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Abstract

The article describes the first results of an ongoing project that is being pursued at the Austrian
Research Institute for Artificial Intelligence. The long—term goal of the project is the develop-
ment of a new generation of flexible and adaptive musical systems. The central concern is there-
fore with techniques of Machine Learning, and with research into the role that general musical
knowledge plays in a system that is to learn new musical concepts. The first test domain for our
system was two—voice counterpoint composition. The starting point for the project was the real-
ization that ‘intelligent’ learning requires a considerable amount of domain—specific knowledge.
We will describe our approach to defining some basic knowledge about tonal music which can
serve as the basis for learning processes. We will also briefly describe the integrated learning strat-
egy which can take advantage of such knowledge during learning. Finally, the paper also suggests
that intelligent, knowledge —based learning systems could be useful tools for testing general theo-
ries about music.

1 Introduction

This article describes a project whose long—term goal is the development of a new genera-
tion of flexible and adaptive musical systems. Flexibility requires the ability to learn. Thus,
for the moment we concentrate on the development of learning methods that are suited to
the task of learning musical concepts and rules. The first test domain for our system is two—
voice counterpoint composition.

Two main ideas will be expounded in this paper: the first is that ‘intelligent’ learning re-
quires a considerable amount of domain—specific, but possibly abstract, knowledge, that
is, knowledge about the structure of the domain whose concepts are to be learned. This
leads us to the problem of identifying and formalizing what we consider basic musical
knowledge. It will be argued in this article that there is indeed something like common mu-
sical ‘knowledge’ shared by most Western music listeners, and a model that captures some
of this knowledge (with respect to two—voice counterpoint) will be presented. The second
problem then consists in devising learning algorithms that can take advantage of that
knowledge to learn both more ‘intelligently’ and more effectively. We will present a new
learning algorithm that has this desired property. Some examples of the algorithm at work
will also be presented.



The second underlying idea is not new, but may not yet have been considered in connection
with machine learning: we see intelligent learning systems as extremely useful tools for
testing general theories in many domains. For a theory of perception of tonal music this
means that the theory can be tested by experimenting with a learning system and analyzing
how certain assumptions and a priori knowledge affect the ‘learnability’ of musical
constructs and rules. This could lead to new insights concerning the connection between
assumptions about perception and specific systems of musical rules or styles.

The article tries to address two groups of researchers with possibly very different areas of
interest and equally different background, namely, specialists in Artificial Intelligence
(and Machine Learning, in particular), and musicologists. It seems therefore necessary to
give a short introduction to those concepts in the field of Machine Learning that are rele-
vant to our project, in particular the concept of ‘knowledge —based’ learning. As our first
application — two—voice counterpoint — is a very restricted and comparatively simple
(some might say artificial) musical problem, we assume that the reader is familiar with the
basic rules and concepts of that domain.

2 Machine Learning: some important concepts

Machine Learning (ML) is the discipline that tries to develop theories and models of learn-
ing processes, and to build working computer systems that can learn and adapt to new situa-
tions. 'Learning’ is a very broad term; in principle, it covers adaptation to new environ-
ments and situations, building new concepts and relations from experience and observa-
tion, the acquisition of knowledge from teachers and textbooks, the acquisition of special-
ized skills through practice, learning to avoid mistakes, and many more such scenarios. In
the field of Machine Learning, the idea of learning general rules or concepts from specific
examples has received by far the most interest. If we define the notion of a ‘rule’ or ‘concept’
broadly enough, this research direction covers many of the learning scenarios listed above.
The system to be presented here will learn general problem solving rules from specific
instances of correct and incorrect counterpoint compositions.

2.1 Empirical vs. analytical learning

The field of Machine Learning has seen a major shift of interest in recent years. While in
the early times of ML, most work went into the development of inductive, empirical learning
algorithms, where a system is expected to learn some concept solely from positive and neg-
ative examples (see, for instance, Dietterich & Michalski 1981; Michalski 1983; Mitchell
1982; Winston 1975), the past few years have brought a tendency towards knowledge —
based, i.e, essentially deductive, analytical learning.

The main motivation for this shift lies in the problems that are inherent to logical induction.
Inductive generalization from examples is problematic for at least two reasons. First, it is
not logically justifiable: we have no guarantee that an empirical generalization drawn from
the observation of a finite number of examples of a concept will be correct. Coincidental
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similarities between the limited number of known examples may lead a learning system to
consider lots of incorrect or non—sensical generalizations that have nothing to do with the
concept to be learned. Given just the examples and no other information, a learner has no
way of judging the plausibility or correctness of a generalization. A related problem is that
of the search space: the number of possible generalizations is huge for any non—trivial con-
cept description language (Rendell 1987), and ‘blind’ search of the space of generalizations
is prohibitively expensive.

The solution to these problems lies in the use of knowledge to guide the learning process.
There seem to be very few situations where people learn ‘blindly’, without trying to explain
the observed phenomena with the help of some prior knowledge (or by way of analogy).
Such explanations, if possible, both reduce the number of plausible generalizations and act
as justifications of generalizations.

The main result that came out of the new interest in knowledge—based learning was a
methodology known as Explanation—Based Learning or EBL (Mitchell et al. 1986; DeJong
& Mooney 1986). Learning in EBL consists in explaining why and how an example belongs
to the concept to be learned and generalizing this explanation. This process yields a descrip-
tion of a whole class of objects or situations which satisfy the same explanation structure
and hence also belong to the goal concept. These explanations are in the form of deductive
proofs. They are derived from the system’s a priori knowledge about the problem domain;
the sum total of this knowledge is called the system’s domain theory.

The EBL method is the exact opposite of knowledge —free inductive learning in that it re-
quires complete knowledge about the thing to be learned in order for learning to be possible.
Learning is essentially reduced to re —expressing existing knowledge in a form that is more
efficient and more directly applicable (or operational, in EBL terminology). While such an
approach may be fruitful in some domains, it is clear that there are many more fields which
do not permit the formulation of a complete a priori theory, and hence are not amenable to
such purely deductive techniques. Music is but one of them. But even though EBL is not
applicable in such domains, we do not want to resort to ‘blind’ inductive learning. What we
are looking for are learning methods that use all the knowledge available, without requir-
ing completeness and consistency of that knowledge.

In the field of music theory, some attempts at automatic learning of musical rules have al-
ready been made, but most of these projects were along the lines of purely inductive learn-
ing (e.g., induction of musical grammars from examples). We are pursuing an alternative
methodology: we provide the system with basic musical knowledge (the kind of knowledge
that is intuitively clear to us) and devise algorithms that can take advantage of that knowl-
edge during the process of learning.

2.2 Learning Apprentice Systems

In order to give the reader an idea of the scenario in which our system learns, we briefly
introduce the concept of Learning Apprentice Systems. Mitchell et al. (1985) define a Learn-
ing Apprentice as
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. an interactive knowledge—based consultant that directly assimilates new
problem—solving knowledge by observing and analyzing the problem solving
steps contributed by its users through their normal use of the system.”

Two things to note here are that a human expert (teacher) is assumed to be present and that
learning should occur, as far as possible, during normal use of the system, which means that
the system should learn primarily by observing the problem solving steps of the expert. But
if the learning system does not have a complete a priori theory, and if we want it to learn
reliably, it will sometimes have to ask questions of the expert. By using domain—specific
background knowledge in the process of interpreting the user’s actions, the number of
questions that have to be asked can be kept to a minimum, and the system can make many
plausible generalizations without any help from the teacher.

The system we have constructed, then, is a Learning Apprentice for two—voice counter-
point composition, and the a priori knowledge we have endowed it with are the kinds of
‘intuitive’ perceptions that every ordinary person has acquired from years of (conscious or
unconscious) exposure to tonal music.

3 The domain: Two—voice counterpoint composition

The problem for which the system is to learn rules is defined as follows:

Given: key, time signature, and melody (the cantus firmus) of a counterpoint piece.

Problem: complete the piece by writing a second line (the counterpoint) in such a way that
the constraints of counterpoint style are satisfied.

Fig.1 shows a simple counterpoint piece of first species (whole notes against whole notes).
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Fig.1: A simple counterpoint piece



The system learns three classes of rules:

good (PN) if <conditions>
note N is a good solution in a particular context in piece P if <conditions> (a conjunc-
tive expression) is satisfied. <conditions> specifies the structure of the context and
the attributes that note and context must satisfy for N to be a good solution.

bad (PN) if <conditions>
note N is bad in a particular context in piece P if <conditions> hold.

unacceptable (PN) if <conditions>
note N is illegal in a certain context in piece P if <conditions> hold.

Fig.2 shows a simple rule and a musical situation to which it applies (succession of perfect
consonances). Learned rules are ordinary PROLOG clauses; variables are capitalized;
mnemonic variable names were substituted by the author.
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unacceptable( Piece, Note) :— N2 N

parallel_note( Note, ParNote),
previous_note( Note, PrevNote), E;’:SOTGN_ N
parallel_note( PrevNote, PrevParNote), PrevNote = N2
is_interval( Note, ParNote, perfect_consonance), PrevParNote = N3

is_interval( PrevNote, PrevParNote, perfect_consonance).

Fig.2: A simple counterpoint rule

4 General musical knowledge as a basis for learning about music

In our system, the ‘technical’ basis for reasoning about music is a hierarchical knowledge
base defining the basic musical concepts (notes, intervals, scales, keys, etc.) along with
their intrinsic properties (pitch, duration, degree of consonance, etc.). The knowledge base
is implemented as a hierarchical frame system.

Given this information and some examples of acceptable and unacceptable counterpoint
pieces, the system could learn counterpoint rules inductively, i.e., by comparing the differ-
ent examples and hypothesizing general rules on the basis of commonalities and differ-
ences. A large number of (carefully selected) examples would be necessary, and the system
would come up with many nonsensical hypotheses.

But we can do better than that; surely nobody learns counterpoint without prior musical
knowledge. In fact, every ordinary person ‘knows’ a lot about music (sometimes without
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knowing it) just from having been exposed to music (or Muzak, as the case may be) for
years. This kind of tacit knowledge is usually called ‘habits of perception’ or ‘musical intu-
ition’, or sometimes simply the ‘musical ear’. It is this general knowledge that we want to
model and give to the program as a basis for the learning process. We want to provide the
computer with an ‘ear’, as it were, so that it has the same possibilities for learning as hu-
mans.

4.1 A hierarchical model of perception: Events and effects

We have devised a simple (and rather naive) model of the perception of two—voice coun-
terpoint to serve as a basis for the formulation of simple musical knowledge (see Fig.3).
The model rests on the notions of events and effects.

4.1.1 Events: the structure of musical situations

At the moment we are experimenting with the simplest species of counterpoint, i.e., whole
notes against whole notes, so we can use a rather simple model of the structure of a piece.
The lower half of Fig.3 depicts successively more abstract views of a musical situation: level
1, the level of the individual notes, is not adequate as a reasonable basis for the description
of situations; it is too unstructured. It seems safe to postulate that people make at least very
simple local abstractions when listening to music: a note can be perceived as a single entity
in its own right; two simultaneous notes are often heard as a unit, a vertical interval, and two
consecutive notes can be perceived as forming a unit of melodic motion, a step or leap. How
we perceive notes depends on the musical context and on the phenomena we are concen-
trating on. Accordingly, our representation system rests on three types of events (level 2):

 single note (a single note is viewed as such)
* vertical interval (two simultaneous notes are represented as a unit)
 step/leap (two consecutive notes are viewed as a unit)

Any situation in a piece can then be represented as a composition (sequence or simultane-
ity) of events and any combination of these compositions (level 3). Because of the multiple
role of single notes (atomic event as well as part of some composite events), more than one
parsing (or view) of a situation is usually possible. Our representation language is a con-
text—free grammar, very similar to Stephen Smoliar’s tree representation for Schenkerian
analyses (Smoliar 1980). When applied to a collection of specific notes, it returns a typed
parse tree for each possible structural view of this musical situation.

Instead of listing the entire grammar, let us demonstrate the principle by way of an exam-
ple: Fig.4 shows a simple situation in a piece. The four notes b, d, g, and e can be inter-
preted as a sequence of vertical intervals, a pair of two simultaneous horizontal steps/leaps,
or any combination of these with single notes. This is expressed in the parse trees of Fig.4.
The labels composite_situation, sequence, vertical_interval etc., correspond to non—ter-
minal symbols in the grammar and specify the type of a subexpression. Strongly typed ex-
pressions permit clean formulation of rules and background knowledge: for every rule or
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Fig.3: A simple model of the perception of two—voice counterpoint



other piece of knowledge, an attached type label identifies the kinds of objects or situations
to which the rule is applicable.

composite_situation(
sequence(
event(vertical_interval(b,d))
event(vertical_interval(g,e))

)

composite_situation(

b g simult(

o event(step_leap(b,g)),
.. a © — - event(step_leap(d,e))))
Y8

d e composite_situation(
sequence(

event(vertical_interval(b,d)),
composite_situation(
simult(event(single_note(Q)),
event(single note(e))))))

composite_situation(
simult(
composite_situation(
sequence(event(single _note(b)),
event(single_note(g)))),
event(step _leap(d,e))))

Fig.4: A musical situation and four parse trees

4.1.2 Effects: the sound of musical situations

Given this structural view of musical situations, we can now attempt to describe how certain
situations sound. The central notion around which our approach revolves is that of an effect;
effects correspond to simple kinds of more or less direct sensations in the listener. Every
event has some intrinsic effects (level 2’ in layer 2 of Fig.3), depending on its type, and more
complicated (and more abstract) effects emerge when events are juxtaposed (in se-
quences or simults) — this is level 3’ in Fig.3.

For instance, all events of type vertical interval have intrinsic effects harmonic tension and
vertical coherence. The former depends primarily on the degree of consonance of the inter-
val, whereas the latter is defined through the interval’s width. Events are lined up along
scales of intensity for each effect; this is part of the system’s a priori knowledge. It knows, for
example, that perfect consonances have an extremely low degree of harmonic tension (that
is, they sound ‘empty’, ‘smooth’), whereas most dissonances (especially narrow, altered in-
tervals) have a very high harmonic tension effect (they sound extremely ‘tense’).
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Effects that arise from the juxtaposition of events correspond to more abstract sensations
in a listener. Some of these ‘second order’ effects are contrast, coherence, parallelism, ten-
sion, and relaxation, where contrast, for instance, is defined as arising from a combination
of intrinsic effect differences between the events involved in the situation.

4.2 The representation of musical knowledge

The kind of knowledge about effects listed above is mainly definitional. It is not sufficient
to improve learning. Knowledge about dependencies between effects and the acceptability
of a musical situation is needed. We believe that people have this knowledge, if only in a
very general form. Even people with no explicit musical knowledge can usually say what it is
that bothers them in an ‘awkward’ musical situation.

In our system, this kind of knowledge comes in three forms: deductive rules, determinations,
and plausibility heuristics. The following sections will describe each of these in turn and
demonstrate how they contribute to an effective learning process.

4.2.1 Deductive rules

Parts of the musical ‘knowledge’ referred to above can be formulated as a set of hierarchi-
cally dependent rules (an incomplete domain theory (Mitchell et al. 1986)). These rules re-
late certain lower— and higher—order effects to the general acceptability of a musical situ-
ation.

Fig.5 gives a simplified sketch of some of these rules and shows how they allow the system to
learn a simple rule from just one training example (the note ¢ in the training example was
labelled as bad by the teacher). The rule that is learned says that perfect vertical conso-
nances are bad and should be avoided (rationale: they sound ‘dull’ because of a lack of har-
monic tension). The learning method is straightforward Explanation—Based Learning
(EBL) — the system finds an explanation for why the c may sound bad, and then generalizes
the explanation by turning constants into variables. Finally, a general rule is extracted from
the explanation by collecting the leaves of the generalized explanation tree.

Many of these deductive rules describe factors that influence the way that music listeners
intuitively rate the quality of a simple piece (for instance, that harmonic tension, contrast,
and parallelism are related to the ‘interestingness’ of a musical situation). If this knowledge
were complete in the sense that it could explain all the rules of counterpoint, our apprentice
could learn all the rules perfectly by EBL. Not much to the surprise of anyone who knows
anything about music, this is not the case. But after some introspection, it is easy to formu-
late some weaker forms of general musical knowledge.

4.2.2 Determinations

Determinations (Russell 1986) are a formalism for the expression of weaker knowledge.
They are statements of general dependencies between attributes of a situation. They do not
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bad(Piece,Note) :— in_context(Note,C), incoherent(C). Knowledge relati
owleage relating

bad(Piece,Note) :— in_context(Note,C), dull(C). abstract offects to

the acceptability of
a solution

dull(C) :— intrinsic_effect(C,E,S), dull_effect(E,S).

intrinsic_effect(vertical_interval(N1,N2),harmonic_tension,low)

is_interval(N1,N2,perfect_consonance). Knowledge about
perceivable effects

dull_effect(harmonic_tension,low). of simple music

in_context(N,vertical interval(N,N1)) : — Grammar capable of
of simple pieces

parallel_note(N,N1). describing the structure

Fig.5.a: Set of given deductive rules (simplified)
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Fig.5.b: A training instance
bad(p,c)
in_context(c,vertical_interval(c,Q)) dull(vertical interval(c,Q))
parallel_note(c,g) intrinsic_effect(vertical_int(c,g), dull_effect

harmonic_tension,low) (hflorvrc)onlc_tensmn,
4

is_interval(c,g,perfect_consonance)
[

is_interval(c,g,'P5’)

Fig.5.c: Sketch of the explanation tree

bad(PN) :— parallel_note(N,N1),
is_interval(N,N1,perfect_consonance).

Fig.5.d: Rule extracted from generalized explanation
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contain information that is specific enough for problem solving or for explaining new situa-
tions, but they can serve as a basis for the search for plausible explanations.

Fig. 6.a shows arather general and powerful determination from our system, and the rest of
Fig.6 sketches how it is used in the process of learning the ‘parallel fifths’ rule (actually, a
generalization thereof). The learning method used here is a combination of EBL and de-
terminations. The determination’s role is essentially to point to possible explanations for a
phenomenon; these can then be verified by the user or by reference to other, known situa-
tions which satisfy the same determination in the same way (Davies & Russell 1987).

Determinations are a natural and attractive form for the formulation of general, abstract
knowledge. The one depicted in Fig.6 is a very simple, intuitively clear musical heuristic;
when writing it down, one need not know in advance for which cases and combinations of
events and effects it will hold. This will be learned by the system.

4.2.3 Plausibility heuristics

The weakest form of knowledge in our system comes in the form of heuristics for inductive
generalization. These are meant to describe very weak and overly general intuitions about
music.

Here is an example of a plausibility heuristic:

“When trying to explain why a solution is bad or unacceptable, prefer hypotheses
that contain some extreme or unusual event/effect.”

This allows for a heuristic search for the best explanation and hence for the best inductive
generalization (see below). The main effect is that more ‘plausible’ hypotheses are tried
first. Not only does this speed up the learning process, but it also saves the user the trouble
of having to reject a lot of — in his/her eyes — ‘nonsensical’ and unexpected hypotheses
presented by the system for verification.
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determines( bad_effect( Event1, Effect1, Degreel) &
bad_effect( Event2, Effect2, Degree2),
unacceptable_situation( sequence( Event1, Event2))).

Asequence of two events Event1, Event2which are both bad may be unacceptable;
whether or not this is the case depends on exactly what the effects are that make the
two events bad (Effect1, Effect2), and how strong they are (Degreel, Degree2).

Fig.6.a: A determination

. a 9
Piece p: B
Fat
(s = o] =
o *—o 8
=
d C

Fig.6.b: A training instance

unacceptable(p,c)

(A) unacceptable_situation(sequence(vertical_int(d,a),vertical_int(c,g)))

. : Ask user:
Determination |:'> is ‘A because of B and C’

/ a reasonable explanation?

(B)bad_effect(vertical _int(d,a),harmonic_tension,low)
/ (C) bad_effect(vertical_int(c,g),harmonic_tension,low)

intrinsic_effect(vertical_int(d,a),harmonic_tension,low)

is_interval(d,a,perfect_consonance)

is_interval(d,a,'P5’)

Fig.6.c: Explanation process (combination of determination and EBL)

unacceptable(PN) :—parallel_note(N,N1),
previous_note(N,N2),
parallel_note(N2,N3),
is_interval(N,N1,perfect_consonance),
is_interval(N2,N3,perfect_consonance).

Fig.6.d: Rule extracted from generalized explanation
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5 The integrated learning strategy

5.1 The learning algorithm

The three types of explicit background knowledge — deductive rules, determinations, heu-
ristics — require three different learning methods, namely, EBL, determination—based
learning, and inductive generalization. Our apprentice combines and integrates these rath-
er different methods in a framework of explaining and generalizing: given a training example
(amusical situation) classified as good, bad, or unacceptable by the user, the system tries to
explain why this might be so. An explanation is a tree reducing the goal (say, bad(P,N)) to
simpler, easily testable (‘operational’) conditions. These are then generalized to yield the
conditions for a generally applicable rule.

In every step of the explanation process, the system tries to apply the strongest forms of
knowledge available:

(a) if a deductive rule is applicable to the current explanation subgoal, an EBL step is per-
formed (see section 4.2.1).

b) if the current subgoal matches the latter part of a determination, the determination’s
g 1Y
preconditions are evaluated recursively (using methods (a), (b), or (c)), and the user is
asked to verify the resulting explanation (see section 4.2.2).

(c) if neither (a) nor (b) are possible, the system tries to ‘explain’ the current subgoal on the
basis of its similarity to other known situations or to rules that have already been
learned. Since there are usually several alternatives, all the available heuristics are
used to determine which of these is the most plausible one (see section 4.2.3). Again,
the user is asked to verify such explanation steps. This type of ‘explanation’ step leads to
effects of inductive generalization.

Explanations based on ‘weak’ knowledge (steps (b) and (c) above) are presented to the
user for confirmation or rejection. In this way, the learned rules will be strongly justified,
even if the underlying knowledge was unreliable. However, using all its knowledge, the sys-
tem tends to come up with plausible explanations very quickly, so that this is not too much
of a burden on the human teacher. The reader interested in Machine Learning is referred
to (Widmer 1989) for details of the learning algorithm.

5.2 An example

The following example demonstrates how the various learning modes are integrated in a
more complex learning situation. Suppose that the apprentice has already learned the very
specific rule depicted in Fig.7.b, which says that a note is bad if it forms an interval (jump)
of a minor seventh (min7) with its predecessor. Suppose also that at some point during
problem solving, the system creates the solution depicted in Fig.7.c, at which point the
teacher interrupts it to say that note g2 is unacceptable. Fig.7.c shows the explanation tree
built by the system. The tree is constructed as follows:
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determines((bad( Piece, Note) : — Reason1,
(bad( Piece, Note) :— Reason2,
notequal( Reason1, Reason2))),
unacceptable( Piece, Note)).

A note that is bad for two different reasons may be totally unacceptable; whether or
not this is the case is determined by the particular reasons for which the note is bad.

Fig.7.a: A given determination

RULE 15: bad(N) :— previous_note(N,N1) & scale_degree(N, second) &
scale_degree(N1,root) & is_interval(N1,N,min7).

Fig.7.b: A specific rule already learned

A a gt
. A e ——
Piece p: 4 - fo] Py o
Y] o] = o =
c g2
unacceptable(p,g2)
A
Det. — Ask user for
Determination confirmation
EBL bad(p,g2) bad(p g2) SBL

..... — /
bad_effect(vertical_int(g1,92),
harmonic_tension, low)

/

intrinsic_effect(vertical_int(g1,92),
harmonic_tension,low)

}

is_interval(g1,92,perfect_cons.)

1

is_interval(g1,g2,'p1’)

similar to RULE 15

previous_note(N,N1)

/T~

previous_note(g2,c) is_interval(c,g2,p5)

Ask user for
confirmation:

“ ... because
at least a p5?”

&is_interval(N1,N,min7)

Fig.7.c: A training instance and its explanation

unacceptable(PN) : — parallel_note(N,N1) & is_interval(N,N1,perfect_consonance)
previous_note(N,N2) & at_least_interval(N2,N,p5)

&

Fig.7.d: New rule extracted from generalized explanation
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e Trying to find an explanation for unacceptable(g2), the system finds the determination
of Fig.7.a and tries to establish its preconditions, that is, it attempts to show that g2 is bad
for two different reasons.

o First, itsucceeds in proving bad(g2) using the deductive rules in Fig.5.a. This resultsin
the left subtree in Fig.7.c and establishes an EBL—type sub—explanation (“g2 is bad
because it forms a perfect consonance — specifically, a perfect unison (p1) — with g1,
and perfect consonances have low harmonic tension, which sounds dull”).

© Trying to show that bad(g2) holds for a second reason, the system comes across the
specific rule already learned and listed in Fig.7.b and, using some heuristics, finds that
the rule is rather similar to one aspect of the current situation (namely, the jump c—Q2,
which is an interval of a perfect fifth (p5)). The two situations are similar in that in both
cases, there is a melodic jump which is at least as big as a p5. This similarity is presented
to the teacher as a hypothesis for bad(g2) (“Is the jump from ¢ to g2 bad because it is at
least a p5?”), and the teacher agrees, which establishes precondition 2 of the deter-
mination and introduces an inductive generalization into the explanation.

e Finally, the need to establish the relevance of the determination prompts another ques-
tion to the teacher (“unacceptable(g2) because <sub—explanationl> and <subex-
planation2>?"). The teacher agrees again, and this completes the explanation.

The generalized rule extracted from the explanation is shown in Fig.7.d. The rule basically
says thatitis prohibited to ‘jump into’ a perfect consonance (perfect consonances should be
introduced by stepwise motion). Note that this rather general rule was learned on the basis
of one training instance, using three different kinds of background knowledge plus a pre-
viously learned rule and two very specific questions to the teacher.

Examples of the kinds of rules the system can learn appear in the appendix, where a partic-
ular experiment with the system is presented.

6 Conclusion

We believe that our learning apprentice project represents a case of a fruitful marriage of
Artificial Intelligence and Music. On the one hand, it leads to the development of more
flexible and reliable learning algorithms, which is beneficial to the entire field of Machine
Learning. On the other hand, attempts to model some basic features of musical perception
and experiments with a system that uses this model as a basis for learning may lead to inter-
esting insights into the structure of tonal music. Such attempts may provide us with indica-
tions concerning the logical connection between musical perception theories and specific
musical conventions by answering questions like the following:

* How do different sets of a priori knowledge affect the ‘learnability’ of the rules of a given
musical style?

» Isthere a certain regularity to the connection between the underlying theory and the op-
erational ‘surface’ rules?

e Which part of the rule system of a particular musical style follows ‘naturally’ from which
set of underlying assumptions about perception?
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We believe that the kinds of knowledge structures described in section 4 represent a legiti-
mate first step to providing a computer with the equivalent of a simple ‘ear’. We are still far
from having a satisfactory theory of musical events and effects. In particular, first species
counterpoint is too simple a musical problem to allow for musicologically interesting ex-
periments. In the meantime (1990—1991), the project has advanced beyond this rather
simple type of music; a new, more ambitious system has been implemented that can learn
to harmonize given melodies. That system is based on a more complex and also more gen-
eral theory of musical perception (see Widmer 1990a,b,c). First experimental results are
very encouraging. The ultimate goal is to construct a general (qualitative) model of human
musical perception, based on common—sense observations and intuitions. That kind of
musical model could then be used in experiments to yield meaningful answers to the kinds
of questions hinted at above.
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Appendix: An experiment

The experiment described below demonstrates how the availability of general musical
knowledge greatly improves the efficiency of the learning process. The setup was as fol-
lows: we settled on a set of eight rules which the system should learn. They are sketched
below.

Rule 1: A first species counterpoint piece must not begin with an imperfect consonance”

(unacceptable) 5
.. ta = o
W F W
o S o) o
Rule 2: “Perfect consonances should rarely be used”
(bad) 5 _
G—o g
5 o] o ©
Rule 3: “Sequences of perfect consonances are illegal”
(unacceptable) ) : :
o~ I [ 2
= ¢ =t
0
Rule 4: “Parallel motion tends to be bad” o 5 e
(bad) &y P A
- =~ S o
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Rule 5: “Introducing perfect consonances by parallel motion is not allowed”
(unacceptable) /) —
G O~
ol 7 =y
& =[] e
Rule 6: “Melodic jumps bigger than a perfect fourth tend to be bad”
(bad) 7
fs———98 © °—
N7
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Rule 7: “Motion in opposite directions is good” 9
(good) e e e e
\'._'?i’ Py §_"o L2
Rule 8: “Melodic jumps bigger than an octave are not allowed”
(unacceptable) e E— - —
[on) . e ] o
ol 7 N 5
a’ No L=
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The system was then run in two modes: once with the full domain theory (perception mod-
el), the second time without it (only the musical heuristics — see section 4.2.3 — were left in
the system). That is, in the second case (without domain theory), all the rules would have to
be learned in a purely inductive way. We then measured the number of training examples
the apprentice would require, and the number of questions it would have to pose to the
teacher, in order to learn just this set of rules. The results show the positive effect of a priori
knowledge very clearly: the eight rules were completely learned in both cases. However, in
case 1 (with domain theory), the apprentice needed 10 examples and asked a total of 18
questions, whereas in case 2 (almost no musical knowledge), 24 examples and 42 questions
were needed for the system to learn the same set of rules. It must be stressed that no
changes were made to the system — we just varied the amount of available musical knowl-
edge.
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