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Abstract

This chapter describes an approach to learning on the basis of a qualitative domain
theory. The theory consists of a mixture of strict rules and general dependency state-
ments. The domain theory supports plausible explanations of training instances. These ex-
planations are used to create initial concepts via a kind of ‘plausible EBG’, and also to
guide subsequent empirical generalization of learned concepts. The method has been
implemented in a system that learns to solve complex problems in the domain of tonal
music. This chapter presents the application domain, describes the learning method
(with special emphasis on the plausible inference strategies used), presents empirical re-
sults, and shows how this approach naturally leads to a framework for multistrategy

learning.



1 INTRODUCTION

In recent years, there has been a growing awareness among researchers in machine
learning that, in their pure forms, both inductive learning and explanation—based gener-
alization suffer from severe limitations that restrict their applicability in many domains.
The subsequent research has concentrated mainly on combinations of empirical and ex-
planation—based learning (Michalski and Kodratoff, 1990). Newer approaches to this
problem now try to flexibly integrate several learning strategies so that a system can dy-
namically apply these strategies in response to the specific requirements of the learning
task (see, e.g., Widmer, 1989; Tecuci and Kodratoff, 1990; Tecuci and Michalski, 1991).
That also necessitates investigations into the possibilities of guiding or constraining
learning by reasoning methods other than pure deductive or inductive inference. This
chapter will be devoted to such matters.

There are many motivations for studying these issues. For one thing, psychological evi-
dence suggests that, in the absence of precise knowledge, people employ various forms
of plausible reasoning to arrive at explanations or predictions (Collins and Michalski,
1989), and that such weak forms of inference can considerably constrain the set of hy-
potheses a person is willing to make. For instance, V a person, when asked whether she
thinks that Taiwan grows rice, might remember that growing rice has something to do
with the amount of water available, and hence with the amount of rainfall in the area —
a very general and abstract piece of knowledge. Now if the person knows that there is a
lot of rainfall in China and that China does grow rice and that Taiwan also has high rain-
fall, then she might conclude that, yes, Taiwan does probably grow rice. (This, incidental-
ly, is an example of determination—based analogy (Russell, 1987)). This illustrates how
imprecise background knowledge (about the relevance of rainfall to growing rice) can
make a similarity—based judgement more plausible. To continue the example, suppose
that, in addition, the person also knows that the ability of a country to grow rice is rough-
ly positively proportionally related to the amount of rainfall in the country, that is, the
more rainfall there is, the better the country’s chances to grow rice (ignoring other fac-
tors). Given this knowledge, the person might be willing to conclude that Taiwan grows
rice even in the absence of the similar instance China, because high rainfall may plausibly
be associated with high possibility of growing rice. Both of these examples show how im-
precise background knowledge (no knowledge about the exact shape of the function con-
necting rainfall to growing rice) can be used to produce plausible inferences, given only
few examples. The connection to learning should be obvious: there, plausible inference

D
The following example has been adapted from (Collins and Michalski, 1989).
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can be used in an analogous way to judge the relative plausibility of hypothesized gener-

alizations.

In addition to such psychological considerations, there are also practical reasons for stu-
dying learning with qualitative background knowledge and plausible reasoning. In many
domains, complete a priori knowledge is simply not available, and hence, pure explana-
tion—based learning is out of the question. And even when a lot is known about a do-
main, the knowledge is often not precise enough to be cast in the form of a strict deduc-
tive domain theory. Rather, it may be very abstract knowledge about the structure of the
domain and about general dependencies between various parameters. A system wishing
to use such knowledge for learning must employ novel reasoning techniques and inte-
grate these into the learning process.

This chapter presents a model of knowledge —intensive learning that was motivated by
such considerations. The basis for learning in this model is a qualitative domain theory
that consists of a mixture of strict rules and general dependency statements. An imple-
mented system will be presented that realizes the model and learns to solve complex
problems (harmonization) in the domain of tonal music. The target concepts are rules
specifying necessary conditions for harmonization decisions. The main learning mecha-
nism is a kind of Plausible Explanation —Based Learning (DeJong, 1989) where the system
tries to construct a plausible explanation of the training instance, using its qualitative do-
main theory, and then generalizes the explanation to arrive at a general concept. The
following sections will describe how this is done, and will also show how these plausible
explanations can be used to guide subsequent empirical generalization of the learned
concepts. The overall effect of the method is that the available background knowledge is
maximally exploited to guide the learning process, even though it is incomplete and too
abstract for classical explanation—based generalization (EBG) (Mitchell et al., 1986).

Generally, the author’s research in knowledge —based learning has been inspired by the
idea that for a learner, trying to learn entails trying to relate, by some reasoning mecha-
nisms, the incoming information to the knowledge it already possesses (Tecuci, 1992 —
CHAPTER IN THIS BOOK; Michalski, 1992 — CHAPTER IN THIS BOOK). The
work presented here shows how methods of plausible inference can be used to verify that
the learner’s background knowledge at least weakly implies the new information (not-
withstanding the abductive element in the reasoning process — see section 3.1.2). In con-
trast to classical EBG, however, learning is not logically redundant in this model. The
model is another instantiation of a framework that was already proposed in (Widmer,
1989). There, it was argued that the EBG learning model offers a natural basis for many
forms of multistrategy learning if we only generalize our notion of what an explanation is.
If explanations can include non—deductive types of inference and if they can refer to

information from outside the current training instance, then multistrategy learning beha-
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viour can be achieved naturally within a simple and uniform framework. A similar course
of action is being pursued by Tecuci (1992; CHAPTER IN THIS BOOK).

In the presentation that follows, examples from the particular domain of application will
be used to illustrate various features of the learning method. This will also give the read-
er a feeling for the complexity of the task. Readers not familiar with musical issues
should not worry, however. It is not necessary to understand the musical details; it is the
structure of the examples and explanations that matters. Also, it should be understood
that there is nothing music—specific in the learning method itself; the method is applica-
ble to any domain that can be modelled as a qualitative dependency hierarchy. The au-
thor hopes that the generality of the method will become clear throughout the presenta-
tion.

2 LEARNING PROBLEM AND DOMAIN THEORY

First, a short description of the particular learning task is needed to set the stage for the
following presentation. The system is to learn rules for solving a class of problems in ton-
al music, namely, harmonizing given melodies by attaching harmonies/chord symbols to
the notes of a melody in a musically meaningful way. This is the kind of problem a guitar
player, say, is confronted with when s/he is asked to accompany a singer and knows only

the melody of the song. Examples of harmonized melodies appear later in this chapter.

This domain is a good example of problem areas where there is no precise theory that
could be used to prove the correctness of training instances. However, one can easily
come up with a lot of general, abstract intuitions that identify potentially relevant do-
main features and relationships. In the case of harmonization, one possible way to ‘ex-
plain’ specific harmonizations is to use general knowledge about how people listen to
and what they expect from harmonized music. This is the approach that has been chosen
for the current project: the domain theory is a general qualitative model describing in ab-
stract terms how people perceive (‘hear’) simple tonal music. The model is meant to be a
psychologically and musicologically plausible hypothesis about musical listening; it was
conceived independently of the particular learning task. Readers interested in the mu-
sic—theoretic aspects of the model are referred to (Widmer, 1992) for a detailed descrip-

tion.

More precisely, the domain theory is an abstraction hierarchy that relates certain audible
effects of musical situations to more abstract perceivable effects. Its structure resembles
that of an EBG—type domain theory. However, it is qualitative in that internal variables
in the model can only take qualitative values from the domain {extremely_low ... ex-
tremely_high} and, more importantly, most of the relationships between parameters are
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described in a qualitative way only. Specifically, the domain theory contains statements
of the following form:

e Partial monotonic dependencies: ? A statement g+ (A,B) means that parameters A and
B are positively monotonically related, or in other words, “if A increases or has a high
value, B will also, all other things being equal”. q+ (A,B) does not mean that A is the
only factor on which B depends, nor does it mean that A must always be present when
B is. g— is interpreted analogously for inverse proportionality. An example:

q+ (relative_chord_distance( Chord1, Chord2, D), contrast( Chord1, Chord2, C)).
(“Given a sequence of two chords (Chordl, Chord2), the listener may experience a feeling

of contrast C between the chords which is positively proportionally related to the harmonic
distance D (along the circle of fifths) between the chords”)

» Additional proportionality relations: Statements of the form addq+(A,B) and
addq—(A,B) are to be interpreted like g+ and gq—, respectively, except that they
specify only additional influences; that is, they are relevant only if there is already
some reason to believe that B holds or has a particular value. An example:

addq+ ( metrical_strength( Chord2, S), contrast( Chord1, Chord2, C)).

(“If there is some perceived degree of contrast C, it may be felt the more strongly the stron-
ger Chord2’s metrical position S is”)

* The domain theory does also contain some strict deductive rules (as in standard EBG
domain theories); an example:

relative_consonance( Chord, Note, extremely high) : —
chord_contains_note( Chord, Note).

(“The relative consonance between a note and a simultaneously played chord is extremely
high if the chord contains the note (in its basic triad)”)

In principle, the concept of partial monotonic dependencies is very general; any mono-
tonic function could be hidden behind such an abstract specification of dependency. For
instance, for numeric variables X and Y, functions like Y = log(X), Y = exp(X), Y = 5X3
+ 4X + 17.4 would all satisfy g+ (X,Y). For the current project, however, the dependen-
cies are assumed to describe roughly linear relationships. This simplifying assumption
seems justified for the types of parameters occuring in the present domain of application.
Also, since internal variables in the qualitative model have very restricted discrete do-

mains — they range over only five qualitative values: dextremely_low, low, medium,

2)
The notation ‘q+’ was borrowed from Forbus’ qualitative proportionality relations (Forbus,
1984). These relations are also related to Michalski’s M —descriptors (Michalski, 1983) and
the directed dependencies in (Collins and Michalski, 1989).
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high, extremely_highii, which are themselves very ‘fuzzy’ — assuming functional depen-
dencies with very complex shapes would seem to be missing the point. The main role of
the qualitative dependencies in plausible reasoning is to support a weak notion of rela-
tive plausibility of arguments, i.e., to make certain inferences more plausible than others.
All this should be kept in mind when the heuristics for finding plausible explanations are
discussed in section 3.1.1.

3 THE LEARNING METHOD

A teacher is assumed to provide pre—classified training examples, where an example is a
specific chord in a harmonized piece, along with a particular note in the melody. The
representation of training instances is just a list of notes and chords along with their basic
attributes. The goal concepts are good(Chord,Note) and bad(Chord,Note) — i.e., the
goal is to learn sets of conditions under which a certain chord will be a good or bad har-
monization for a given note. The learned concepts are represented in the form of rules,
and the terms ‘concept’ and ‘rule’ will be used interchangeably hereafter to refer to the
result of learning. The learning scenario is incremental, so examples are presented one by
one. Two phases can then be distinguished in the process of learning a rule. In phase 1, a
new, preliminary rule is learned from generalization of a single training instance: the sys-
tem searches for a plausible explanation of the correctness of the training instance and
then compiles the explanation into a general rule. This process could be called ‘plausible
EBG’. A rule learned in this way can be incrementally generalized later on when new,
similar situations are encountered (phase II). Both the decision whether to generalize an
existing rule or create a new one, given a new training instance, and decisions as to how
to proceed in incremental generalization are based on information provided by the plau-
sible explanation underlying the rule in question. Fig.1 gives a sketch of the learning pro-
cess. This chapter will be more concerned with the ‘plausible EBG’ part. Section 3.1 de-
scribes how plausible explanations are constructed and how initial concepts are derived
from them. Section 3.2 then gives a rough account of how incremental empirical general-

ization can be made more effective by using information from plausible explanations.

3.1 Phase I: Single instance generalization via ‘Plausible EBG’

3.1.1 Constructing plausible explanations

Given a training instance and its classification, the system tries to find an explanation of
the instance with the help of its domain theory. Such an explanation will be in the form
of a justification tree much like in traditional EBG, but will have a different semantics.
As the domain theory contains knowledge items of various degrees of strength (strict
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Figure 1: Overall structure of the learning process

rules and qualitative dependencies of various sorts), explanation trees will consist of a
mixture of explanatory argument types. Stronger arguments are preferred, so features
that are defined by strict rules in the domain theory are explained by standard deductive
reasoning. When a feature is defined through directed dependencies, however, only a
weaker kind of explanation is possible. Given a particular value y of some feature Y to
explain, and knowing that g+ (X,Y), one possible way to ‘explain’ why Y=y is to show
that X has a value that is roughly proportional (or reasonably close to proportional) to
the value y of Y.? Such an ‘explanation’ can at best be plausible. Additional problems
arise because the domain theory has several layers. This means that an explanation will
contain chains of such plausible arguments, where the intermediate features are not ob-
servable and can only be hypothesized. It is clear, then, that such plausible explanations
are by no means unique, and also that they cannot be interpreted as logical proofs in the
sense of EBG explanations.

Constructing a plausible explanation is a heuristic search process; the goal is to find the
most plausible explanation. Fig.2 sketches a typical situation in this search. The explana-
tion that the system is looking for is constrained from two sides: it is constrained from the
top (in this case, for instance, the goodness of the example is known to be high) and
from the bottom, by the features of the training instance itself. It is in the middle, so to
speak, where decisions have to be made concerning which parameters to pair with which,
and which arguments to include in the explanation and which ones to omit. For example,
for some branch of the explanation the system might need an explanation for a certain
value y of a parameter Y, and there might be a known dependency of type g+ between

3)
In a very loose sense, one might say that such dependencies are interpreted as ‘causal’ links.

They are assumed to express a directed influence from X to Y, but not necessarily the other
way round.



another parameter X and Y. So certain values x of X might be used to explain parameter
Y — at least partially, since there may be still other factors that are known to influence Y.
The possible domains of X and Y are known (see Fig.2); X and y may or may not be
known (some values are known by inheritance from above, some are known by inference
from features of the training instance). In such a situation, the following kinds of deci-
sions have to be made:

e Ifx and/or y are not known, which values should be hypothesized for them?

e If several combinations of x and y are possible, which one is the most plausible by

itself and makes the explanation as a whole more plausible?

* Should the explanation ‘Y=y because X=x" be included at all? Is it consistent with
other branches and arguments?

This situation will occur in many places in the process of constructing an explanation.
The system makes use of a number of heuristics and constraints in order to make deci-
sions in such a situation:

 Linearity of qualitative dependencies (heuristic):
It is assumed that directed qualitative dependencies describe roughly linear relation-
ships. As a consequence, given two parameters X and Y, related via g+ (X,Y), an ex-
planation that assigns values to X and Y that are roughly in the same range of their
respective domains will be more plausible than one that pairs a low value for X with a
high value for Y, say.

goodness( A7, b, high)

N

Domain of Y: |

"""" X=x(?) = Domain of X: 1 X |

i

BN
&

4 + - melody

an
[ 18

Training instance:

| » ||6lOo |
] (3

Dmin  — chords (harmonies)

Figure 2: Search for most plausible explanation



o Special importance of extremal values (heuristic):
The above hypothesis is assumed to be particularly true for extremal parameter values.
That is, it is assumed to be highly unlikely that a value of, say, extremely_high for

some parameter Y can be caused by a moderate or low value of another parameter X.

» Consistency of assignments (constraint):
The fact that the qualitative dependencies denote monotonic relationships excludes
certain combinations of inconsistent parameter mappings. For instance, knowing that
g+ (X,Y) and that there are no other factors on which Y depends, one cannot use X =
moderate to explain Y = extremely_high in one place and X = high to explain Y =
high in another. This would conflict with the monotonicity of the relationship be-
tween X and Y.

* Local coherence — agreement of arguments (constraint):
Finally, in the case of multiple influences Xi on a parameter Y, only those are included
in the explanation of Y that can be made to agree on the value y of Y. The system

prefers explanations with many supporting arguments to those with fewer ones.

Underlying these heuristics are two basic assumptions, namely, that multiple influences
on a parameter Y are more or less independent in their effect on Y, and, what is more,
that multiple influences obey a kind of linear additivity; in particular, negative influences
may neutralize positive ones. These assumptions may seem rather strong, but turned out
to be adequate for the current application domain.

The heuristics and the system’s preference for multiple support of plausible arguments
are combined in an evaluation function that rates competing (sub—)explanations. It com-
putes a crude estimate of plausibility which is expressed in qualitative terms (see Fig.3).
To summarize, the estimated plausibility of an explanation is a function of (1) the degree
of “fit”, given the known dependencies, between parameters, (2) the number of support-
ing subexplanations, and (3) the respective plausibilities of these subexplanations.

To find the most plausible explanation of an instance, the system performs a kind of
best—first search. The explanation is constructed in a mixed top—down/bottom—up
manner: already known instantiations of parameters (e.g. the known value high for
goodness in Fig.2) are propagated downward through the domain theory, and partial
explanations are then constructed bottom—up and combined into explanations of high-
er—level features. Evaluation of competing partial explanations is based on the above—

mentioned evaluation function.

Fig.3 presents a major portion of an explanation created by the system. The specific
instance explained is the chord—note pair <A7,b” > (indicated by a box in Fig.3). This
tree structure explains why it can plausibly be assumed that listeners will hear the A7
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goodness(A7,bb,extremely_high) <— QPLUS (highly_plaus) —— (from qualitative model)
interestingness(A7,bb,extremely_high) <— QPLUS (mod_plaus) ——
contrast(FA7,moderate) <— QPLUS (highly_plaus) ——
previous_chord(A7,F) <— TRUE (certain)
relative_chord_distance(FA7,moderate) <— QPLUS (highly_plaus) ——
distance_on_circle_of fifths(FA7,4) <— TRUE (certain)
interestingness(A7,bb,extremely_high) <— QPLUS (highly_plaus) ——
tension_buildup(A7,bb,extremely_high) <— QPLUS (highly_plaus) ——
previous_chord(A7,F) <— TRUE (certain)
local_tension_increase(FA7,high) <— DED (certain) ——
intrinsic_chord_tension(Flow) <-— DED (certain) ——
chord _type(Ftriad) <— TRUE (certain)
intrinsic_chord_tension(A7,high) <— DED (certain) ——
chord type(A7,7) <— TRUE (certain)
tension_buildup(A7,bb,extremely_high) <— QMINUS (highly_plaus) ——
relative_consonance(A7,bb,extremely low) <— DED (certain) ——
not _chord_contains_note(A7,bb) <— TRUE (certain)
chord_scale(A7,scale(a,mixolydian)) <— TRUE (certain)
not_scale_contains_note(scale(a,mixolydian),bb) <— TRUE (certain)

tension_buildup(A7,bb,extremely_high) <— ADD.QPLUS (mod_plaus) ——
salience(bb,moderate) <— DED (certain) ——
structural_salience(bb,moderate) <— TRUE (certain)
metrical_strength(bb,moderate) <— TRUE (certain)

Figure 3: Training instance and part of plausible explanation (operational leaves italicized)

chord as a good harmonization for note b* (b—flat). The reader is not expected to un-

derstand the musical details of the explanation; the figure is just meant to convey a feel-

ing for the structure and complexity of such explanations. Note that each branch of the

explanation is labeled according to the type of argument (DEDuctive, based on q+ or

q-—, etc.). Each argument is also explicitly annotated with the rough degree of plausibil-

ity computed during the search. The annotations are used in the second learning phase

— the incremental generalization of learned rules (see section 3.2).

The explanation is then generalized, much like in traditional EBG, by propagating the

general goal concept (in this case good(Chord,Note)) through the explanation tree, and

the generalized leaves are conjoined to form a new rule (Fig.4). The effect of generaliza-

tion here is mainly the replacement of specific objects (notes, chords, musical intervals,
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etc.) by universally quantified variables. Qualitative and quantitative values of domain
parameters are generalized only if they are explained by strict rules in the domain
theory; arguments based on qualitative dependencies are too uncertain to warrant ana-
lytical generalization. They will be generalized incrementally if subsequent examples in-
dicate a need for it (see section 3.2). In this way, the single—instance generalization step
serves mainly to select and construct relevant attributes for a first hypothesis and to re-
late them to the goal concept through a hierarchical explanation structure, which can

later provide further guidance in empirical generalization.

RULE1: good(Chord,Note) :— chord_root(Chord,Root),
chord_mode(Chord,major),
chord_type(Chord,7),
global_key(key(KRoot,KMode)),
previous_chord(Chord,PrevChord),
distance_on_circle of fifths(PrevChord,Chord,4),
chord_type(PrevChord,triad),
chord_type(Chord,7),
not_chord_contains_note(Chord,Note),
chord_scale(Chord,scale(SRoot,SMode)),
not_scale_contains_note(scale(SRoot,SMode),Note),
structural_salience(Note,moderate)
metrical_strength(Note,moderate),
plausible local_key(Note,key(LRoot,LMode)),
dominant_7_chord(key(LRoot,LMode),Chord).

Figure 4: Rule learned by generalizing and compiling explanation

3.1.2 Plausible explanation as constrained abduction

The notion of ‘plausible explanation’ deserves to be examined in a bit more detail. Al-
though, on the surface, the structure of a plausible explanation very strongly resembles
the structure of a ‘classical’ EBG—type explanation, there are important differences.

First, of course, plausible explanations are not logical proofs. Indeed, as DeJong (1989)
has already noted, plausible inferences per se are weak; that is, evaluation of the theory
in a ‘forward’ direction would produce many nonsensical statements that are simply not
consistent with the ‘real world’. It is the actual training instances that make certain infer-
ences more plausible than others. To quote DeJong (1989, p.4), “The existence of the
training example itself adds credibility to the faithfulness of the plausible explanation
and, therefore, to the new generalized concept.” Thus, actual observations (instances)
play a much more important role in plausible explanation—based learning than in tradi-
tional EBG. Rosenbloom and Aasman (1990) also present a lucid discussion on this top-

iC.
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Generally, constructing plausible explanations involves non—deductive types of infer-
ence. For one thing, since general dependency statements usually allow different com-
binations of actual parameters, it is a matter of heuristics (see above) to choose between
these. And second, constructing a plausible explanation often entails hypothesizing rela-
tionships that are not directly observable, and that lends a certain abductive quality to

plausible reasoning.

The following example, taken from the current application, illustrates this effect. Among

other things, the domain theory contains the following two statements of dependency:

g+ (relative_consonance( Chord, Note, C), harmonic_stability( Chord, Note, HS)).
/* The harmonic stability HS of a Chord depends on the relative consonance C between
the Chord and the Note that it accompanies */
g+ ( stability_in_local_key( Chord, Note, S), harmonic_stability( Chord, Note, HS)).
/* The harmonic stability HS of a Chord also depends on the functional stability S of the
Chord in the local key (tonality) that is implied in the current context */

The abstract features relative_consonance and stability_in_local_key are defined by
some strict rules in the domain theory, the relevant ones for the example being

relative_consonance( Chord, Note, extremely low) :— dissonant( Chord, Note).
stability_in_local_key( Chord, Note, extremely high) :— local_key( Note, Key),
tonic_chord( Chord, Key).
stability in_local_key( Chord, Note, high) :— local_key( Note, Key),
dominant_chord( Chord, Key).

Now assume that the example shown in Fig.5 has been classified as good by the teacher;
the system’s goal is to explain good( A7, b* ), that is, the A7 chord is a good harmoniza-
tion for the note b® in the melody. In order to explain this, the system must show, among
other things, that there is at least a relatively high degree of harmonic stability (HS) in
the current situation. Given the two dependencies listed above, this reduces to establish-
ing relative_consonance( A7, b®, C) and stability in_local_key( A7, b*, S) and check-
ing whether the obtained values for C and S do indeed plausibly imply a relatively high
value for HS. relative_consonance( A7, b”, C) is established with the help of the first of
the above rules, with the result C = extremely low (because A7 and b® are extremely
dissonant). Given the positive proportionality between C and HS that is postulated by
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the domain theory, this contradicts the assumption that HS is relatively high (which is the
current explanation goal). So, the system must at least show that stability in_local _key(
A7, b, S) has a high value, which again reduces to finding out what the local key of the
musical passage in the vicinity of b® is, and showing that the A7 chord is either the ton-
ic_chord or the dominant_chord in this key.

Now, local_key is a non—deterministic predicate; there are usually several keys that can
plausibly be perceived in a musical situation, so local_key returns, upon backtracking, a
set of plausible keys, sorted in the order of decreasing plausibility: Key € (F_major,
B” _major, E°*_major, G_minor, D_minor). Of these, only D_minor would attribute high
stability to the A7 chord (because A7 is the dominant chord of D_minor), so, in order to
be able to complete its explanation, the system assumes that the local_key is D_minor
and asserts the following explanation branch:

harmonic_stability( A7, b”, high) because
stability_in_local_key( A7, b”, high) because
local_key( b”, D_minor) and
dominant_chord( A7, D_minor)

The fact relative_consonance(A7,b” ,extremely low), contradicting the explanation

goal, is excluded from this specific explanation.

To reiterate: given just the knowledge in the domain theory, it would have been more
plausible to assume that local_key is F_major in the example. However, given a specific
training instance that is known to be good and, by implication, to display relatively high
harmonic_stability, the system chooses the less plausible (but still possible) assumption
that the local key is D_minor, because that allows it to explain the instance.® Many
plausible arguments have such a distinctly abductive flavor.

Finally, note that the system also faces the problem of deciding which factors to include
in an explanation and which ones to exclude. The present program has a built—in bias in
favor of descriptions that include as many influences as possible, as long as they appear
consistent with the explanation goal and the instance. In general, whether maximally de-
tailed or maximally simple explanations should be considered more plausible and/or
more useful depends very much on the characteristics of the application domain and also
on the learning task.

4
This situation might also be the starting point for a theory revision episode, where the rules
for establishing local_key might be revised so that in similar situations in the future, D_minor
would be determined to be the most plausible local key.
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3.2 Phase Il: Incremental generalization

As noted above, the domain theory was conceived as a general qualitative theory of mu-
sical listening for a restricted type of tonal music. It mentions a multitude of factors that
might potentially influence a listener’s perception of a musical situation. Also, the system
prefers detailed explanations to simpler ones. As a consequence, the explanations and
the rules learned by plausible EBG tend to be too detailed and specific. That is where
the need for incremental empirical generalization arises: the system should not create a
new rule for every new instance that is not covered by an existing rule. Rather, if an exist-
ing rule ‘almost’ matches the new instance, it should be generalized to accommodate the
instance.

The straightforward way to do this would be to somehow measure the ‘distance’ between
each of the rules and the new instance (by counting matches and mismatches) and gen-
eralize a rule if it is ‘close enough’ to warrant generalization. However, a much higher
degree of effectiveness and context—sensitivity of the generalization process can be
achieved if empirical generalization is based not only on the rule to be generalized, but
also on the explanation that led to that rule. The plausible explanation can be used to
bias empirical generalization. Similar observations were already made by Danyluk (1987,
see also — DANYLUK—-CHAPTER IN THIS BOOK), but only for strictly deductive
explanations. Plausible explanations provide more differentiated information that can be
exploited — they rely on a richer set of types of explanatory links, and they include ex-
plicit plausibility information (see Fig.6).

O —  shading indicates assessed degree

/ of plausibility of argument

o O (@)
/ \ ‘\ —» type (and intrinsic strength)
N of explanatory link
e 66 060606 O o

\
\ \
® \, » Operational leaves

Figure 6: Structure of a plausible explanation

Let X denote a condition in a rule (which corresponds to a leaf in the explanation under-
lying the rule) that is not satisfied by the current instance. The following criteria are then

used to decide whether (and if so, how) to generalize the rule:

* Possibility of safe generalization: If X can be generalized to apply to the new instance in
such a way that the argument in the original explanation that depends on X still holds,
the generalization will be safe (at least with respect to the plausible explanation). This
criterion also provides a strong bias on the fype of generalization in cases where there
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are multiple ways to generalize X — only those will be considered that preserve the
validity of the argument that depends on X.

o Strength of explanatory link: The system considers the type of explanatory link of X;
some types are intrinsically more important than others. For instance, arguments
based on addg+ or addq— relationships are by definition less salient than those
based on g+ or q—, and may thus more safely be dropped.

 Assessed plausibility of argument: The system looks at the plausibility with which X was
thought to hold in the original explanation. An argument that was not very credible to
begin with can more safely be dropped or generalized.

o Strength of remaining arguments: 1f X were to be dropped, how strong would the hy-
pothesis depending on X (some ancestor of X in the explanation tree) still be? That is,
how many arguments supporting it remain, and how strong are they? Obviously, if
there are strong arguments left that support the original hypothesis, the overall integ-
rity of the explanation is not compromised too much by dropping X.

Information from these heuristics is combined to yield one approximate value indicating
how ‘likely’ it is that generalization of the explanation (and the rule derived from it) is
justified. In summary, the explanations serve a dual purpose: first, they provide a mea-
sure of ‘deep similarity’ — matches and mismatches between instances and rules are rated
according to the role they play in an explanation structure; this is a better measure of
similarity than just simple counting of syntactic matches. And second, they can provide
bias on the type of generalization that seems most plausible. The interested reader can
find an example of the heuristics at work in (Widmer, 1991).

4 AN EXPERIMENT

The following experiment was meant to illustrate that this explanation—sensitive ap-
proach to incremental generalization can considerably improve the learning perfor-
mance, both in terms of the number of training instances needed and the generality of
the concepts learned. The informed incremental generalization algorithm of section 3.2
(algorithm 1) was compared to a simpler incremental generalizer (algorithm 2) that did
not use the underlying explanations in empirical generalization. Both algorithms used
the plausible explanations to derive an initial generalization from the first instance.
When considering incremental generalization, however, algorithm 2 based its decisions
whether to generalize a particular rule on a general threshold (ratio of matching vs. non-

matching conditions in a rule).

The experiment consisted in first selecting a target problem (a piece that the system
should be able to harmonize after learning) and several training pieces, from which train-

ing examples (specific pairs of chords and notes) were then presented to the learners
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until they could solve the target problem. Target problem and training pieces — all of
them beginnings of well—known Piano Sonatas by W.A.Mozart — are shown in Figs. 7
and 8.

Beginning of Sonata # 5 in G major (K.283):
o4 i ol ™
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Figure 7: Target problem (piece to be harmonized)
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Beginning of Sonata # 16 in C major (K.545):
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Beginning of Sonata # 11 in A major (K.331):

Figure 8: Training pieces from which examples were selected

Fig. 9 displays the solution to the target problem that was found by both algorithms after
the learning session. (Incidentally, this is more or less the harmonization Mozart himself
chose.) The main results of the experiment are summarized in Table 1. The data indicate
that paying attention to the underlying explanations in incremental generalization can
considerably improve the learning performance: the set of rules learned by algorithm 1 is
both more concise and more general, and, what is more, it was learned from a consider-

ably smaller number of training instances.
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Figure 9: Solution found after learning
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Algorithm 1 Algorithm 2
(guided by expl.)

Complexity of learned rule base:

# of rules learned: 9 12
total size of rule base (# literals) 103 129
avg. # literals / rule 11.4 10.8

Cost of learning:
# instances required 20 32

Table 1: Results of comparative learning experiment

5 DISCUSSION, RELATED WORK, AND FUTURE DIRECTIONS

To summarize briefly, this chapter has presented a method for learning rules from exam-
ples with the help of a qualitative domain theory that consists mainly of qualitative de-
pendency relations. The theory is too weak to permit standard explanation—based learn-
ing. Plausible inference strategies are used to guide the learning process, both via a kind
of ‘plausible EBG’ and by biasing incremental empirical generalization. Section 3.1 de-
scribed the inference techniques used to construct plausible explanations and discussed
their non—deductive nature. Section 3.2 showed how underlying explanations can be

used to guide incremental generalization of learned concepts.

An additional important role of the domain theory that should be pointed out here is the
dynamic construction of an appropriate hypothesis language, depending on the context.
The language in which instances are represented and the language for explanations and
rules are not the same. In section 3, it was briefly mentioned that training instances are
represented simply as lists of notes and chords along with their basic attributes (such as
duration, pitch, chord type, etc.). Explanations and rules, on the other hand, refer to
higher—Ilevel concepts and various relations (see Figs.3 and 4). These higher—level con-
cepts are introduced by the domain theory and enter into learned concepts because of
the particular level of operationality defined in the system. The method thus demon-
strates the utilization of a qualitative domain theory for constructive generalization (Mi-
chalski, 1983).

A general problem with plausible explanations as described here is that they are rather
weak, being based as they are on abstract background knowledge and on single exam-
ples. This uncertainty effect multiplies if explanations contain chains of plausible argu-
ments. That is why, in the current system, analytical generalization is applied very cau-
tiously (see section 3.1.1). It is in the incremental generalization phase that the appropri-
ate degree of generality is determined empirically, by analyzing new instances against
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the background of the explanation of the original concept. An alternative approach
would be to strengthen the explanations by checking the validity of plausible inferences
against several examples at once. That would mean the loss of full incrementality, but
would produce plausible explanations that have more empirical support. Bergadano &
Giordana’s (1988) ML—SMART framework might, in fact, be extended to form the basis
for such a ‘multi—instance plausible explanation system’.

Learning with a qualitative domain theory has also been investigated by DeJong (1989;
1990). He presented a method for learning in continuous domains, where the domain is
modelled in Qualitative Process Theory terms (Forbus, 1984). The main advances of the
method described here over DeJong’s approach are a) the use of the domain theory for
constructive (instead of just selective) generalization, b) the definition of explicit criteria
for assessing the relative plausibility of competing explanations, which makes possible a
heuristic search for the ‘most plausible’ explanation, and c¢) the methods for exploiting
plausible explanations to bias incremental generalization of learned concepts. In case of
conflict, DeJong’s system simply discards the old explanation and looks for a more con-
sistent one. (This is partly due to the fact that his system generates explanations in a sim-
ple—to—complex order.)

The author’s own work on a predecessor of the current system resulted in a learning al-
gorithm (Widmer, 1989) that flexibly integrated deductive, analogical (determination—
based) and inductive arguments in an explanation—based generalizer and thus exhibited
multistrategy learning behaviour, depending on the knowledge available. Tecuci and Mi-
chalski (1991; see also TECUCI-CHAPTER IN THIS BOOK) have developed a simi-
lar approach based on learning from plausible justifications. They integrate different in-
ference types (deduction, determination—based analogy, abduction, and empirical gen-
eralization) in a plausible explanation system. The work described in the present chapter
adds a new, complex inference type — hypothesizing consistent explanations on the basis
of directed qualitative dependencies — to this collection. On the other hand, empirical
generalization is done outside of the explanation process, in a separate learning phase.
So one immediate goal for further research is the integration of other types of reasoning
(analogy and empirical similarity arguments, various forms of abduction, etc.) directly
into the explanation process. That would allow explanations to refer to information from
outside the current training instance and would naturally lead to generalization effects

during explanation.

A problem that needs to be addressed is the specialization of overly general concepts. In
the current application, the richness of the domain theory and the fact that the heuristics
for including plausible arguments in an explanation (section 3.1.1) are very much on the
permissive side, render specialization virtually unnecessary: Initial concepts constructed

by plausible EBG are very specific, and finding the ‘correct’ degree of generality is then a
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matter of stepwise (careful) generalization. However, overgeneralization may become a
problem in other applications. Investigations are under way to find out whether plausible
reasoning can also be used to help in the problem of effectively specializing concepts in

the face of conflicting evidence.

The improvement of the qualitative domain theory in response to specific experiences is
another interesting topic for further research. Currently, the learning problem is re-
stricted to concept learning, with the underlying domain theory remaining unchanged,
being used only to guide the system in acquiring rules. More research is needed both on
the automatic refinement of the domain theory (i.e., filling in missing details, making ab-
stract relationships more precise) by induction from examples, and the revision of the
theory in response to incorrect generalizations or abductive explanation needs (see, e.g.,
the local_key example in section 3.1.2).

In conclusion, the author hopes that the work presented in this chapter is another step in
the direction of flexible multistrategy learning, both from a theoretical and from a practi-
cal point of view. The chapter has shown how qualitative background knowledge can
support powerful explanation methods, and how these methods, when integrated in an
EBG-like ‘Explain, Generalize, and Compile’ schema, lead to very effective learning.
The idea of extending the notion of ‘explanation’ to include weaker kinds of inference is
now gaining more and more popularity. In principle, a wide variety of types of knowl-
edge and an equally wide variety of inference types, including abduction and determina-
tion— or similarity—based analogy, can be used in plausible reasoning. If all these can be
integrated directly into the plausible explanation process, flexible multistrategy learning
behaviour will naturally emerge.

On the practical side, it seems worthwhile to emphasize once again the idea of using
qualitative models as powerful tools for describing common, abstract domain knowl-
edge. There are many domains where qualitative models are much easier to obtain than
precise domain theories. For such domains, the approach outlined here appears very
promising. The complexity of the musical application — the entire domain theory com-
prises about 1000 lines of Prolog code — could be taken as an indication that real—world

problems are within the reach of this approach.
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