
Metastructures vs. Attributed Variables in

the Context of Extensible Uni�cation

|

Applied for the Implementation of CLP

Languages

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

email: christian@ai.univie.ac.at

Abstract

We relate two mechanisms which aim at the extension of logic programming

languages. The �rst mechanism directly extends syntactic uni�cation through the

introduction of a data type, whose (uni�cation) semantics are speci�ed through user-

de�ned predicates. The second mechanism was utilized for the implementation of

coroutining facilities, and was independently derived with optimal memory manage-

ment for various Prolog extensions in mind. Experience from the application of both

mechanisms to the realization of CLP languages, without leaving the logic program-

ming context, enables us to reveal similarities and the potential with respect to this

task. Constructive measures that narrow or close the gap between the two conceptual

schemes are provided.

1 Introduction

As a serious user of two rather similar mechanisms | as far as their applications are

concerned | we think that it is useful to expose this similarity in some detail. Both

mechanisms provide means for the extension of logic programming languages.

Metastructures as introduced by [Neumerkel 90] aim at extensions to Prolog's builtin uni-

�cation through user-de�ned behavior of metastructures during uni�cation. A re�ned ver-

sion of the concept of metastructures was used in [Holzbaur 90] for the speci�cation and

1

implementation of a variety of instances of the general CLP scheme [Ja�ar & Michaylov

87].

More or less at the same time, the data type attributed variable was introduced by Hoitouze.

Memory management issues as early reset and variable shunting by the garbage collector

were addressed in [Hoitouze 90]. The behavior of attributed variables during uni�cation

was not mentioned. However, regarding applications, Hoitouze also proposed the use of at-

tributed variables for the implementation of delayed computations, reversible modi�cation

of terms, variable typing, and others.

Earlier, [Carlsson 87] used a data type suspension, which was incorporated into SICStus

Prolog [Carlsson & Widen 90] for the implementation of coroutining facilities. As far as we

can tell | as a third party | the data structures attributed variable and suspension are

the same. The di�erence between Hoitouze's and Carlsson's exposition is that the former

put some emphasis on the data type as such and on memory management. The latter

used it as a low level primitive for the implementation of mechanisms that necessitated the

speci�cation of the behavior of the data type during uni�cation.

In the following sections we will have a closer look on metastructures and attributed vari-

ables. In particular, we compare them with regard to their behavior during uni�cation

and their potential for the implementation of CLP languages. In fact, the quality and the

availability of SICStus Prolog motivated the reiteration of the experiments in [Holzbaur

90], which were originally based on metastructures, incorporated by the author into the

C-Prolog [Pereira 82] interpreter. The migration to SICStus Prolog, entailing a compiler,

garbage collector, better arithmetics, and, although hidden from the ordinary user, the

suspension data type, led to this comparison.

2 Metastructures

Metastructures are ordinary, non-variable Prolog terms with the sole di�erence that they

can be detected as members of this special sort. Metastructures are introduced by a dec-

laration :- meta functor N/A, where N/A denotes any functor. In [Neumerkel 90], meta-

structures are restricted to be of the form meta/N, N > 0, which prevents the declaration

of e.g. the usual arithmetic functors +/2,*/2: : : as being 'meta'| which is a disadvantage

if we are about to implement CLP(<) via metastructures. Simple source transformations

from arbitrary functors to meta/N functors are not, as one might think, su�cient for an

emulation of the e�ects of the proposed declaration. Think of already existing structures,

built from a given functor, prior to the declaration, and think of dynamically produced

structures (via read/1,functor/3,=../2).

The behavior of metastructures during uni�cations can be speci�ed precisely through a

Prolog meta interpreter which makes uni�cation explicit [Holzbaur 90]. The meta in-

terpreter implements the uni�cation table from [Neumerkel 90] and makes some further

conventions integral parts of the speci�cation.

2

� Uni�cations between variables and metastructures just produce a binding as usual.

If a metastructure is to be uni�ed with an ordinary term, the reaction to this

event is given by a user-supplied predicate meta term unify/2. Similarly, uni-

�cations between two metastructures are covered by the user-supplied predicate

meta meta unify/2, the arguments being the two metastructures involved.

� Once extensible uni�cation is put into force, we have a problem passing metastruc-

tures to the user-supplied predicates meta term unify/2 and meta meta unify/2,

without triggering further calls to them in a nonterminating fashion. Neumerkel

solved the problem by the introduction of a builtin predicate ===/2, which behaves

as =/2, but treats metastructures as ordinary structures. In addition he has to rely on

the programmers discipline: Nothing but variables may be used as formal arguments

in the de�nition of the two user-supplied predicates. Access to the components of

metastructures is via ===/2. The disadvantages of this solution are that the user has

to be very careful, and that indexing does not apply.

Therefore, we speci�ed the following mechanism: Calls to the two user-supplied pred-

icates meta term unify/2 and meta meta unify/2 are made with syntactic uni�ca-

tion in force. The encapsulation e�ect of this solution is at least as strong as the one

with ===/2, as the only means to get access to the 'internals' of a metastructure.

� The last part of the speci�cation stemmed from a typical application of metastruc-

tures in the context of the implementation of CLP languages. It is covered in detail

in the next section.

2.1 Metastructures and reversible modi�cation

The implementations of many CLP instances require the functionality that is achieved

with destructive updates in traditional, procedural realizations. In logic programming,

this functionality is provided in a sound fashion by either copying or modifying by variable

substitution.

The latter option can be applied to metastructures through the convention that one partic-

ular argument of the structure is a free variable, which will eventually be bound to another

metastructure, obeying the same convention. Therefore, sequences of modi�cations lead

to metastructure chains. The current 'value' of a metastructure is to be found at the end

of the chain. Traversing this chains could of course be left to the user, but it is so common

a pattern, that is has been made part of our speci�cation. The additional convention is

that the user-supplied predicates meta term unify/2 and meta meta unify/2 are called

with the current metastructures, and that the �rst argument of metastructures is used for

modifying by variable substitution. In [Neumerkel 90] this convention is also exploited by

the garbage collector, which can therefore reclaim useless metastructures.

From our experience with the implementation of CLP instances we conclude: If metastruc-

tures are to be employed in serious applications, a garbage collecting scheme which 'knows'

3

about metastructures is strongly implied!

One step beyond, but in the same direction: To wait for the garbage collection to occur in

order to reclaim space and to shorten metastructure chains (much like variable shunting)

is a bad idea! Because of the need for traversal, access and modi�cation operations are

of O(n

2

)

1

. After recognizing the metastructure traversal as being nothing but the �nd

operation of the well known union-�nd algorithm, which is of O(n) through path com-

pression [Aho et al. 83], path compression was applied for metastructure access [Holzbaur

90]. Although it is realized in a fashion transparent to the user, preserving logical sound-

ness, we will also present the Prolog version of the �nd operation with and without path

compression, because it nicely demonstrates the power of the logical variable:

find(Current, Last) :-

arg(1, Current, Next),

(var(Next) ->

Last = Current

;

find(Next, Last)

).

find(Current, Last) :-

arg(1, Current, Next),

(var(Next) ->

Last = Current

;

setarg(1, Current, Last),

find(Next, Last)

).

The �nd operation without path compression The �nd operation with path compression

The �rst argument to the predicate find/2 is the (meta)structure to be traversed, the

second parameter will be uni�ed with the last element of the (meta)structure chain. The

predicate setarg/3 is the SICStus Prolog [Carlsson & Widen 90] primitive for reversible

modi�cation.

3 Attributed variables

Attributed variables are variables with an associated attribute, which is a term. Attributes

are attached to variables, and attributes are referred to, through built-in predicates. As

far as the rest of a given Prolog implementation is concerned, attributed variables behave

like variables | they can be considered as a subtype of type variable. The indexing mech-

anism treats variables and attributed variables the same way. Built-in predicates observe

attributed variables as if they were ordinary variables. Special treatment for attributed

variables applies:

1

Each modi�cation extends the chain by one element, which has to be skipped on the next access.

P

n

i=1

i =

n(n+1)

2

4

� During memory management, as proposed in [Hoitouze 90], i.e, early reset and vari-

able shunting.

� During uni�cation. [Carlsson 87] describes the data type suspension as:

"A suspension is an unbound variable with a reference to a suspended goal,

represented as a record on the heap. A suspended goal is woken when the

suspension is uni�ed with another term."

Three observations:

{ The attribute associated with a suspension variable is supposed to be executed

eventually | therefore the name suspension.

{ The behavior of the suspension during uni�cation is speci�ed. In particular, an

explicit WAM extension for the wakeup mechanism is presented.

{ From the remaining text of the reference cited above, we conclude that the

suspension data type was not meant to be made available as such to the user.

Present versions of SICStus Prolog perform the proposed memory management of at-

tributed variables alias suspensions, and implement the wakeup mechanism quoted. Given

the conceptual proximity of metastructures and attributed variables, we decided to repeat

experiments from [Holzbaur 90], i.e., the implementation of some CLP instances, which

were originally based on metastructures, in the framework of attributed variables.

In order to be able to describe the problems we encountered with the original wakeup

mechanism of SICStus Prolog, and the remedies, we sketch it here:

When a suspension | to be exact: the value part of a suspension | gets bound during

uni�cation to a term or to another suspension, the goal part of the bound suspension is

prepended to the current continuation

2

of the execution state. At the next inference step,

i.e., call or execute in WAM terminology, the woken goals will be run.

This mechanism is perfectly su�cient for the implementation of freeze/2 and dif/2| no

wonder, this was the intention behind the introduction of suspensions. In a wider context,

however, the attribute of an attributed variable needs not to be executed. The narrow

interpretation of attributed variables was the prime cause for the problems we encountered

in more complex applications.

The problem description with the help of an example

From the point of view of the of the code which implements, say, a CLP(<) solver via

attributed variables, any number of binding and aliasing events may take place between

two inference steps. Once the corresponding goals are woken, they are in the execution

2

Scheme slang

5

state of the WAM only. The association between the attributed variables and the attributes

(goals) is lost, as the attributed variables are now transparent | we only see the objects

bound to them.

This is a dilemma, because the bindings which changed the situation, temporarily invali-

dating invariants of the CLP(<) implementation, conceptually took place at once (because

there was no inference step in between).

Each executing woken goal has to �nd out for which bindings it is responsible, take a sort

of 'repair' action, leaving the data structures in a partially repaired state, assuming that

the remaining woken goals will repair the rest. This is not only cumbersome, but also

a source of incompleteness. In our CLP(<) example, we want to �x the linear equation

system after a binding or aliasing event, which might turn some of the variables of the

system into constants (numbers). Binding a variable potentially triggers actions of the

nonlinear equation solver or the inequality solver. We want to postpone these actions

until the invariants about the linear equation system (being in solved form) are true again.

Making the �rst woken goal to repair everything at once does not work either, as some of

the relevant data structures are in the execution state only, and therefore inaccessible.

Note that this observations also destroy the hope for a complete CLP language implemen-

tation via freeze/2.

The solution

These problems can be avoided when the attributed variables are not bound immediately,

but one by one, as part of the execution of the woken goals. This gives the (user)code

a chance to look at the data structures before anything changes and, more important,

conceptually there is always one and only one binding event taking place in isolation, and

the (user)code has control over this event.

This treatment of attributed variables during uni�cation leads to a situation that is equiv-

alent to the one for metastructures.

4 Proposal for the treatment of attributed variables

during uni�cation

Carlsson's wakeup mechanism requires only minor changes, i.e., generalizations, to perform

as proposed above. First we generalize suspensions in the sense that there is no need that

the associated 'goal' will be executed eventually| this is why we prefer the name attributed

variable instead of suspension. Next, the wakeup mechanism is supposed to work as follows:

� When an attributed variable is about to be bound during uni�cation, the attributed

variable and the value it should be bound to are recorded in some internal data

6

structure

3

.

� If there is more than one such event between two inference steps, a list of attributed

variable{value pairs is collected in some internal data structure.

� The fact that such an event took place is recorded.

� At the next inference step, the abstract machine takes measures to feed the attributed

variable-value pairs to the two user-supplied predicates, in analogy to the speci�cation

for metastructures. The data structures for the representation of the list of variable-

value pairs can be reclaimed at this point.

The memory management of attributed variables remains unchanged, except that we plan

to repeat the incorporation of path compression on access and update of attributed vari-

ables.

4.1 Pragmatics

In this section we describe the user's point of view of a SICStus Prolog clone, providing

extensible uni�cation via attributed variables.

Source transformation

If we want to get extensible uni�cation through attributed variables, we have to transform

terms with interpreted functors into terms with attributed variables with the interpreted

functors as attributes. Static occurrences of interpreted functors can be dealt with through

source transformations. Dynamically introduced interpreted terms require changes in built-

in predicates as read/1,functor/3,=../2.

Builtin predicates

The following predicates provide for the introduction, detection, and manipulation of at-

tributed variables.

get attribute(X,C)

If X is an attributed variable, unify the corresponding attribute with C.

attach attribute(X,C)

Turn the free variable X into an attributed with attribute C.

detach attribute(X)

Remove the attribute from an attributed variable, turning it into a free variable.

3

on the heap, in fact

7

update attribute(X,C)

Change the attribute of the attributed variable X to C. Acts as if de�ned below, but

might be more (memory) e�cient.

update_attribute(X, C) :-

detach_attribute(X),

attach_attribute(X, C).

User-de�ned predicates

The following two predicates have to be supplied by the user. They specify the behavior,

i.e., the meaning of attributed variables during uni�cation.

verify attribute(C,T)

This predicate is called when an attributed variable with attribute C is about to be

uni�ed with the non-variable term T.

combine attributes(C1,C2)

This predicate is called when two attributed variables with attributes C1,C2 are

about to be uni�ed.

Note that the two predicates are are not called with the attributed variables involved, but

with the corresponding attributes instead. The reasons are:

� There are applications which only refer to the attributes. Example:

In an implementation of a type system with, say, two disjunct types odd

and even, we are interested in the detection of type (in)compatibility. Let

the atoms odd and even be the attributes attached to the variables to be

typed.

� If the application wants to refer to the attributed variables themselves, they can

be made part the attribute term. The implementation of freeze/2 below utilizes

this technique. Note that this does not lead to cyclic structures, as the connection

between an attributed variable and it's attribute is invisible to the pure parts of a

given Prolog implementation.

� If attributed variables were passed as arguments, the user's code would have to refer

to the attributes through an extra call to get attribute/2.

� As the/one attribute is the �rst argument to verify attribute/2 and

combine attributes/2, indexing applies. Note that attributed variables themselves

look like variables to the indexing mechanism.

8

4.2 Example

In order to show that both metastructures and attributed variables are equally capable

to serve for the implementation of freeze/2, to demonstrate that the proposed wakeup

mechanism for attributed variables is strictly more general that the old one, and to allow

for the comparison of two solutions to the same task, we present two implementations of

freeze/2 side by side:

:- meta_functor(frozen/2).

freeze(frozen(_,Goal), Goal).

meta_term_unify(frozen(Value,Goal), Value) :-

call(Goal).

meta_meta_unify(frozen(V,G1), frozen(V,G2)) :-

V = frozen(_,(G1,G2)).

freeze(X, Goal) :-

attach_attribute(V, frozen(V,Goal)),

X = V.

verify_attribute(frozen(Var,Goal), Value) :-

detach_attribute(Var),

Var = Value,

call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-

detach_attribute(V1),

detach_attribute(V2),

V1 = V2,

attach_attribute(V1, frozen(V1,(G1,G2))).

The left encoding of freeze/2with metastructures assumes the speci�cation from [Holzbaur

90] being in force. The solution on the right builds on the semantics of the SICStus clone,

as proposed in this paper.

5 Summary

Both metastructures and attributed variables are attractive and powerful concepts and are

very similar to each other. From the inspection of the previous example, and from many

others which do not �t into one paper, we conclude:

� The use of metastructures, together with the proposed conventions, are logically

'cleaner'. Their application for reversible modi�cation has a sound declarative se-

mantics, without any reference to alien concepts as destructive updates, and still

allows for the transparent utilization of such methods in the implementation.

� Attributed variables are available in a 'raw' version in an attractive, State of the

Art Prolog implementation | SICStus. It would be irresponsible to ignore this

potential, given that minor changes can produce the intended functionality. A slight

aftertaste remains because of the explicit modi�cation predicate for the attribute part

of attributed variables and because of the need for the transformation of interpreted

terms into attributed variables.

9

Acknowledgements

This work was supported by the Austrian Federal Ministry of Science and Research.

References

[Aho et al. 83] Aho A.V., Hopcroft J.E., Ullman J.D.: Data Structures and Al-

gorithms, Addison-Wesley, Reading, MA, 1983.

[Carlsson 87] Carlsson M.: Freeze, Indexing, and Other Implementation Issues

in the WAM, in Lassez J.L.(ed.), Logic Programming - Proceed-

ings of the 4th International Conference - Volume 1, MIT Press,

Cambridge, MA, 1987.

[Carlsson & Widen 90] Carlsson M., Widen J.: Sicstus Prolog Users Manual, Swedish

Institute of Computer Science, SICS/R-88/88007C, 1990.

[Holzbaur 90] Holzbaur C.: Speci�cation of Constraint Based Inference Mecha-

nisms through Extended Uni�cation, Dept. of Medical Cybernet-

ics & Arti�cial Intelligence, University of Vienna, Dissertation,

1990.

[Hoitouze 90] Huitouze S.le: A new data structure for implementing exten-

sions to Prolog, in Deransart P. and Maluszunski J.(eds.), Pro-

gramming Language Implementation and Logic Programming,

Springer, Heidelberg, 136-150, 1990.

[Ja�ar & Michaylov 87] Ja�ar J., Michaylov S.: Methodology and Implementation of a

CLP System, in Lassez J.L.(ed.), Logic Programming - Proceed-

ings of the 4th International Conference - Volume 1, MIT Press,

Cambridge, MA, 1987.

[Neumerkel 90] Neumerkel U.: Extensible Uni�cation by Metastructures, Proc.

META90, 1990.

[Pereira 82] Pereira F.: C-Prolog 1.5 Users Manual, SRI International, Menlo

Park, CA, 1982.

10

