usefulness of each

model for certain applications. It is planned to publish those results in detail

elsewhere (Ulbricht et al., in preparation).

0

20

40

60

80

100

120

140

160

180

200 Real

Fo recas t

0

20

40

60

80

100

120

140

160

180

200
Real

Forecast

Figure 3: Partially Recurrent Network and Fully Recurrent Network

In the �nal experimental phase several real world time series were tested. The

one that lead to the most interesting results was the well-known sequence of the

number of sun-spots per year collected since the year 1700 [Weigend et al., 1990].

Figures 2 through 4 show the actual and the forecast values of all �ve networks

while trying to predict the series. For each year, the networks were used to

predict the current value based on the previous values of the actual sequence

(that is, errors in prediction were not permitted to propagate to subsequent

cycles). The single-step recurrent networks generally performed better than the

extended feedforward networks and the competitive network. The performance

8

0

20

40

60

80

100

120

140

160

180

200
Real

Forecast

Figure 4: Competitive Recurrent Network

of the window network was relatively good in the beginning, but decreased with

time. It also occasionally predicted negative values. The time delay network

was able to predict the general characteristics, albeit sometimes with rather high

relative error. The partially recurrent network, on the other hand, followed the

real trajectory much more closely. The best results were obtained with the fully

recurrent network. The forecast value matched the actual value in most cases.

The network was even able to forecast the peak of around 1957 which does not

appear in the sequence before.

Not surprisingly the results for the competitive recurrent network are di�erent due

to the fact that it is an attractor network. Its output is not an arbitrary numeric

value, but one out of a limited number of categories that are then mapped to

output values (in this case to ten values). The graph shows that the network was

able to follow some ups and downs, but not as closely as the other networks.

5 Which Network to Take

The results of all three categories of experiment (arti�cial, model-generated, and

real-world data) taken together provide a thorough insight into the workings of

the most common network types for handling sequences. They also provide rough

guidelines for practitioners as to which network to choose for a given practical ap-

plication (see [Ulbricht et al., in preparation]). It could be shown that single-step

recurrent networks are highly appropriate for realistic forecasting tasks because

they are well suited to modelling functional dependencies. Extended attractor

networks like the competitive recurrent net, on the other hand, appear muchmore

suitable for sequence classi�cation tasks, such as in speech recognition, because

the attractors can be used for representing the classes. The experiments with the

model-generated data have shown that a deep analysis of the data of a speci�c

application will in any case be vital for �nding the optimal network solution.

9

The following heuristics can be used as guidelines as to which network to take

for a given application:

Which network paradigm is appropriate?

� If the application involves modelling functional dependencies (for example,

forecasting the amount of sun spots) a non-attractor network is appro-

priate.

� If the application is based on a classi�cation task (for example, recogni-

tion of moving objects or spoken words) and if instances of all classes are

available in the training set an attractor network is appropriate.

Which mechanism should be used?

� If a tool providing some standard neural network paradigm should be used

without changing the supplied network architecture an input window can

be used.

� If the size of the network does not matter (the network can contain many

units and connections, training time can be long), and if the inuences of

one sequence element on another one are mainly short-term inuences, or

if the majority of the inuences do not exceed a certain known number of

time steps windows or time delays are appropriate.

� If not much is known about the inuence and relevance of past sequence

elements, or if the inuence of past sequence elements is expected to be

quite complex, or if the network should be able to handle invariance and

uctuations in the temporal dimension, or if the state of the network is

needed to solve the given task delayed feedback should be used. It should

be noted that the appropriate arrangement of feedback connections has to

be found in accordance with the application and that the quality of state

formation is very much dependent on the way the feedback connections are

arranged.

6 Conclusion

The intention of this paper was to give an overview of neural networks that are

suited to handling input sequences. The novel aspect here was that di�erent

approaches have been classi�ed according to two dimensions: the mechanism

employed and the network paradigm. Clearly distinguishing the two dimensions

turned out to be important for analyzing neural networks that can handle se-

quences. The results of the experiments performed for the comparative study

10

reveal the characteristics of the di�erent approaches. Practitioners working on

some applications can use the presented heuristics as guidelines to select the

network architecture best suited to the given tasks.

References

[Canu, 1992] S. Canu. Description of Recurrent Neural Architectures Used for Benchmarking,

Internal technical report. 1992.

[Elman, 1990] J.L. Elman. Finding Structure in Time. Cognitive Science, 14:179{211, 1990.

[Guillemyn, 1992] D. Guillemyn. Handling Temporal Sequences with Fully Recurrent Networks,

Internal technical report. 1992.

[Hertz et al., 1991] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing Company, 1991.

[Jordan, 1986] M.I. Jordan. Attractor Dynamics and Parallelism in a Connectionist Sequential

Machine. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society,

pages 531{546. Erlbaum, Hillsdale, NJ, 1986.

[McClelland and Elman, 1986] J.L. McClelland and J.L. Elman. Interactive Processes in

Speech Processing: The TRACE model. In D.E. Rumelhart D.E. and J.L. McClelland,

editors, Parallel Distributed Processing, volume I. MIT Press, 1986.

[Tom and Tenorio, 1989] M.D. Tom and M.F. Tenorio. A Spatio-Temporal Pattern Recogni-

tion Approach to Word Recognition. In IEEE International Conference On Neural Networks,

volume I, pages 335{355, Washington D.C., 1989.

[Ulbricht et al., in preparation] C. Ulbricht, G. Dor�ner, St�ephane Canu, Didier Guillemyn,

Gurutze Mariju�an, Javier Olarte, Santiago Rementeria, and Clemente Rodr��guez. Neural

Networks for Processing Sequences. in preparation.

[Ulbricht, 1992] C. Ulbricht. Handling Sequences with a Competitive Recurrent Network. In

International Joint Conference on Neural Networks (IJCNN'92), Baltimore, Maryland, vol-

ume I, pages 731{736, 1992.

[Waibel, 1988] A. Waibel. Connectionist Glue: Modular Design of Neural Speech Systems. In

Touretzky D., editor, Connectionist Models Summer School, pages 417{425, Los Altos, CA,

1988.

[Wan, 1990] E.A. Wan. Temporal Backpropagation for FIR Neural Networks. In International

Joint Conference on Neural Networks, volume I, pages 575{580, San Diego, 1990.

[Weigend et al., 1990] A.S. Weigend, B.A. Huberman, and D.E. Rumelhart. Predicting the

Future: A Connectionist Approach. International Journal of Neural Systems, 1(3):193{209,

1990.

[Williams and Zipser, 1989] R.J. Williams and D. Zipser. A Learning Algorithm for Continu-

ally Running Fully Recurrent Neural Networks. Neural Computation, 1:270{280, 1989.

11

