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Abstract

We introduce attributed equivalence classes as an explicit abstract data type for

the representation and manipulation of general equation systems where the deci-

sion algorithm is based on quanti�er elimination. The partition of quanti�ers into

equivalence classes results very naturally from a simple abstraction that separates

the equation solving process in the object domain from global manipulation of equa-

tion systems. We propose and report on an implementation of a linear complexity

equivalence relation maintenance algorithm within the framework of logic program-

ming, based on extensible uni�cation. The explicit representation of global aspects

of equation systems leads to an object oriented approach to equation solving.

1 Introduction

Constraint Logic Programming (CLP) languages extend uni�cation by a more general op-

eration called constraint satisfaction [Cohen 90]. Theoretical foundations of CLP languages

are provided by [Ja�ar et al. 86] and [Colmerauer 90]. The algebraic structures whose in-

troduction and treatment constitutes the extension of a given uni�cation-based language

governs the selection of the decision procedures used by the constraint satisfaction mech-

anism. In the case of Real Closed Fields and Booleans the decision procedures rest upon

quanti�er elimination [Boole 47, Tarski 48]. In the CLP context we deal with systems of

equations over the algebraic domain expressions. A system of equations is a conjunction of
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equations that share quanti�ers, i.e. variables

1

in LP terminology. The solution of a sys-

tem of equations consists of consecutive quanti�er elimination steps that work on a single

equation and express the eliminated quanti�er in terms of the remaining quanti�ers. This

process partitions the set of all quanti�ers into two disjoint sets of dependent and indepen-

dent quanti�ers. When the de�nition of the dependent quanti�ers is substituted into the

de�nition of the other dependent quanti�ers we speak of a solved form representation of

the system of equations. The solved form of a system is equivalent to the original system

with regard to satis�ability and the set of solutions in general | In fact it is a compact

representation of the solution space that facilitates the detection of satis�ability and the

construction of solutions.

In the following sections we direct our attention towards the back substitution step that

maintains the invariant about the solved form
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. In particular, a programming technique

that addresses the basic computational demand and the realization of back substitution

in the context of logic programming, is introduced. In global terms this investigation is

motivated by our attempt to realize CLP instances through extensible uni�cation within

(C)LP languages. The provision of sound mechanisms that produce the functionality that

is achieved through destructive updates in procedural languages, is of prime importance.

In order to concretize the discussion to follow, we chose to describe solved form maintenance

in CLP(<) as a speci�c instance of the general CLP scheme. CLP(<) is supposed to operate

on the <eal numbers. Existing implementations are complete for linear (in)equations only.

This restriction is motivated by the doubly exponential complexity of the decision algorithm

for the general case. Nonlinear equations are delayed until they get linear, or su�ciently

simple to be solved at last [Ja�ar et al. 91].

2 Maintaining the solved form

Traditional procedural implementations of numerical linear equation solvers operate on the

coe�cient matrix of an equation system of given dimension. Gaussian (quanti�er) elim-

ination aims at the determination of the rank of the system by transforming the matrix

into triangular from, which in turn, together with basic results from linear algebra, con-

stitutes a decision algorithm for linear equations over real numbers. Note however, that

the matrix of a linear system, transformed into triangular form, is not the solved form of

the system as described above because the back substitution step is not performed by the

basic triangularization. If it is made part of the elimination, we speak of Gauss-Jordan

elimination. The triangular part above the diagonal labelled U in Figure 1 will be 0 after

back substitution.

Within a CLP implementation, quanti�er elimination has to be carried out in an incremen-

tal fashion as the constraints, i.e. the equations, are handled to the solver one by one in the
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We only deal with connected systems here as disconnected systems can be solved in isolation
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The invariant is that dependent quanti�ers are expressed in terms of independent quanti�ers
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Figure 1: Gaussian and Gauss-Jordan elimination

course of a CLP program execution. A further deviation from the basic, classical scheme

is that we typically deal with sparse systems where individual equations do not refer to all

or almost all quanti�ers of the system. This observations are reected in the implementa-

tions of incremental versions of the elimination procedures and the data structures for the

coe�cient matrix.

In particular, for our implementation of CLP(<) we use ordered lists of variable-coe�cient

pairs to represent the rows of the coe�cient matrix. This data structure is optimal in the

sense that it allows for multiplications of rows with scalars and additions of rows that are of

complexityO(n), n being the number of nonzero entries of the rows. Having abandoned the

notion of a global matrix, we are left with the problem of how to perform back substitutions.

The next two sections describe two principal means to perform back substitution in sparse

matrices. The former is the scheme employed by [Heintze et al. 91] which is more suitable

for procedural implementations because it involves structure mutation and explicit memory

management. The latter, novel approach, has been designed with implementations of CLP

languages by means of (Constraint) Logic Programming in mind.

2.1 Occurrence lists

On the implementation level of a solver, we can imagine quanti�ers as abstract data types

with components as the de�ning expression in the case of dependent variables, and the list

of occurrences in de�ning expressions in the case of independent variables. These occur-

rence lists are optimal in the sense that they exactly provide the information that is needed

to remove a quanti�er in the back substitution phase. The maintenance of exact occurrence

lists has its price, however: The occurrence list of a quanti�er that is about to be back

substituted is used to map over the dependent quanti�ers that are a�ected. Afterwards

we do not need the list and we can deallocate it. The main computational burden stems

from the maintenance of occurrence lists of the remaining independent quanti�ers. Check

the following (CLP(<)) example:
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Before back substitution of A occ(X) occ(A) occ(B) occ(C)

X = 6 �A� 3 �B + 10

A = B=2 + C + 1

fg fXg fA,Xg fAg

After back substitution of A

X = 6 � C + 16

A = B=2 + C + 1

fg fg fAg fA,Xg

From the example we see that occurence lists change in the course of back substitutions.

One suitable data structure to cope with this situation are hash tables, yielding O(n)

complexity for n update operations. Existing implementations, like [Heintze et al. 91], use

unordered, linked lists with O(n

2

) complexity.

2.2 Abstraction towards an object oriented representation of

equation systems

If we consider individual quanti�ers as trivial equation systems in solved form, we can

abstract the process of equation solving from the object domain into a space where we

speak about the uni�cation of equation systems, where every quanti�er is member of

one and only one equation system. This de�nes an equivalence relation over quanti�ers

that partitions the quanti�ers into equivalence classes. If one or more quanti�ers are

related through an equation on the object domain, we combine the corresponding equation

systems into one. The maintainance of equivalence relations is of O(n) complexity if

we apply the well known union-�nd algorithm [Aho et al. 83]. Given this optimal way

to maintain the equivalence relation, we can enhance the data structures that encode

the equivalence relation with additional attributes that facilitate the process of equation

solving on the object domain. This construction leads to an object oriented approach for

the representation and manipulation of equation systems. We can, for example, chose a

representation for an equation system that is particulary well suited to its size or to other

properties.

Note that in order not to spoil the O(n) complextity of the whole scheme, we have to

ensure that combining the additional attributes of two equivalence classes is of O(1). We

repeat our example:

Event Equivalence classes

fXg, fAg, fBg

X = 6 �A� 3 �B + 10

fX,A,Bg

A = B=2 + C + 1

fX,A,B,Cg

The left column in the table lists a sequence of equations. The column to the right shows

the equivalence classes and their members prior and after the execution of a single equation.
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Assume that the list of dependent members is one of the attributes of an equivalence class.

This provides the information we need for the back substitution phase. The list contains all

dependent quanti�ers which can possibly be a�ected by a back substitution. In this respect

it is an approximated occurence list for all quanti�ers. The approximation abstracts from

the fact that an independent quanti�er may not occur in the de�ning expressions of all

dependent quanti�ers. Consequently, we will end up trying to substitute quanti�ers into

rows where they do not occur. This sounds worse than it turns out to be in practice. In

the CLP(<) case we perform one back substitution step by �nding the coe�cient of the

variable in a row pointed at by an occurence. The de�nition of the variable, multiplied by

the coe�cient, replaces the variable in the row. Given that the rows are encoded as ordered

lists of variable-coe�cient pairs, �nding the coe�cient of a variable is of linear complexity.

Detecting that a variable is not member of such a list is of the same complexity. Therefore,

the price we pay for the use of the approximation in the back substitution of a variable X

is O(n(m�jocc(X)j)) where n is the dimension of the system, i.e. the number of variables,

m is the number of dependent variables, i.e. the number of equations, and jocc(X)j is the

cardinality of the set of actual occurences of X. On the other hand, the approximation

safes the maintainance of exact occurence lists. From empirical evidence we conclude that

the savings compensate for the false drops in the back substitution phase. It is clear that

we can construct examples which produce the worst case behavior for both schemes. The

advantage of the use of the equivalence class abstraction is that the reference to destructive

operations is reduced, which is important if we implement solvers in logical programming

languages. Note that this abstraction scheme does not eliminate destructive operations

required at the object level, and that the linear complexity union-�nd algorithm rests

upon path compression | a destructive operation in lowest implementation terms. In the

next section we deal with this residual destructivity in the context of a logical, uni�cation

based framework, but �rst let us have a look at a generalization into another direction.

2.2.1 Solved form for inequalities

The proposed equivalence class abstraction also applies to the realization of decision algo-

rithms for systems of linear inequality relations over real valued quanti�ers. This is because

there is a solved form for systems of inequalities. The solved form is produced through the

application of the Simplex algorithm [Dantzig 63]. The basic steps of the algorithm, the

replacement of a dependent quanti�er (a basic variable in linear programming terminology)

by an independent quanti�er (the pivot operation), is again nothing but what we called

back substitution step above. The intention behind the transformation of the system into

a solved form is also the same as above: Simple, operational steps allow for the decision

of satis�ability and the construction of solutions. Useful attributes of an equivalence class

in this context are whether there are any inequalities associated with an equation system

at all, and if so, we can store redundant global information that helps the execution of the

simplex algorithm.
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3 Destruction is alien to Logic

The implementations of many CLP instances require the functionality that is achieved

with destructive updates in traditional, procedural realizations. In logic programming,

this functionality is provided in a sound fashion by either copying or modifying by variable

substitution.

The latter option can be applied through the convention that one particular argument of a

structure representing an object and its properties is a free variable, which will eventually

be bound to another structure, obeying the same convention. Therefore, sequences of

modi�cations lead to chains of structures. The current 'value' of an object is to be found at

the end of the chain. This idea carries over to metastructures [Neumerkel 90] and attributed

variables [Hoitouze 90], two data types that aim at the extension of logic programming

languages. Metastructures are ordinary, non-variable Prolog terms with the sole di�erence

that they can be detected as members of this special sort. The behavior of metastructures

during uni�cations can be speci�ed precisely through a Prolog meta interpreter which

makes uni�cation explicit.

A comparison of the data types with regard to CLP language implementations can be

found in [Holzbaur 92]. In [Holzbaur 90], the traversal of the update chains has been

made transparent by moving it into the speci�cation of metastructures and their treatment

during uni�cation. In particular, the permanent compression of the chains, as opposed to

compression at garbage collection time only [Hoitouze 90], was suggested and implemented.

In an extended Prolog system following this speci�cation, the maintainance of attributed

equivalence classes is logically sound, declarative, and operationally e�cient.

For the implementation of CLP languages this means that we can represent quanti�ers and

the equivalence classes with regard to equation systems in a logical framework: A quanti�er

if represented as a metastructure with some attributes. This allows for the recognition of

quanti�ers during uni�cations and for updates of the attributes.

One of the attributes of a quanti�er is the equivalence class the quanti�er belongs to. If

two or more quanti�ers are related through an equation, we simply unify the equivalence

classes. As the equivalence classes are encoded via metastructures, the semantics of the

uni�cation between two objects of this sort is speci�ed by Prolog predicates. Let us again

refer to a CLP(<) example:

Assume that X and Y are the only members of their equivalence classes, prior

to the submission of the equation 2 �X = 3 � Y to the solver. Therefore, each

of the quanti�ers will be represented by the following metastructures:

X = t( ..., Ex), Ex = e( ..., [X|Xt], Xt)

Y = t( ..., Ey), Ey = e( ..., [Y|Yt], Yt)

The ': : :� denote some irrelevant attributes, Ex and Ey are the metastructures

representing the equivalence classes of X and Y respectively. As outlined in
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an earlier section, in order to retain the linear complexity of the equivalence

class maintainace algorithm, combining attributes of equivalence classes must

be of O(1). This is why we use di�erence lists [Sterling & Shapiro 86] to encode

the set of dependent quanti�ers in an equivalence class. After the equivalence

classes are combined, and assuming that X got expressed in terms of Y , we

have the following situation:

X = t( ..., Exy), Exy = e( ..., [X|Xt], Xt)

Y = t( ..., Exy),

Now both quanti�ers are members of the same equivalence class. The only de-

pendent quanti�er of this class is X. Following the speci�cation from [Holzbaur

90], uni�cation of equivalence classes would be implemented as:

meta_meta_unify( e( X, A, At, ...), e( X, B, Bt, ...)) :-

At = B, % append lists of dep. quants

X = e( _, A, Bt, ...). % new equivalence class

4 Summary

Explicit equivalence classes of quanti�ers as described above are the basis for our Prolog

implementation of CLP(<). The system solves linear equations over rational or real valued

variables, covers the lazy treatment of nonlinear equations, features a decision algorithm

for linear inequalities that detects implied equations, and provides for linear optimization.

The mere existence of this system

3

proves that it is indeed possible to write solvers of this

kind in logic programming languages. The key to such an implementation is the careful

selection and introduction of suitable abstract data types.
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A Evaluation

The performance evaluation of our proposal is presented in the appendix because we do

not want to create the wrong impression that speed or speed comparison is our main

concern. The primary motivation for building solvers in (C)LP languages are the same

that founded and contributed to the prosperity of logic. The sole purpose of this section

is therefore nothing more than to provide some evidence that our investigations are not

totally detached from reality.

We report on some experiments with our implementations of CLP(<) and CLP(Q) on top

of SICStus Prolog version 2.1, executed on a HP/Apollo DN5500 (68040) machine. The

solvers have been applied to the following examples:

1. Solve an instance of the Dirichlet problem for Laplace's equation using Liebman's

�ve-point �nite di�erence approximation [Heintze et al. 87]. With the data from the

reference this produces a sparse equation system with 81 equations in 81 variables.

2. The matrix multiplication program from �gure 2 has been applied in the 'reverse'

direction to invert a Hilbert matrix of order n = 20, a

ij

=

1

i+j�1

,

?- hilbert(20,H),identity(20,I),matmul(H,Inv,I).

resulting in a sparse system of 400 equations in 400 variables. Note that invert-

ing large matrices with this program is not a good idea | This is what makes a

benchmark a benchmark.

3. The dense system Ax = b with a

ij

= i

j

mod 101 and b =< 1; 0 : : : 0 >

T

for some

�xed size n of the square matrix A was solved.
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Before we have a look at the actual execution times, we check in which parts of the

implementation the time is spent (Table 1): The distribution clearly shows that Prolog

CLP(<)

Example Low Backsubst ApplProg

1 76% 23% 1%

2 78% 18% 4%

3, n = 20 90% 9% 1%

Legend:

Low Low level operations like vector addition

Backsubst Back substitutions, i.e, everything corre-

sponding to destructive updates in other

implementations

ApplProg Execution of the pure Prolog part of the

example

Table 1: Execution time distribution with CLP(<)

implementations of CLP(<) will bene�t most from faster vector operations. If we compute

with rational numbers (unlimited precision), low level numerical operations dominate 95%

of the execution (Table 2): The message to Prolog implementors and vendors is clear: If

Prolog should be taken serious with regard to numerical applications, we need a full

4

set

of e�cient numerical functions!

Table 3 relates the execution times of clpr1.1 [Heintze et al. 91] with that of our CLP(<)

implementation. PARI [Batut et al. 91] provides a reference point for the CLP(Q) im-

plementation. Our programs and clpr1.1 were run on exactly the same machine (Apollo

DN5500), the PARI package was timed on a SUN4/IPC, a machine approximately 10%

slower than the DN5500. We assume that the reader is familiar with clpr1.1. A few words

about PARI: It is a very powerful numerical and algebraic evaluator aimed at number

theorists. It contains a kernel entirely written in assembly language. We used it in this

comparison as the ultimate reference with regard to rational computations. The PARI

code for example 3 is in �gure 3.

Both CLP(<) realizations produce numerically completely useless results for example 2

| Hilbert matrices are ill conditioned, and order n = 20 is su�cient to render double

precision oating point operations meaningless. Example 3 was also not intended to be

run by CLP(<). We included the results for real valued computations to give an impression

of the prize for ultimate precision, and to play a fair game: Experiments 1 and 2 would

suggest that the Prolog version of CLP(<) is slower than the clpr1.1 version by a factor

4

Look at CommonLisp

CLP(Q)

Example Rateval Low Backsubst ApplProg

2 72% 23% 4% 1%

Legend:

Rateval Rational scalar arithmetic

Low Low level operations like vector addition

Backsubst Back substitutions, i.e, everything corre-

sponding to destructive updates in other

implementations

ApplProg Execution of the pure Prolog part of the

example

Table 2: Execution time distribution with CLP(Q)
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Example clpr1.1 Prolog CLP(<) Prolog CLP(Q) Pari1.36

1 0.067 0.6 3.9

2 6.630 12.3 51.5

3, n = 20 0.023 0.4 8.2 5.4

3, n = 100 1.483 39.1 9449.5 6386.2

Table 3: Various examples, execution times in seconds

matmul( [], _, []).

matmul( [H|T], B, [H1|T1]) :-

rowmul( B, H, H1),

matmul( T, B, T1).

rowmul( [], _, []). vecmul( [], [], S, S).

rowmul( [H|T], AV, [H1|T1]) :- vecmul( [H1|T1], [H2|T2], In, Out) :-

vecmul( AV, H, 0, H1), vecmul( T1, T2, In+H1*H2, Out).

rowmul( T, AV, T1).

Figure 2: Matrix multiplication in CLP(<)

h100 = matrix(100,100,j,k,j^k%101)

v100 = vector(100,k,0)

v100[1] = 1

gauss(h100,v100)

Figure 3: The PARI code for example 3 with n = 100

between 2 and 9

5

. The factor 26 from example 3 is somewhat annoying. The problem

with comparisons of this kind is that Prolog implementations depend very heavily on the

current state of Prolog compiler technology | An area where advances are more likely

to be expected than in 'saturated' domains like the compilation of procedural languages.

[Taylor 91] reports on a comparison between his compiler and that of SICStus Prolog.

The speedup on the benchmarks ranges from 12 to 42, with a mean of 24. Although the

impact on our CLP instances has not been determined yet, we think that performance

considerations should not dominate or su�ocate the discussion of the proposed approach

to CLP language implementations.

5

This range seems to apply in the average case, however
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