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Abstract

FLORA2 is a program for supervised learning of concepts that are subject to

concept drift. The learning process is incremental in that the examples are processed

one by one. A special feature of our program consists in keeping in memory a subset

of examples { a window. In time, new examples are being added to the window while

other ones are considered outdated and are forgotten. In order to track the concept

drift, the system keeps in memory not only valid descriptions of the concepts as they

are derived from the objects currently present in the window, but also `candidate

descriptions' that may turn into valid descriptions in the future.

1 Introduction

One of the key tasks of the Machine Learning discipline is to �nd powerful methods for

abstracting concepts out of a set of objects. Basically, two subproblems of this task exist:

supervised learning and unsupervised learning. The former assumes that a set of pre-

classi�ed examples (positive and negative) of some concept(s) are available. The latter

subproblem can be de�ned as a conceptual clustering problem based on a set of non-

classi�ed objects, in a way similar to the statistical cluster analysis but with stress laid on

the interpretation potential.

In this paper, we present the supervised learning algorithm FLORA2
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, capable of learn-

ing concepts that are not constant in time but, rather, exible in the sense that their

de�nition varies in time. The input to our program consists of a stream of pre-classi�ed

objects. For the moment, we will assume learning from simple objects described by nomi-

nal variables (symbolic attribute-value pairs). Since the real de�nition of exible concepts

is subject to time-dependent changes, also the classi�cation of the learning instances will

vary in time. Experiments modelling this can be arranged in a number of ways: in par-

ticular, the changes can be abrupt or gradual, periodic or `random'. In the experiments

(section 5) we will analyze the system's ability to adapt to abrupt (and radical) changes

in the concept meaning.

1

The acronym FLORA stands for FLOating Rough Approximation; the term rough reects the fact

that the approach was motivated by Pawlak's Rough Set Theory [12]
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The paper is organized as follows: After a brief review of existing work in the �eld of

learning exible concepts, we will describe the basic idea of our algorithm and its evolution.

Then, in sections 4 and 5, we describe in detail the system FLORA2 and the `disciplines'

in which it compares favourably with its ancestors.

2 Related work

A detailed analysis of some aspects of the problem of context-dependent concepts is con-

tained in Michalski's paper [10] where a two-tiered representation is suggested for modelling

concepts with exible and modi�able boudaries. In this approach, it is assumed that con-

cepts have some general tendency represented in the base concept representation (�rst tier)

while exible details that may be context-dependent are best represented by appropriate

matching methods and knowledge-dependent rules of inference (second tier).

Another possibility is exemplar-based learning (see, e.g., [1]) where the concepts are

represented by several typical examples to which new objects are matched. Context-

sensitive and similarity-based matching procedures enable to separate the `core' knowledge

about the concept from the description of possible contextual modi�cations.

Among the systems from the area of incremental concept formation or unsupervised

learning, COBWEB ([2]) and its derivatives, such as CLASSIT ([3]), deserve attention

thanks to their two complementary operators merge and split. These enable the algorithm

to recon�gure the current knowledge structure based on newly observed objects. As a

matter of fact, the operatormerge can be considered as a sort of forgetting. Similar recovery

operators can be found also in other concept formation algorithms such as UNIMEM ([9]),

FAVORIT ([4]), etc.

Most of the above approaches tacitly assume that the concepts in question have some

constant central tendency and that it is only their boundaries that are moving with con-

text. On the other hand, Schlimmer's system STAGGER ([13, 14]) is able to cope with

substantial changes in the entire concept meaning. In the process of incremental learning,

it searches through the space of possible descriptions and re�nes its concept characteriza-

tions. Each description item is accompanied by two weighting measures, describing logical

su�ciency and logical necessity of the item for the general description of the concept. These

two measures guide the search in the sense that (1) weak description items are deleted from

the description and (2) in the search for new possible descriptions, the strongest ones are

chosen.

This paper builds on previous work of one of the authors on the system FLORA (e.g.

[5, 6, 7, 8]). The basic idea of the system is that a `window' is moved over the stream

of training objects. Only the objects present in the window are kept in memory. Two

processes are running simultaneously over the contents of the window: learning from new

objects that have just been added to the window, and forgetting older objects together

with the pieces of knowledge that have been derived from them. The basic philosophy is

that if the meaning of the concept changes in time, the older pieces of knowledge that have

not been con�rmed for a considerably long time are not to be trusted. The section gives a
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at1 at2 at3 C

1 1 1 +

0 1 1 -

1 0 1 +

0 1 0 -

Table 1: Examples submitted to the learning program.

brief account of the algorithm as it was realized in the original FLORA system.

3 Description sets and the `window'

Suppose we have at our disposal a set of positive and negative examples of some concept,

and a description language. The task is to �nd a description of the concept. Note that the

concept description found is determined not only by the description language, but also by

the examples submitted to the learning program. This can be illustrated by the example

from Table 1 where the examples are described by means of three boolean attributes.

One possible (consistent) description of the concept C that can be derived from them is

des(C) = (at1 = 1) ^ (at3 = 1). However, it is possible that the real description of the

concept should be des(C) = (at1 = 1). Also, des(C) = (at3 = 1) would describe all the

positive instances (but it covers also a negative one). If we neglect consistency for the

moment (which may not be our top criterion if we deal with noisy instances or drifting

concepts), we have three possible concept descriptions. If we add to the table another

example, the set of possible descriptions is likely to change. A negative example can

contradict those descriptions that are too general, while a positive example can indicate

that a description is too specialized.

The choice of the examples is rarely ideal. If the description contains many multivalued

variables, a human teacher may not be able to select the most representative examples.

If the examples are obtained directly from the environment, they are not necessarily the

most illustrative ones. Let us further complicate the task by assuming that the concept is

exible, i.e., that its de�nition can change in time. This happens in many realistic domains,

and can also appear to happen in incremental learning if the description language is poor

and fails to reect some important (hidden) feature of the concept.

These two issues { (1) a concept description depends on the selection of examples, (2)

hidden features cause the concept description to drift { motivated the development of the

system FLORA. The algorithm was �rst published in [5], its application was reported e.g.

in [7] and a more detailed analysis in [8].

The idea is to keep in memory all possible concept descriptions. Let us forget, for the

moment, about combinatorial explosion which can be later avoided by suitable heuristics.

We have a set ADES of descriptions that have been derived from the positive examples

and have not been contradicted by any of the negative examples. Further, it is useful to

maintain also a set PDES of `candidate descriptions' that cover both positive and negative
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Figure 1: Transitions among the description sets.

examples (des(C) = (at3 = 1) from above would fall into this category), and a set NDES

of descriptions that cover exclusively negative examples.

Now, we have said that we are learning incrementally from a stream of examples. Since

we suppose the possibility of a concept drift, we have more trust in more recent examples

than in the older ones. That is why FLORA takes care only of a subset of examples, called

`window'. In the simplest case (see [5]) this means: each time when a new example arrives,

we will add it to the window (learn) and delete from the window the oldest one (forget).

The window thus moves along the stream of examples and the changes in its contents

induce changes in the contents of ADES, PDES, and NDES. This is illustrated by Figure

1.

In the process of learning either the contents of the three description sets will not be

a�ected; or a new description will be created and added to ADES (NDES) if the example

was positive (negative); or an existing description can be transferred from ADES (NDES)

to PDES, again depending on whether the example was positive or negative. Similarly, in

the process of forgetting either the contents of the description sets will not be a�ected, or

transitions according to Figure 1 will take place, or some descriptions will cease to exist.

A theoretical analysis of these processes for a slightly more general case of simultaneous

learning from m examples and forgetting p examples can be found in [6].

4 FLORA2

4.1 Motivation

The original FLORA algorithm worked well in the domains for which it was designed,

but exhibited considerable shortcomings when we tried to apply it to larger, more complex

domains. The new system FLORA2 was designed to repair these problems and to arrive at

a robust, e�cient, and yet truly exible algorithm. Speci�cally, the following improvements

were made:

1. FLORA2 uses a new generalization operator to integrate new, uncovered instances into

the descriptions sets ADES and PDES;

2. The description sets ADES, PDES, and NDES are checked for subsumption;

(1) and (2) in combination prevent explosion of the sizes of the description sets; by

virtue of (1) and (2), FLORA2 can now learn fully incrementally, i.e., starting with

empty description sets;

3. FLORA2 can automatically determine an appropriate window size and exibly change

the window size during learning; this is achieved by means of heuristics.
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4.2 Incremental update of description sets

Let us assume that the description sets ADES, PDES, and NDES already exist (at the

beginning, they might also be empty). Remember that ADES is the set of all descrip-

tions that are consistent (i.e., match only positive instances), PDES is a set of candidate

descriptions that, taken together, are complete, but not consistent (i.e., it matches all

positive instances, but also some negative ones), and NDES is a consistent description of

the negative instances seen so far (i.e., it matches no positive instances). Speci�cally, the

description sets are of the following form:

ADES = fADes

1

=AP

1

; ADes

2

=AP

2

; : : :g

PDES = fPDes

1

=PP

1

=PN

1

; PDes

2

=PP

2

=PN

2

; : : :g

NDES = fNDes

1

=NN

1

; NDes

2

=NN

2

; : : :g

where the ADes

i

(PDes

i

, NDes

i

) are description items (conjuncts of descriptors), and

fA;PgP

i

... number of positive examples matching description fA;PgDes

i

fP;NgN

i

... number of negative examples matching description fP;NgDes

i

Each description set can be interpreted as a DNF expression. The important thing is

that the system keeps counts of the number of instances matched. These numbers concern

only instances that are in the current window. They are used to decide when to transfer a

description to a di�erent description set or when to drop it altogether.

We want to keep these description sets in some sense minimal, in order to prevent

combinatorial explosion. In FLORA2, this is achieved by exploiting the subsumption

ordering of the description space: ADES is checked to contain only the most general

descriptions consistent with positive instances (that is, if two description items ADes

i

and ADes

j

both are consistent with positive instances, and ADes

i

subsumes ADes

j

, only

ADes

i

is kept in ADES). Similarly, in PDES, only the most speci�c descriptions (that

cover both positive and negative instances) are kept, and NDES is again kept maximally

general. These conditions are checked whenever one of the description sets is modi�ed.

The algorithms for incremental learning and forgetting then proceed as follows:

Incremental learning:

Assume that the system is presented with a new training instance, with given classi�cation

C 2 fpositive; negativeg. Then the description sets are updated as follows (see also Fig.1

in section 3):

If classi�cation C is positive:

For all ADes

i

in ADES:

if match(instance;ADes

i

) then AP

i

:= AP

i

+ 1;

For all PDes

i

in PDES:

if match(instance; PDes

i

) then PP

i

:= PP

i

+ 1;
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For all NDes

i

in NDES:

ifmatch(instance;NDes

i

) then removeNDes

i

fromNDES and include it into PDES

as a triple NDes

i

=1=NN

i

and check the updated PDES for subsumptions;

If there is no ADes

i

in ADES that matches the new instance,

then include into ADES all possible generalizations of the new positive instance with

all ADes

j

present in ADES such that the resulting expressions are (1) maximally

general and (2) do not subsume any descriptions in PDES or NDES (this ensures

consistency against negative instances); as an extreme case, the description of the

instance itself may be added to ADES; then check ADES for subsumptions;

If classi�cation C is negative:

For all ADes

i

in ADES:

if match(instance;ADes

i

) then removeADes

i

from ADES and include it into PDES

as a triple ADes

i

=AP

i

=1 and check the updated PDES for subsumptions;

For all PDes

i

in PDES:

if match(instance; PDes

i

) then PN

i

:= PN

i

+ 1;

For all NDes

i

in NDES:

if match(instance;NDes

i

) then NN

i

:= NN

i

+ 1;

If there is no NDes

i

in NDES that matches the new instance, then include into NDES

all possible generalizations of the new negative instance with all NDes

j

present in

NDES such that the resulting expressions are (1) maximally general and (2) do not

subsume any descriptions in PDES or ADES (this ensures consistency against positive

instances); as an extreme case, the description of the instance itself may be added to

NDES; then check NDES for subsumptions;

Incremental forgetting:

Now assume that the system decides to `deliberately' forget an old training instance with

known classi�cation C. This happens when an old instance is dropped from the current

window. Then the description sets are updated as follows (again, see Fig.1 in section 3):

If the instance was a positive one:

For all ADes

i

in ADES:

if match(instance;ADes

i

) then AP

i

:= AP

i

� 1;

if AP

i

= 0 then remove ADes

i

from ADES;

For all PDes

i

in PDES:

if match(instance; PDes

i

) then PP

i

:= PP

i

� 1;

if PP

i

= 0 then remove PDes

i

from PDES and include it into NDES as a pair

PDes

i

=PN

i

and check the updated NDES for subsumptions;

If the instance was a negative one:
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For all PDes

i

in PDES:

if match(instance; PDes

i

) then PN

i

:= PN

i

� 1;

if PN

i

= 0 then remove PDes

i

from PDES and include it into ADES as a pair

PDes

i

=PP

i

and check the updated ADES for subsumptions;

For all NDes

i

in NDES:

if match(instance;NDes

i

) then NN

i

:= NN

i

� 1;

if NN

i

= 0 then remove NDes

i

from NDES;

In summary, the strength of the algorithm lies in the explicit representation of the three

description sets ADES, PDES, and NDES. ADES represents the core of the current concept

hypotheses (ADES is also used for classifying new instances); PDES contains candidate

descriptions that are slightly too general: they cover some negative instances, but might be

relevant in the future (when old, contradictory instances are forgotten); NDES characterizes

the negative instances. Together, these three sets summarize the relevant information in the

training instances. There is no need to re-examine all the instances at every learning step.

Also, once the learning process is well on the way, there is little need for the construction

of new descriptions. Most of the action is migration of descriptions between the three sets.

All this contributes signi�cantly to the e�ciency of the algorithm.

Also, note that there is no specialization operator: if a new (positive or negative) in-

stance cannot be incorporated consistently into any of the generalizations, its full descrip-

tion is added to ADES (NDES); it acts as a kind of speci�c `seed' which will be generalized

later on. Overly general descriptions are discarded when old examples are forgotten.

4.3 Dynamic window adjustment

In the original FLORA system, the window size was �xed (this was a parameter that

had to be set before learning). However, since the behaviour of the algorithm is very

sensitive to the window size, and since the optimal window size is a function of the current

learning situation, this was not a very satisfactory solution. Consider just briey what can

happen when the window is not appropriate: if it is too narrow, relevant instances will be

forgotten too early, and characterizations will be dropped that would still be correct and

necessary. On the other hand, if the window is too large, the system is too reluctant to

follow a concept drift; it keeps noisy or outdated instances/hypotheses around too long.

The perfect window size would be at most as long as the periods between perceptible shifts

in the (hidden) de�nition of the concept; at the time of a shift it should be narrowed so

that more of the old instances are forgotten.

The new system FLORA2 automatically determines and adjusts its window size during

learning. Obviously, this can only be done in a heuristic manner. The heuristics that

FLORA2 uses are quite simple (and produce surprisingly good results - see section 5).

Basically, the idea is to shrink the window (and forget old instances) when a concept drift

seems to occur, and to keep the window size �xed when the concept seems stable. Otherwise

the window should gradually grow until a stable concept description can be formed. The

heuristic that tries to guess whether a concept drift is occurring is based on the following
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intuition: When the concept drifts, there will be a transition period in which it is di�cult

to form a concise consistent concept representation (in ADES). As a consequence, there

will be a marked decrease in the coverage ratio # of instances covered by ADES / size of

ADES. Conversely, when the coverage ratio of ADES is high, the window is assumed to be

wide enough and is kept �xed. The window adjustment algorithm, then, looks as follows:

Let N = number of (positive) instances covered by ADES and

S = size of ADES (in terms of number of literals)

Then:

If N=S < 1:2 (coverage low)

and PDES is not empty (there are alternative hypotheses)

then decrease window size by 10% and forget the oldest instances

else if N=S > 5 (coverage high)

then freeze the current window size

else grow window by 1 (accommodate new instance without forgetting the oldest one)

The parameter settings 1.2 and 5 were chosen rather arbitrarily; in fact, 5 as the

threshold for high coverage was our �rst guess, and the 1.2 for low coverage was our

second. There is, or course, ample room for improvement, but these parameters already

produced very good performance.

5 Experimental results

We have performed extensive experiments to test the behaviour of the algorithm. For

reasons of comparison, we also applied the system to the drifting concept used by Schlimmer

& Granger, namely, (1) size = small ^ color = red, (2) color = green _ shape = circular

and (3) size = (medium _ large) (see [14]). Figure 2 displays the predictive performance

of FLORA2 on this drifting concept. The transition of the underlying concept de�nition

from (1) to (2) was designed to happen after 40 training instances, from (2) to (3) after 80.

Training instances were generated randomly according to the hidden concept, and after

processing each instance, the predictive performance was tested on 40 test instances (also

generated randomly). The set ADES was used to classify instances.

In terms of accuracy, our algorithm compares very favourably with STAGGER. FLORA2

converges much faster on the correct hypothesis; this seems to be a consequence of the

completely symbolic knowledge representation of FLORA2 (as opposed to STAGGER's

probabilistic weights). Also, the total size of the description sets remains extremely mod-

erate (Fig.3); this is due to the algorithm's generalization operator and to the subsumption

tests.

It is also instructive to look at the development of the window size (Fig.4): a change in

the de�nition of the underlying concept �rst leads to a more or less short increase in the size

of the window (marked by asterisks in Fig.4), before the system reacts to the concept shift

by narrowing the window and forgetting old, now irrelevant (or even irritating) instances.

This behaviour has been observed consistently in our experiments. Colloquially, one might
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Figure 2: Classi�cation accuracy.

Figure 3: Total size of ADES, PDES, and NDES.

say that the system, when confronted with new instances that don't quite �t its current

concept hypothesis, �rst tries to `gather more information' by broadening the window.

However, when more and more instances contradict its hypothesis, it `changes its mind'

and attributes this to a shift in the underlying concept de�nition. This behaviour is a

direct consequence of the window adjustment heuristics.

This observation also gives us reason to believe that the algorithm will be able to cope

with noisy instances. Noisy instances, when they appear during a relatively stable phase

of the hypothesis, and as long as they don't appear in big bundles, will lead to a short

increase in the window but won't be mistaken for indicators of a concept shift. It is only

when new instances consistently contradict the system's hypothesis (and, as a consequence,

the coverage of ADES drops dramatically) that the system will attribute this to a concept

shift and will reduce its window. In fact, if noisy (= misclassi�ed) instances do appear in

bundles, there is no reason for the system to believe that this does not represent a concept

shift.
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Figure 4: Development of window size.

6 Discussion and directions for further research

In summary, the experimental data we have to date clearly indicate that FLORA2 can

exibly adjust itself to concept drift while remaining fast and space-economical. When we

compare FLORA2 to its closest relative, STAGGER, we �nd that our approach is indeed

a success, at least as far as tracking concept drift is concerned. Our method produces crisp

concept descriptions in DNF, while STAGGER uses a distributed representation with nu-

meric weights attached to description items. As the above experiment indicates, FLORA2's

purely symbolic representation leads to faster convergence. In addition, FLORA2's descrip-

tions are also easier to understand than the distributed representation of STAGGER. And

�nally, as a side e�ect, NDES provides a concise characterization of parts of the `negative

space', which allows certain new instances to be uniquely identi�ed as negative (much like

the general boundary of a version space [11]). This may be bene�cial in some domains

where it is critical to identify negative situations/instances as such or where it is important

to be able to predict certain attributes of negative instances.

So far, we have studied mainly the algorithm's behaviour when it is confronted with

concept drift. The related problem of dealing with noise (that is, of distinguishing between

random noise and a beginning drift of the concept) has not been investigated in depth.

Preliminary data shows that the system is rather robust in this respect. However, more

systematic analysis and experiments are needed to establish this hypothesis. We are cur-

rently performing experiments in this direction. Other threads of research we intend to

pursue are investigations concerning

� more sophisticated heuristics for dynamic window adjustment

� reactions to various kinds of concept drift (gradual, abrupt, shift in relevance of at-

tributes, etc.)

� a more sophisticated (structural) description language

� the potential of PDES for probabilistic classi�cation

Since the original algorithm has been successfully applied several times, it surely de-

serves further research attention. There are many practical domains where concept drift

does occur and where time e�ciency is an issue (e.g., load balancing in computer networks

[7]), so we expect our algorithm to be of substantial practical use.
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