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Abstract

The KARDIO system deals with the problem of diagnosing cardiac arrhythmias from

symbolic descriptions of electrocardiograms. The system incorporates a qualitative model

which simulates the electrical activity of the heart. In the paper we outline three methods

for an e�cient application of a simulation model to diagnosis. First, through abstractions

and re�nements, the model is represented at several levels of detail. Second, the model

is reformulated in terms of constraints which enable e�cient propagation of relational

dependencies and reduce backtracking. And �nally, the model is `compiled' into surface

diagnostic rules. Through simulation, a relational table is generated and subsequently

compressed into e�cient diagnostic rules by inductive learning. A novel contribution to

KARDIO, presented here, includes a comparison of diagnostic e�ciency and space com-

plexity of �ve types of knowledge: a simulation model of the heart, a hierarchical four-level

model, a model represented in terms of constraints, a relational table, and compressed

diagnostic rules.

1 INTRODUCTION

The heart can be viewed as a device with an electrical control system consisting of inter-

connected components. This electrical system works autonomously within the heart and

is responsible for generating the rhythmical stimulation impulses that cause the contrac-

tion of the heart muscle, and consequently changes in the electrical potentials in the body.

The changes of these potentials in time can be recorded as an electrocardiogram (ECG).

Disorders which can occur in the electrical control system of the heart are re
ected in the
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Figure 1: Deep and surface representations of the electrocardiographic knowledge.

ECG curves. For example, an impulse generator may become silent or overactive, or some

electrical conductance may become partially or totally blocked. These disorders are called

cardiac arrhythmias and cause some characteristic changes in the ECG. The diagnostic

problem is to decide which cardiac arrhythmias could have caused an abnormal ECG.

In KARDIO [1], the ECG interpretation problem is formulated as follows: given a symbolic

description of the ECG data, �nd all possible cardiac arrhythmias. There are both single

and multiple disorders in the electrical system of the heart. In the medical literature

(e.g., [9]), however, there is no systematic description of ECG features which correspond

to complicated multiple disorders. Further, there is no simple rule yielding ECG features

of multiple disorders, given ECG features of the constituent single disorders. These were

the two main problems we encountered when attempting to construct the diagnostic

knowledge base. Instead of directly constructing diagnostic rules which deal with multiple

disorders we took an indirect approach. We �rst developed a simulation model of the

electrical system of the heart. The model is qualitative in the sense that it does not deal

with electrical signals represented numerically as functions of time, but rather by symbolic

descriptions. The model can be e�ciently used for simulation, but not for diagnosis.

In the paper we present and compare three alternative approaches to e�cient application

of a simulation model to diagnosis. First, by representing a deep model at several levels

of abstraction, second, by e�cient constraint propagation, and third, by `compiling' a

model into a set of surface diagnostic rules (Figure 1). In section 2 we describe the deep

model of the heart, its representation at several levels of abstraction, and the hierarchical

diagnostic algorithm. The underlying idea is to �rst solve the diagnostic problem at an

abstract level, where the model is simpler and the search space smaller. The abstract,

coarse solutions are then used to guide the search at more detailed levels, where the model

is more complex and the search space larger. Alternatively, the model can be used directly,

but with the naive, depth-�rst, backtracking search replaced by constraint propagation of

relational dependencies.
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In section 3 we show the automatic compilation of the model into a set of e�cient diag-

nostic rules. First, by exhaustive simulation, the model is transformed into a relational

table. Entries in the table are then used as examples by an inductive learning program,

and the table is compressed into a set of simple if-then rules.

We compare the complexity and e�ciency of di�erent diagnostic representations in section

4. Complexity is measured by the space required to store a knowledge base, and e�ciency

is the average time needed to �nd all diagnoses. In our experiments, a nontrivial subset

of the original KARDIO problem domain was used. The model described here comprises

943 cardiac arrhythmias (both single and multiple) which arise by combining 29 single

heart disorders. The original KARDIO domain can be reconstructed by a set of rules

speci�ed in [1].

There are two novel contributions of the paper with respect to the KARDIO project.

First, the heart model is represented by a logic program which does not require any spe-

cial purpose interpreter. And second, �ve di�erent representations (a one-level model,

a four-level hierarchical model, a constraints-based model, a relational table, and com-

pressed diagnostic rules) are compared on the same problem domain. Knowledge bases

and diagnostic algorithms are implemented as logic programs in standard Prolog, except

in the case of the constraints-based representation where an extension of the uni�cation

algorithm is needed.

2 DEEP MODEL OF THE HEART

2.1 Detailed level model

There are two fundamentally di�erent approaches to diagnostic reasoning. In the �rst,

heuristic approach, one codi�es diagnostic rules of thumb and experience of human ex-

perts in a given domain (e.g., MYCIN [21]). In the second, model-based approach, one

starts with a model of a real-world system which explicitly represents the structure and

components of the system (e.g., [5, 8, 6, 20]). When the system's actual behavior is dif-

ferent from the expected behavior, the diagnostic problem arises. The model is then used

to identify components and their internal states which account for the observed behavior.

A model of the electrical system of the heart comprises four types of components: impulse

generators, conductors of impulses, impulse summators, and projectors of impulses to the

ECG. In general, a component relates its qualitative state to the input and output. In

the heart, the state of a component corresponds to an isolated disorder A, the input is an

electrical impulse Impulse, and the output is either an electrical impulse or an individual

ECG feature E. Speci�cally, the components have the following form:

� generator( A

STATE

, Impulse

OUT

)

� conductor( A

STATE

, Impulse

IN

, Impulse

OUT

)
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� summator( Impulse

IN

, Impulse

IN

, Impulse

OUT

)

� projector( Impulse

IN

, E

OUT

)

An arrhythmia Arr is de�ned as a 7-tuple of isolated disorders A

i

:

Arr = hA

1

; : : : ; A

7

i

Variables A

1

; : : : ; A

7

denote states of the heart components (impulse generators or foci,

and conductors):

Arr = hSA, AF, AV, JF, BB, VF, VEF i

SA denotes the sino-atrial node, AF is an atrial focus, AV is the atrio-ventricular conduc-

tion, JF is a junctional focus, BB denotes conduction through the bundle branches, VF

is a regular ventricular focus, and VEF is an ectopic ventricular focus. Each component

may be in a normal or one of several abnormal states. For example, the normal state of

the heart, sinus rhythm (sr), is de�ned by

Arr = hsr, quiet, normal, quiet, normal, quiet, quiet i

where the SA node is in the state sr, other generators (AF, JF, VF, VEF) are quiet and

both conductors (AV, BB) are normal. Sometimes we use the attribute-value notation

instead of pure relational notation in order to improve the readability. Each element of a

relational tuple is assigned to a variable which corresponds to the element position in the

tuple. For example, a multiple arrhythmia, atrial tachycardia with the LGL syndrome

and junctional ectopic beats (at, lgl, jeb) is described by the following 7-tuple:

Arr = hSA=quiet, AF=at, AV=lgl, JF=jeb, BB=normal, VF=quiet, VEF=quiet i

An ECG pattern ECG is a 10-tuple of individual ECG features E

i

:

ECG = hE

1

; : : : ; E

10

i

The above arrhythmia (at, lgl, jeb) has three corresponding ECG patterns:

ECG = hRhythm = regular, regular,

P wave = abnormal, abnormal,

Rate of P = between 100 250, between 100 250,

Relation P QRS = after P always QRS, after P always QRS,

PR interval = shortened, _ shortened,

QRS complex = normal, normal,

Rate of QRS = between 100 250, between 100 250,

Ectopic P = abnormal, absent

Ectopic PR = after QRS is P _ shortened, meaningless

Ectopic QRS = normal normal i
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For shortness and better readability we allow for an internal disjunction to appear in

a tuple. An expression hE

1

= v

1

; E

2

= v

2

_ v

3

i is equivalent to two pairs hv

1

; v

2

i and

hv

1

; v

3

i. For example, Ectopic PR = after QRS is P _ shortened, together with other

ECG features on the left above corresponds to two ECG patterns.

The heart modelmaps any arrhythmia (a single or a multiple disorder) to all corresponding

ECG patterns. The mapping m from Arr to ECG is a relation (many-to-many) since each

arrhythmia may have more than one corresponding ECG, and several arrhythmias may

map to the same ECG pattern. For example, for the left-most ECG pattern above there

are two possible arrhythmias, (at, lgl, jeb) and (at, jeb):

hSA=quiet, AF=at, AV=lgl, JF=jeb, BB=normal, VF=quiet, VEF=quiet i

hSA=quiet, AF=at, AV=normal, JF=jeb, BB=normal, VF=quiet, VEF=quiet i

The mapping m(Arr,ECG) is de�ned in terms of the predicate possible(Arr), and the sim-

ulation model heart(Arr,ECG). Possible eliminates physiologically impossible and medi-

cally uninteresting heart states, and heart simulates the heart activity for an arrhythmia

Arr:

m( Arr, ECG )  possible( Arr ), heart( Arr, ECG ).

Throughout the paper, we de�ne models, rules, and algorithms by logic programs. We use

the standard Edinburgh Prolog syntax (e.g., [4]), where constants start with lowercase

letters, variables start with capital letters, and all variables are implicitly universally

quanti�ed. However, we divert from the standard syntax by allowing for subscripts and

tuples instead of structured terms (e.g., hX

1

;X

2

i instead of f(X1;X2)).

The simulation model is de�ned by its structure (a set of components and their con-

nections) and behavior of the constituent components. The following clause de�nes the

structure of the heart model:

heart( hSA, AF, AV, JF, BB, VF, VEFi,

hRhythm, P wave, Rate of P, Relation P QRS, PR interval,

QRS complex, Rate of QRS, Ectopic P, Ectopic PR, Ectopic QRSi)  

sa node generator( SA, ImpulseSA ),

atrial generator( AF, ImpulseAF ),

summator( ImpulseSA, ImpulseAF, ImpulseATR ),

anterograde av conductor( AV, ImpulseATR, ImpulseAV ),

junctional generator( JF, ImpulseJF ),

regular ventricular generator( VF, ImpulseVF ),

ectopic ventricular generator( VEF, ImpulseVF ),

summator( ImpulseJF, ImpulseVF, ImpulseIV ),

retrograde av conductor( AV, ImpulseIV, ImpulseRET ),

summator( ImpulseAV, ImpulseIV, ImpulseINV ),

summator( ImpulseRET, ImpulseATR, ImpulseSV ),

summator( ImpulseAV, ImpulseJF, ImpulseHIS ),
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bundle branches conductor( BB, ImpulseHIS, ImpulseBB ),

summator( ImpulseBB, ImpulseVF, ImpulseVENT ),

atrial projector( ImpulseSV, P wave, Rate of P, Ectopic P ),

atrio vent projector( ImpulseSV, ImpulseINV, Relation P QRS,

PR interval, Ectopic PR ),

ventricular projector( ImpulseVENT, Rhythm, QRS complex,

Rate of QRS, Ectopic QRS ).

The head of the clause relates the state of the heart Arr to the output ECG. Atoms in the

body represent heart components (generators, conductors, summators and projectors),

and shared variables (impulses) denote connections between the components.

Due to the simulation nature of the model m, its application in the `forward' direction

m(hA

1

; : : : ; A

7

i) 7! hE

1

; : : : ; E

10

i

can be carried out e�ciently. For a given disorder Arr, the logic program interpreter can

derive all ECG patterns resorting only to shallow backtracking. For diagnostic purposes,

however, the `backward' application is required | for a given ECG �nd all Arr:

m

�1

(hE

1

; : : : ; E

10

i) 7! hA

1

; : : : ; A

7

i

Since the model m is speci�ed by a logic program there is no inherent obstacle to the

`backward' application. However, the reasoning from ECG to Arr involves deep back-

tracking where a large number of fruitless paths are explored, and therefore renders the

`backward' application ine�cient. The main source of fruitless branching is the model

component summator(X,Y,Z) which, when applied, requires that for a given impulse Z, a

pair of impulses X and Y is to be found, such that their `sum' yields Z. Usually, there is

a number of possible decompositions of Z, only a few of which are consistent with other

constraints in the model, and further, those inconsistencies may be found only in late

stages of the model application.

Until recently, all attempts to directly use the model for e�cient diagnosis failed. Using the

naive generate-and-test method with chronological backtracking, the average diagnostic

time is more than 1 second per ECG. The computational complexity is due to the large

number of syntactically possible states (52,920), and high arity of predicates in the model.

Impulses are structured termswith 5 arguments, and the model components have therefore

between 6 and 15 primitive arguments.

2.2 Model abstractions and re�nements

One approach to improve the diagnostic e�ciency of the deep model is to represent it at

several levels of abstraction, and to �rst solve the diagnostic problem at an abstract level.

The abstract diagnoses are then used to restrict the search for more detailed diagnoses.

First we de�ne three abstraction/re�nement operators which can be used in a multi-level

model representation. The abstraction operators are applied when one simpli�es a model
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in a bottom-up fashion (from detailed to abstract). Complementary re�nement operators

are used in a top-down model development (from abstract to detailed).

� Collapse/re�nement of values.

Indistinguishable values of a variable can be abstracted into a single value. For

example, the values wide LBBB and wide RBBB of the ECG feature QRS complex

are abstracted to wide. We represent the abstraction by a binary predicate h:

h(wide LBBB ;wide): h(wide RBBB ;wide):

� Deletion/introduction of variables.

Irrelevant variables can be deleted at the abstract level. For example, the last three

ECG features Ectopic P, Ectopic PR, and Ectopic QRS can be ignored. This is

represented by the following clause:

h(hE

1

; : : : ; E

10

i; hE

0

1

; : : : ; E

0

7

i)  h(E

1

; E

0

1

); : : : ; h(E

7

; E

0

7

):

where E

0

i

denote the abstract ECG features.

� Simpli�cation/elaboration of the mapping m.

Detailed level mapping m can be simpli�ed to m

0

by ignoring and/or simplifying

some model components. In general, however, the mapping abstractions are de�ned

by a formal consistency condition which must hold between m and m

0

(for details

see [17, 18]).

By an application of the abstraction and re�nement operators, the heart model was rep-

resented at four levels of detail. All three abstraction/re�nement operators were used.

Apart from the introduction of new variables, values of the variables were re�ned at each

level of detail. The hierarchical model de�nes di�erent mappings m

1

; : : : ;m

4

from Arr

to ECG by introducing new components at each level. First, the three-level model was

constructed in a top-down fashion, using QuMAS, a semiautomatic Qualitative Model

Acquisition System [16]. The fourth, detailed level model, described in the previous sub-

section was then manually connected to the third level. The heart model at the �rst,

most abstract level is very simple:

heart( Arr, ECG )  

generator( Arr, Impulse ),

projector( Impulse, ECG ).

generator( brady, form(under 60) ).

generator( rhythm, form(between 60 100) ).

generator( tachy, form(over 100) ).

projector( form(Rate), Rate ).

It consists of only two components, an impulse generator and a projector. Instead of a

7-tuple, an arrhythmia description Arr is a singleton and only three abstract arrhythmias
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are considered: a bradycardia (brady), a normal rhythm (rhythm), and a tachycardia

(tachy). An ECG pattern is also a singleton, covering one ECG feature, Rate of QRS. An

impulse is a structured term, but at this level it has only one argument (rate) in contrast

to �ve arguments at the detailed level (shape, rhythm and rate of the regular part, and

type and shape of the ectopic part).

Suppose that given is a list of mappings m

1

; : : : ;m

n

, ordered from abstract to detailed.

Hierarchical relations between detailed and abstract ECG patterns are de�ned by the

predicate h

E

, and relations between detailed and abstract arrhythmias by the predicate

h

A

. The hierarchical diagnostic algorithm is then de�ned by the following logic program

which implements a depth-�rst, backtracking search through the space of possible diag-

noses:

diag

i

( ECG, Arr )  

h

E

( ECG, ECG' ),

diag

i�1

( ECG', Arr' ),

h

A

( Arr, Arr' ),

m

i

( Arr, ECG ).

diag

i

( ECG, Arr )  

:9Arr

0

h

A

( Arr, Arr' ),

m

i

( Arr, ECG ).

The algorithm �rst climbs the hierarchy of ECG patterns, and recursively �nds an abstract

diagnosis Arr' which maps to the abstract ECG'. The detailed model m

i

then simulates

re�nements Arr of Arr' to verify which arrhythmias actually map to the given ECG.

Notice that detailed arrhythmias which are not re�nements of the abstract diagnosis Arr'

are not considered at all. With appropriate abstractions, this results in a major reduction

of the search space at the detailed level [17].

However, an abstract model may be incomplete with respect to the detailed level model,

i.e., not all phenomena are necessarily abstracted. For example, the abstract model of the

heart above does not incorporate any conduction disorders | they are introduced only

at more detailed levels. Unfortunately, such incompleteness prevents the search space

reduction at an abstract level. The diagnostic algorithm has to resort to the ine�cient

generate-and-test method for the arrhythmias Arr without abstractions. This is covered

by the second clause of the algorithm.

Formal conditions which have to be satis�ed by the hierarchical model representation,

and relations to the relevant work on abstractions are in [17, 18]. If the conditions are

satis�ed, then the diagnostic algorithm is correct and complete. Further, with appropriate

abstractions, the algorithm reduces the linear complexity of the generate-and-test method

to logarithmic.
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2.3 Hierarchical diagnosis

In this section we give an example of diagnostic reasoning based on the heart model

represented at four levels of detail. The example is taken from [18]. Suppose the following

ECG pattern at the fourth level of detail is given:

ECG

4

= hRhythm = regular,

P wave = abnormal,

Rate of P = between 100 250,

Relation P QRS = after P always QRS,

PR interval = shortened,

QRS complex = normal,

Rate of QRS = between 100 250,

Ectopic P = abnormal,

Ectopic PR = after QRS is P,

Ectopic QRS = normali

The hierarchical diagnostic algorithm �rst uses hierarchies de�ned by h

E

to �nd a more

abstract ECG pattern. At the third level, the last three variables Ectopic P, Ectopic PR,

and Ectopic QRS are deleted:

ECG

3

= hRhythm = regular,

P wave = abnormal,

Rate of P = between 100 250,

Relation P QRS = after P always QRS,

PR interval = shortened,

QRS complex = normal,

Rate of QRS = between 100 250i

At the second level of abstraction, variables Rhythm, Rate of P, and PR interval are

deleted. Values of P wave = abnormal and QRS complex = normal are both abstracted

to the value present, and Rate of QRS = between 100 250 is abstracted to over 100:

ECG

2

= hP wave = present,

Relation P QRS = after P always QRS,

QRS complex = present,

Rate of QRS = over 100i

At the most abstract level, all variables but Rate of QRS are deleted:

ECG

1

= hRate of QRS=over 100i

9



Arr

1

= hArr i

�

�

�

�

�

�

�

�

�

�

�

a

a

a

a

a

Arr

2

= hSV, AV, IV i







J

J

�

�

�

�

%

%

Q

Q

Q

Arr

3

= hSA, AF, AV, JF, BB, VF i







J

J

Arr

4

= hSA, AF, AV, JF, BB, VF, VEF i

Figure 2: Representation of arrhythmias at di�erent levels of detail.

The abstract model of the heart is then used to �nd a possible diagnosis at this extremely

simple level. The only possibility is tachy | a tachycardia in medical terminology. Now

the algorithm resorts to hierarchies of arrhythmias h

A

to re�ne this abstract diagnosis,

and uses more detailed heart models to verify which re�nements can actually produce the

given ECG pattern.

Hierarchies of arrhythmias are more complicated than hierarchies of ECG patterns. At

each level new variables are introduced, and typically a value of an abstract level variable

depends on values of tuples of detailed level variables and not only on individual de-

tailed level variables (as is the case with ECG patterns). Recall that individual variables

correspond to the states of the heart components and that their values denote isolated

disorders. Figure 2 de�nes hierarchies of tuples and dependencies between individual

variables. At the �rst level Arr denotes the state of the heart, regarded as an impulse

generator. At the second level, SV corresponds to a supra-ventricular focus, AV is the

atrio-ventricular conduction, and IV denotes an intra-ventricular focus. The meaning of

the variables at the third and the fourth level was de�ned in section 1.1.

Figure 3 gives some examples of hierarchical relations between values of individual vari-

ables and tuples of variables. A variable which has no value assignment in a tuple can

take any value from its domain. Abbreviations for isolated arrhythmias used at the fourth

level of detail correspond to the following medical terms: st is sinus tachycardia, aeb are

atrial ectopic beats, at is atrial tachycardia, mat is multi-focal atrial tachycardia, lgl is

the LGL syndrome, wpw is the WPW syndrome, avb1 is the AV block, �rst degree, wen

is the AV block of type Wenckebach, mob2 is the AV block, type Mobitz 2, avb3 is the

AV block, third degree, jt is junctional tachycardia, jeb are junctional ectopic beats, vt

is ventricular tachycardia, lbbb is left bundle branch block, rbbb is right bundle branch

block, and veb are ventricular ectopic beats.

In our example, hierarchies in Figure 3 are used by the diagnostic algorithm to re�ne

the abstract level diagnosis tachy. The following dialog with the system illustrates the

depth-�rst search for diagnoses through abstraction spaces. Each diagnosis returned by

the system is followed by the corresponding medical term.
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Arr

1

: rhythm tachy brady

(

(

(

(

(

(

(

(

(

(

h

h

h

h

h

h

h

h

h

h

Arr

2

: hSV=sv tachy, AV=no block, IV=quieti hSV=quiet, AV=no block, IV=iv tachyi

hSV, AV=av block 3, IV=iv tachyi

SV

2

: sv rhythm sv tachy sv brady quiet

(

(

(

(

(

(

(

(

(

(

(

�

�

�

�

�

P

P

P

P

P

P

h

h

h

h

h

h

h

h

h

h

h

SV

3

: hSA=st, AF=quieti hSA=st, AF=aebi hSA=quiet, AF=ati hSA=quiet, AF=mati

SV

4

: hSA=st, AF=quieti hSA=st, AF=aebi hSA=quiet, AF=ati hSA=quiet, AF=mati

AV

2

: no block av block 2 av block 3

!

!

!

!

!







J

J

a

a

a

a







J

J

AV

3

: normal lgl wpw avb1 wen mob2 avb3

AV

4

: normal lgl wpw avb1 wen mob2 avb3

IV

2

: iv rhythm iv tachy iv brady quiet

(

(

(

(

(

(

(

(

(

(

(

X

X

X

X

X

X

X

IV

3

: hJF=jt, BB, VF=quieti hJF=quiet, BB, VF=vti

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

IV

4

: hJF=jt,BB,VF=quiet,VEFi hJF=quiet,BB,VF=vt,VEFi hJF=jeb,BB,VF=vt,VEFi

VEF

4

: quiet veb

BB

3

: normal bbb

�

�

@

@

BB

4

: normal lbbb rbbb

Figure 3: Some examples of the hierarchical relation h

A

between the abstract and detailed

level arrhythmias.
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A possible diagnosis:

i Arr

1

= tachy

Tachycardia

More detailed diagnosis? yes

ii Arr

2

= hSV=sv tachy, AV=no block, IV=quiet i

Supra-ventricular tachycardia

More detailed diagnosis? yes

iii Arr

3

= hSA=quiet, AF=at, AV=normal, JF=quiet, BB=normal, VF=quiet i

Atrial tachycardia

More detailed diagnosis? yes

iiii Arr

4

= hSA=quiet, AF=at, AV=normal, JF=jeb, BB=normal, VF=quiet,

VEF=quiet i

Atrial tachycardia with junctional ectopic beats

Alternative diagnosis? yes

iii Arr

3

= hSA=quiet, AF=at, AV=lgl, JF=quiet, BB=normal, VF=quiet i

Atrial tachycardia with the LGL syndrome

More detailed diagnosis? yes

iiii Arr

4

= hSA=quiet, AF=at, AV=lgl, JF=jeb, BB=normal, VF=quiet,

VEF=quiet i

Atrial tachycardia with the LGL syndrome and junctional ectopic beats

Alternative diagnosis? yes

ii Arr

2

= hSV=quiet, AV=no block, IV=iv tachy i

Intra-ventricular tachycardia

More detailed diagnosis? yes

iii Arr

3

= hSA=quiet, AF=quiet, AV=normal, JF=jt, BB=normal, VF=quiet i

Junctional tachycardia

More detailed diagnosis? yes

iiii No consistent re�nement !

iiii No more alternatives !

For the given detailed ECG pattern, there are two possible diagnoses: atrial tachycardia

with junctional ectopic beats, and atrial tachycardia with the LGL syndrome and junc-

tional ectopic beats. The �rst diagnosis appears to be more general than the second one,

but for a physician it is important to be aware of both possibilities, since the second di-

agnosis is potentially more dangerous and might require a di�erent treatment. Note that

a diagnosis possible at the third level, junctional tachycardia, has several re�nements at

the fourth level, but none of them actually maps to the given ECG pattern.
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2.4 Constraint propagation of relational dependencies

In this section we introduce CLP(gRel) and demonstrate its utility in diagnosis. CLP(gRel)

is an instance of Constraint Logic Programming scheme [12] where syntactic uni�cation

is replaced by a more general constraint satisfaction. CLP(gRel) allows for an explicit

manipulation of relational dependencies between variables and is a straightforward gen-

eralization of domain variables [23]. Domain variables range over �nite sets of atomic

values and as more constraints are imposed on the variables these sets become smaller.

In CLP(gRel) variables range over sets of ground tuples of atomic values which represent

Relations between constituent arguments. Constraints expressed by variables ranging over

tuples can be used to actively prune the search space by detecting combinations of values

that are bound to be unsatis�able early (cf. forward checking [22]).

To motivate our discussion, we introduce the following example. These predicates are

part of the detailed level heart model:

atrial reg projector( reg( , none, zero), absent, zero ).

atrial reg projector( reg(SV, , Rate), P, Prate )  

non zero( Rate ),

supra vent( SV, P, Rate, Prate ).

non zero( under 60 ).

non zero( between 60 100 ).

non zero( over 100 ).

supra vent( sa node, normal, Rate, Rate ).

supra vent( atr focus, abnormal, Rate, Rate ).

supra vent( wandering, changing, Rate, Rate ).

supra vent( 
utter, abnormal, Rate, Rate ).

supra vent( �b
ut, abnormal, Rate, Rate ).

supra vent( faster, abnormal, Rate, Rate ).

supra vent( slower, abnormal, Rate, Rate ).

supra vent( equal, absent, , zero ).

supra vent( �brill, absent, , zero ).

Domain variables can be seen as a way of representing disjunction explicitly by means of

a data-structure as opposed to encoding disjunction implicitly in two or more clauses for

a predicate. So the above predicate non zero can be rewritten to:

non zero( X )  X 2 funder 60, between 60 100, over 100 g.

where 2 is a binary predicate specifying the set of legal values for a variable. The di�erence

to the former representation is that the latter does not create a choice point during the

search for a proof, and that it allows for an explicit reasoning about the disjunction. The

straightforward generalization introduced in CLP(gRel) is to allow predicates of arbitrary

arity to be reformulated in terms of such a data structure, instead of only unary predicates.
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Assume an extended binary predicate 2 which relates an arbitrary number of variables |

represented by a tuple | to the corresponding set of legal atomic values for the variables

| represented as a set of tuples with the values as arguments. This allows the above

supra vent predicate to be rewritten as follows:

supra vent( SV, P, Rate, Rate )  

t(SV, P) 2 f t(sa node, normal),

t(atr focus, abnormal),

t(wandering, changing),

t(
utter, abnormal),

t(�b
ut, abnormal),

t(faster, abnormal),

t(slower, abnormal) g.

supra vent( SV, absent, , zero )  

SV 2 fequal, �brill g.

All the original clauses, except the last two, are compressed into a single new clause. In

this example the variables SV and P are constrained to a small set of tuples of possi-

ble atomic values. The extended uni�cation algorithm (described below) ensures that

when a variable, e.g. SV , gets bound, it is only bound to the �rst argument of one of

the above tuples. Furthermore, extended uni�cation immediately instantiates variable P

accordingly, and vice versa. For example, if SV is bound to sa node then P gets bound

to normal . It is interesting to see what happens if P is bound to abnormal . Obviously

SV cannot be bound to an atomic value as there are �ve di�erent values still possible.

However, extended uni�cation assigns a new restricted domain fatr focus, faster, �b
ut,


atter, slowerg to the variable SV . In relational database terms the set of tuples is called

the table of rows which, in the above example, represents the relation supra vent with

columns labeled SV and P . Furthermore, we can describe a uni�cation of constrained

variables in terms of select and join relational operations.

Below we brie
y sketch the procedural semantics of extended uni�cation. The uni�cation

algorithm is extended to handle tuples of variables which are referred to as r-variables.

Uni�cation has to handle the following three cases:

� If a standard variable and an r-variable are uni�ed, the standard variable is simply

bound to the r-variable.

� Suppose a constant value and an r-variable have to be uni�ed, where the r-variable

is the i-th argument of the tuple of variables. The algorithm selects those rows

of the set of legal solutions which have the constant value as the i-th argument.

Depending on the number N of such rows there are three possible outcomes:

{ N = 0, uni�cation fails,

{ N = 1, uni�cation binds the r-variable to the constant value and all the other

variables of the tuple to their corresponding values,
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{ N > 1, uni�cation binds all the r-variables to newly created r-variables which

are constrained to the new set of legal solutions.

� If two r-variables are uni�ed the two sets of legal solutions are joined. Again,

depending on the number N of resultant rows, there are three possibilities:

{ N = 0, uni�cation fails,

{ N = 1, uni�cation binds all the variables involved in the two tuples to constant

values,

{ N > 1, uni�cation binds all the r-variables of both tuples to newly created

r-variables which are constrained to the join of the two sets of value-tuples.

This behavior of uni�cation can be modeled by the following meta-interpreter. The in-

terpreter handles uni�cations of atomic values, standard variables, and r-variables. An

r-variable is represented by a term attr(Var, N-dis(AllVars,AllRows)), meaning Var is

attributed by N-dis(AllVars,AllRows). N speci�es that Var is the N -th argument of the

tuple AllVars which represents all the variables involved in a relation, and AllRows is a

set of all legal solutions.

unify( X, Y )  var(X), !, X = Y.

unify( X, Y )  var(Y), !, X = Y.

unify( attr(V1, N1-dis(Vars1,Rows1)), attr(V2, N2-dis(Vars2,Rows2)) )  

!, V1 = V2,

join( N1, N2, Rows1, Rows2, NewRows ),

join bind( NewRows, N1, Vars1, N2, Vars2 ).

unify( attr(V, N-dis(Vars,Rows)), Atom )  

!, V = Atom,

select( Rows, N, Atom, NewRows ),

select bind( NewRows, N, Vars ).

unify( Atom, attr(V, N-dis(Vars,Rows)) )  

!, V = Atom,

select( Rows, N, Atom, NewRows ),

select bind( NewRows, N, Vars ).

unify( X, X ).

Since uni�cation is such a basic operation in a logic programming environment, it can-

not be delegated to a meta-interpreter if one expects reasonable e�ciency. Further, a

proper implementation of the CLP scheme should allow for an easy integration of spe-

cialized constraint propagation techniques into the logic programming framework. In our

experiments we used a modi�ed version of SICStus Prolog [3] which supports user-de�ned

extensions of uni�cation [11]. It allows for the speci�cation and management of attributed

variables and uni�cation thereof. Both, the uni�cation of two attributed variables, and

of an attributed variable and an arbitrary term can be speci�ed in Prolog.

Typically, constraint propagation is used to compute some form of local consistency, be it

node-, arc-, or path-(of some length) consistency [10] plus backtrack search in the reduced
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solution space. For example, forward-checking as introduced in [22] essentially ensures

arc-consistency. Except for [7] we are not aware of any experiments similar to ours. Our

approach results in global consistency for given variables, is able to combine partial so-

lutions dynamically, and thus interleaves backtrack search with consistency checks. This

approach is of course not a panacea for all types of search problems. It is successful for

the heart model since one needs all the solutions, and their number is typically small.

This seems to prevent combinatorial explosion of the size of the intermediate data struc-

tures which represent the possible disjuncts. Additionally, the interaction of di�erent

constraints in the model is too complex to allow for a good pre-ordering of constraints

which could be exploited by chronological backtracking.

3 SURFACE DIAGNOSTIC RULES

3.1 Derivation of a relational table

Another, indirect approach to use a deep model for e�cient diagnosis is to `compile' it.

The `compilation' proceeds in two steps. First, by exhaustive simulation, the model is

transformed into a relational table. Entries in the table are then used as examples by an

inductive learning program, and the table is compressed into a set of simple if-then rules.

The heart model m relates all arrhythmias Arr to all corresponding ECG patterns ECG,

and through simulation one can generate a complete set of relations hArr, ECGi:

m(Arr;ECG) 7! hA

1

; : : : ; A

7

; E

1

; : : : ; E

10

i

Such a relational table can be used for e�cient diagnosis, if not excessively large. In

KARDIO, for example, a table generated from the original model of the heart consists of

over 140,000 entries. When properly organized into a set of rules it still occupies over 5

Mb, stored as a text �le.

In many practical applications it might not even be feasible to generate all pairs disorder-

observation, but only a small subset. Some inductive learning techniques must then be

applied to the subset in order to extend the coverage to the whole diagnostic space (or

at least most of it). The same approach of constructing a qualitative model, exhaustive

simulation, and induction of compressed diagnostic rules was taken by [19] to automati-

cally construct a fault diagnosis system of a satellite power supply. Similarly, [2] shows

the advantage of using a classical simulation model to generate a (non-exhaustive) set of

learning and testing examples, which are then used to induce rules for location of errors

in particle beam lines used in high energy physics.
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3.2 Compression by inductive learning

In inductive learning (e.g., [13]), one is given a set of learning examples and some back-

ground knowledge, and the goal is to �nd a concept description which is consistent and

complete with respect to the examples. A learning example is a pair

hobject; class

i

i

where object is described by a tuple of attribute values hv

1

; : : : ; v

n

i, and class

i

denotes an

instance of the concept. The induced concept description is usually in the form of if-then

rules:

if �(v

1

; : : : ; v

n

) then class

i

or if class

i

then �(v

1

; : : : ; v

n

)

where �(v

1

; : : : ; v

n

) is a boolean expression. The goal of learning is to �nd a logical expres-

sion � for each class

i

which is as simple as possible, but su�cient to discriminate between

the class

i

and all other classes class

j

; i 6= j. It is worth emphasizing that in general, an

if-then rule is not a logical implication, but rather a relation if then(class

i

; hv

1

; : : : ; v

n

i).

The antecedent and the consequent of an if-then rule can be interchanged depending on

the problem solving strategy since they merely indicate the direction of inference.

The inductive learning techniques were applied to the generated relational table. First,

10 sets of learning examples were prepared. For each 17-tuple relation in the table, 10

new 8-tuple relations were formed by projection:

hA

1

; : : : ; A

7

; E

k

i  hA

1

; : : : ; A

7

; E

1

; : : : ; E

10

i (k = 1; : : : ; 10)

Then an inductive learning program NEWGEM, an ancestor of AQ15 [14] was used. The

result of learning were 10 sets of compressed diagnostic rules:

if E

1

then �(A

1

; : : : ; A

7

)

.

.

.

if E

10

then �(A

1

; : : : ; A

7

)

A rule set k (k = 1; : : : ; 10) relates an individual ECG feature E

k

to corresponding

arrhythmias, described by �(A

1

; : : : ; A

7

). Each rule in a set k relates a value v

i

of E

k

to

a minimal description of corresponding arrhythmias �(A

1

; : : : ; A

7

) which is still su�cient

to discriminate between v

i

and other values v

j

; i 6= j of E

k

. For example, the following

two rules belong to the ECG feature QRS complex and discriminate between the values

wide non speci�c, normal, and the remaining possible values.

if QRS complex = wide non speci�c

then VF = vr _ avr _ vt _ v
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if QRS complex = normal

then AV 6= wpw ^

BB = normal ^

VF = quiet

The �rst rule states that if a QRS complex = wide non speci�c (i.e., wide, but not of type

LBBB or RBBB) then there is either a ventricular rhythm (vr), an accelerated ventricular

rhythm (avr), a ventricular tachycardia (vt), or a ventricular 
utter (v
) originating in

a ventricular focus (VF). States of the remaining heart components are unspeci�ed. On

the other hand, if QRS complex = normal then the ventricular focus must be quiet, the

conduction through bundle branches (BB) is normal, and the atrio-ventricular conduction

(AV) can be anything but the WPW syndrome ( 6= wpw).

The following two rules are slightly more complicated:

if P wave = abnormal

then SA = quiet ^

AF 6= wp _ mat ^

VF 6= v
 _ vf

if PR interval = shortened

then AF 6= a
 _ af ^

AV = wpw _ lgl

_

SA = quiet ^

AF = at _ aeb _ quiet ^

AV = normal ^

VF = quiet

Formally, an internal disjunction in the consequent of a rule is equivalent to a set member-

ship, i.e., A = v

1

_ v

2

, A 2 fv

1

; v

2

g. The inequality is de�ned by A 6= v

1

_ v

2

, A 2

Domain(A) � fv

1

; v

2

g. Notice that the last rule, for the PR interval, has a disjunctive

consequent. In a logic program, such a rule is represented by two clauses:

if then

5

( shortened, hSA, AF, AV, JF, BB, VF, VEF i)  

AF 2 fwp, at, mat, aeb, quietg,

AV 2 fwpw, lglg.

if then

5

( shortened, hSA, AF, AV, JF, BB, VF, VEF i)  

SA = quiet,

AF 2 fat, aeb, quietg,

AV = normal,

VF = quiet.

Let us illustrate diagnostic reasoning with the compressed rules by an example. Suppose

that given are values of three ECG features, P wave = abnormal, PR interval = shortened,
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and QRS complex = normal. A combination of the three corresponding rules de�ned

above yields:

if P wave = abnormal ^ PR interval = shortened ^ QRS complex = normal

then SA = quiet ^

AF = at _ aeb _ quiet ^

AV = lgl ^

BB = normal ^

VF = quiet

_

SA = quiet ^

AF = at _ aeb _ quiet ^

AV = normal ^

BB = normal ^

VF = quiet

The set of possible diagnoses is now restricted and only two heart components, JF and

VEF are still unconstrained. The following logic program speci�es the diagnostic algo-

rithm:

diag( hE

1

, : : : ,E

10

i, Arr )  

if then

1

( E

1

, Arr ),

.

.

.

if then

10

( E

10

, Arr ),

possible( Arr ).

A diagnosis is an intersection of the consequents of if-then rules for individual ECG

features, �ltered through the possible predicate which eliminates physiologically impossible

and medically uninteresting arrhythmias. In an improved implementation, the algorithm

could compute with domains of variables and not just their individual values [23].

The application of learning to the 10 sets of examples required 40 hours of CPU time

on SUN 2 [15]. The compressed rules occupy 40 times less space than the relational

table, and can be used for e�cient diagnosis. The reduction is due to the generalization

of arrhythmia descriptions in the process of learning. The equivalence to the relational

table is regained by the application of possible at the end of the diagnostic algorithm. In

general, however, a relational table and the corresponding set of compressed rules are not

equivalent. The di�erence is due to the projection of relational table entries to learning

examples. The conditions under which both, a relational table and compressed rules

produce equivalent diagnostic results are stated in [1].
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4 COMPARISON OF COMPLEXITY AND EFFI-

CIENCY

Tables 1 and 2 outline the complexity of the hierarchical model of the heart at each

level of detail. For comparison, the complexity of the KARDIO model is given when

possible. Table 1 gives the number of components and the complexity of the arrhythmia

descriptions. n denotes the arity of Arr tuples, j A

1

� : : : � A

n

j is the number of

syntactically possible descriptions, j Arr j is the number of arrhythmias which satisfy the

model constraints, and j :Arr

0

j is the number of arrhythmias with no abstraction.

Level of Model Arrhythmias

detail components Single n j A

1

� : : :�A

n

j j Arr j j :Arr

0

j

1 2 3 1 3 3 3

2 9 8 3 48 18 3

3 16 24 6 10,080 175 26

4 17 29 7 52,920 943 0

KARDIO / 30 7 79,380 2,419 /

Table 1: The complexity of the heart model and the arrhythmia descriptions at di�erent

levels of detail, and in KARDIO.

In Table 2 the complexity of ECG descriptions and the relational table are given. m

denotes the arity of ECG tuples, j E

1

� : : :�E

m

j is the number of syntactically possible

ECG patterns, j ECG j is the number of distinct ECG patterns derived from the model,

and j :ECG

0

j is the number of ECG patterns with no abstraction. hArr;ECGi is the

number of entries in the relational table, and :hArr;ECGi

0

is the number of entries with

no abstraction.

Level of ECG patterns Relational table entries

detail m j E

1

� : : :�E

m

j j ECG j j :ECG

0

j hArr; ECGi :hArr; ECGi

0

1 1 3 3 3 3 3

2 4 64 12 0 23 5

3 7 41,472 263 6 333 79

4 10 3,386,880 3,096 0 5,240 0

KARDIO 7-19 / / / 140,966 /

Table 2: The complexity of ECG descriptions and the relational table at di�erent levels

of detail, and in KARDIO.

Tables 1 and 2 indicate that the heart model at levels 1 and 2 is incomplete with respect to

levels 2 and 3, respectively. The level 3 model is complete with respect to level 4. Recall
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Type of diagnostic knowledge Space (Kb) Time (msec)

One-level model 20 1060

Relational table 850 12

Compressed diagnostic rules 20 77

Constraints-based model 40 96

Hierarchical four-level model 50 98

Table 3: Space requirements for di�erent representations and the average times needed

to �nd all possible diagnoses for a given ECG pattern at the detailed level.

that in the case of incompleteness, the hierarchical diagnostic algorithm has to resort to

the naive generate-and-test method, thus potentially decreasing the e�ciency of diagnosis.

First experiments with the three-level model of the heart [1] showed no considerable

advantage of hierarchical diagnosis over the generate-and-test method, due exactly to the

high level of incompleteness in the model. Consequently, the heart model at the level

2 was modi�ed to decrease its incompleteness. Further, for all arrhythmias Arr without

abstraction (:Arr

0

) the hierarchical diagnostic algorithm resorts to the corresponding

relational table entries hArr, ECGi in order to avoid the repetitive application of generate-

and-test.

We compared the space complexity and diagnostic e�ciency of the �ve types of diagnostic

knowledge and their corresponding algorithms:

� one-level model of the heart with the naive generate-and-test,

� relational table indexed by an ECG feature,

� compressed diagnostic rules without domain variables,

� constraints-based model with inverted order of constraints and propagation of rela-

tional dependencies,

� hierarchical four-level model with hierarchical diagnosis and generate-and-test at

each individual level; pairs hArr, ECGi were pre-computed for each Arr without

abstraction.

In all cases, knowledge bases and diagnostic algorithms are implemented and compiled by

SICStus Prolog [3] and run on an Apollo DN5500 workstation. Complexity is measured

by the space required by each representation together with the corresponding algorithm,

when both stored as text �les. Diagnostic e�ciency is the time needed to �nd all possible

diagnoses for a given ECG, and was measured on all 3096 distinct ECG patterns at the

detailed level. Results in Table 3 are the average times over 3096 ECGs.

With the one-level model of the heart, initially three constraint propagation strategies

were applied: inverting the order of constraints, forward checking [22], and naive generate-

and-test with chronological backtracking. Somehow surprisingly, the generate-and-test
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Figure 4: Space complexity and diagnostic e�ciency of di�erent model representations.

Solid lines denote automatic model transformations while dashed lines denote semi-

automatic transformations.

method turned out to be the most e�cient. This is due to the simulation nature and

high directionality bias of the model. When the model is used in the `forward' direction,

the average time to derive an ECG for a given Arr is only 3.8 milliseconds. In contrast,

the model application in the `backward' direction (from a given ECG to Arr) requires

as much as 1060 milliseconds on the average. The application of forward checking was

completely unsuccessful, probably due to the high arity of constraints (between 6 and 15

arguments) in the model de�nition. Only a more sophisticated constraint propagation of

relational dependencies brought a considerable improvement in diagnostic e�ciency.

The relational table representation is the most time e�cient since only a simple retrieval

is required, but, on the other hand, it is more space demanding. Compressed diagnostic

rules are optimal in terms of space and time e�ciency and currently appear to be the

best representation for the ECG interpretation. Their diagnostic e�ciency can be further

improved by using domain variables [23] instead of the backtracking member predicate.

Finally, hierarchical diagnosis with the four-level model is an order of magnitude faster

than the one-level model, and requires only two times as much space (out of 50 Kb, 10 Kb

are for the relational table entries without abstractions). An additional improvement in

e�ciency can be achieved by replacing the generate-and-test at each level by constraint

propagation of relational dependencies.
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The relation between di�erent representations of diagnostic knowledge is better illustrated

on a time/space diagram in Figure 4. Recall that the relational table and compressed

diagnostic rules were automatically derived from the model. The hierarchical model was

constructed semi-automatically on top of the one-level model, and the constraints-based

model was in part derived by partial evaluation and in part manually from the original

model.

5 CONCLUSION

We have presented three approaches to an e�cient application of a deep simulation model

to diagnosis. First, by abstracting the model, second, by e�cient constraint propagation,

and third, by compressing the model into a set of surface diagnostic rules. We have

compared the deep and surface electrocardiographic knowledge representation in terms of

space complexity and diagnostic e�ciency. Compressed diagnostic rules are both space

and time e�cient, and can be derived automatically. Some of them are simple and have

clear medical interpretation, but many are too complex to be easy to understand. In

contrast to dedicated diagnostic rules, model-based reasoning o�ers better explanation

facilities which can be even tuned to the desired level of detail. Further, the hierarchical

diagnostic algorithm can be easily modi�ed to accommodate diagnostic reasoning under

time constraints, and to o�er a tradeo� between diagnostic speci�city and certainty.
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Appendix | KARDIO availability

Major parts of the KARDIO system were recently re-implemented into three small, com-

patible subsystems which can be used independently of each other:

� kardio-dm.pl | deep model of the heart which simulates its electrical activity,

� kardio-h4.pl | hierarchical, four level model of the heart and hierarchical diagnostic

algorithm,

� kardio-sd.pl | surface, compressed diagnostic rules.

These programs are written in standard Prolog (e.g., C-Prolog, Quintus Prolog, SICStus

Prolog) and are available free of charge, on an \as is" basis. The interested users are

asked to sign a standard, non-exclusive, non-transferable software license agreement. You

can receive the agreement forms and copies of the relevant programs via electronic mail

by contacting the �rst author.
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