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Abstract

Neural networks are usually seen as obtaining all their knowledge

through training on the basis of examples. In many AI applications

appropriate for neural networks, however, symbolic knowledge does

exist which describes a large number of cases relatively well, or at

least contributes to partial solutions. From a practical point of view

it appears to be a waste of resources to give up this knowledge alto-

gether by training a network from scratch. This paper introduces a

method for inserting symbolic knowledge into a neural network{called

\concept support." This method is non-intrusive in that it does not

rely on immediately setting any internal variable, such as weights. In-

stead, knowledge is inserted through pre-training on concepts or rules

believed to be essential for the task. Thus the knowledge actually ac-

cessible for the neural network remains distributed or {as it is called{

subsymbolic. Results from a test application are reported which show

considerable improvements in generalization.
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1 Introduction

The common view of neural networks and rule-based approaches to diagnosis

or classi�cation tasks in AI is that the former always acquire their knowledge

through training, while in the latter case knowledge is pre-programmed as

rules. Thus, each method has its type of applications where they appear

most appropriate, in the case of neural networks applications where no or

little explicit knowledge exists or is known. As a result, neural networks

are usually trained with random inital con�gurations, the only source of

knowledge being the training examples. In many real world cases, however,

partial symbolic knowledge on how to solve the problem exists beforehand

and is already formalized. It seems to be a waste of e�ort not to make use

of this knowledge. The following are possible reasons why �nding a way of

inserting explicit knowledge into a neural network can be desirable.

� Learning from scratch (tabula rasa) is a very costly process. When

starting with randomly distributed weights, the training examples have

to be presented to the network many times before any success becomes

visible.

� The number of training samples needed to train an \empty" network

can be very large, which helps in overcoming the problem of small

training sets one is often faced with.

� Not all the necessary knowledge might actually be contained in the

training samples themselves. Existing rules could be used to replace

this missing part.

� Pre-programming can prevent spurious states or local minima the net-

work might otherwise be prone to reach.

� It can be easier to interpret or debug networks into which rules have

been injected.
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This paper reports on results of applying a speci�c technique on inserting

symbolic knowledge into a network, henceforth called concept support. One of

the basic properties of concept support is that it is a method of programming

neural networks in a non-intrusive fashion, i.e. without immediate alterations

of their internal structure, such as weight matrices. This method and its

variations|support of rules, and support of related concepts|are introduced

emphasizing their advantages and value for practical applications. Concrete

results from using a test application in the medical domain are described and

discussed.

2 Concept Support Techniques

We call methods that try to incorporate a priori knowledge into neural net-

works without immediate access to the internal structure (weights) concept

support techniques. The basic idea is to pre-train the network on the ba-

sis of the symbolic knowledge, so as to obtain a weight matrix on which

further learning with the training samples is based. This way the inserted

knowledge{i.e. the knowledge actually usable or accessible for the neural

network{is kept at least weakly distributed (see van Gelder 1990), or sub-

symbolic. No attempt at symbolically interpreting any internal entity (unit

or connection) is necessary, as would be if weights were to be preset explicitly

(cf. [Yang 90, Sethi 90]). The main goal is not so much to reduce training

times, but rather to improve the generalization capabilites of the network.

Several variations on concept support can be distinguished:

1. the pretraining on the basis of rules describing a subset of cases of the

desired input-output mapping. The network for pre-training in this

case is the same as for the actual task and is trained in two phases;

�rst on one or more rules, secondly on the training samples. Thus the

rules complement the training samples in supplying the knowledge to

the network.

2. the pretraining on the basis of symbolic concepts believed to be rele-

vant for solving the task. This idea originated in the work by Wiklicky

(1989) and gives the method its name{concepts relevant to the task are

supported during training. In this case, the output layer of the network
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is di�erent during the two phases. During pretraining the output rep-

resents the relevant concepts, during regular training it represents the

desired output.

3. the pretraining with concepts as in (2), but with a smaller hidden layer,

while at regular training additional hidden architecture is used. This is

the original method introduced in Wiklicky (1989). This way, during

regular training the inserted knowledge is con�ned to only a part of the

network, leaving the rest more freedom to self-organize.

An important aspect for all methods of concept support{or all methods

for inserting knowledge, for that matter{is that the knowledge supplied dur-

ing pre-training need not be totally consistent, complete in any sense, or even

correct in order to ensure usable results. In other words, \overwriting" or

modi�cations of inserted knowledge should always be possible due to train-

ing with the application data. The worst case should be that training time

is increased through misleading or incorrect knowledge. As concept support

techniques do not a�ect the basic process of the neural networks, such a

property comes almost automatically.

We have tested methods (1) and (2) on a speci�c application described

below. Both methods have been proven to be useful. Especially in the case of

supporting rules, considerable improvements of the generalization behavior

could be observed. Before actually describing the application we take a brief

look at related work.

3 Related Work

The importance of overcoming technical problems of neural networks which

are related to nonsymbolic representation, a priori rules and concepts have

been pointed out by several authors, e.g. [Gallant 88, Hendler 89]. While

many of the proposed methods try to combine neural networks with sym-

bolic methods there is not so much work on incorporating knowledge and

keeping the nature of representation in the model distributed.

Methods which have shown to achieve both are described in Suddarth

(1990) or Yeoung-Hu (1990). In both cases there is an additional output
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information during training that helps to guide the search for a solution to

the training problem. Both methods not only use the desired output pat-

tern during learning but expand the training pattern in order to train the

network on a di�erent but related task. One part of the training pattern

represents the original task, the other one additional information about the

input pattern. One di�erence to the method we describe below is that both

parts of the output (original task and additional information) are presented

within one single pattern. Moreover, our method always separates a concept

support phase and a phase of training the network on the desired task. This

has the advantage that initalization of a priori knowledge and later re�ne-

ment can be performed separetely, which is useful for systematic engineering

or security reasons.

The idea of creating a speci�c hidden unit representation which sup-

ports the generalization capability of the network has e.g. been proposed in

[Lendaris 90]. A more redundant encoding scheme (compared to a straight-

forward one) is used as a representation in a hidden layer of the network.

This representation makes it easier for the net to correctly learn the desired

generalization, but leads to a local representation in one hidden layer. As

opposed to our method, this technique can be regarded as actually combining

two di�erent networks connected by the designed hidden layer representation.

Solutions to the problem of creating networks that are specialists in a

speci�c domain and methods of constructing domains of expertise and hier-

archies are principally discussed in [Jacobs 88], but no practical methods or

examples are mentioned there. Jacobs proposes to train the net on a series T

i

of tasks which{very informally{converge to the desired task T

n

. Our proposal

of designing these tasks by means of existing rules (the a priori knowledge)

is presented in the next sections.

4 An Example in the Medical Domain

Computer based image interpretation of thallium-201 scintigrams served as

a testbed for incorporating rules into neural networks. The task to be

performed by the neural network is the asessment of coronary artery dis-

ease (CAD) using the parallel distributed approach. Earlier endeavours to
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solve this problem with a neural network su�ered from relatively low pre-

diction rates and the lack of possibilities to incorporate a priori knowledge

[Porenta 88]. Normally, the medical expert interprets the scintigram picture;

he decides on the likelihood of CAD, number of a�ected vessels and location

of a�ection. Results given by the expert can be veri�ed by comparison with

angiography. Thus two reference methods exist which can be chosen to gen-

erate the target patterns for the network.

The scintigraphical images of the heart-scan are converted into 45 numeric

values representing scans under stress, redistribution, and the washout, which

are input to the network. The network used for this study therefore consists

of 45 input, 23 hidden, and 1 or 2 output units - depending on the task. It

was trained by using error backpropagation.

A priori knowledge about the task consists of several heuristic symbolic

rules. These rules either describe criteria for a patient to be classi�ed as

ill or for identifying the a�ected region of the heart and were obtained by

consulting a medical expert. It must be stressed that all of these rules are

very heuristic, i.e. cover only a limited percentage of the input space. Rea-

sons therefore are inaccuracies in the input data, enourmous physiological

di�erences between patients and irregularities during recording patient data.

4.1 The Method of Rule Support

The method of supporting the network with the rule as mentioned above

consisted of the following. In the �rst phase (which we call the \prepro-

gramming phase") the network was trained on the rule alone. For this, the

heart scans of the training samples were used as input, while the diagnosis

(pathological or not) as calculated by the rule applied to this input was used

as target for the generalized delta rule. After training the following values

were computed for comparsion.

� the percentage of cases of the whole data set that the rule classi�ed

correctly (as compared to the reference method)|value a.

� the percentage of cases for which the network trained this way cor-

rectly predicted the outcome of the rule|value b. This is some kind of
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indication how well the network implemented the rule.

� the percentage of cases of the whole data set the network classi�ed

correctly, as compared to the reference method|value c.

After that a second training phase was added (which we call the \re�ne-

ment phase"), in which the preprogrammed network was further trained on

the regular training samples (i.e. the previous set of heart scans as input,

and the diagnosis by the reference method as target). Again, the percentage

of cases (in the test set) which the re�ned network classi�ed correctly (com-

pared to the reference method) was calculated (value d).

Learning was continued until all cases of the training set were classi�ed

correctly, while using a threshold of 0.5 for decision (i.e. everything above

that threshold was interpreted as 1, everything below as 0). To calculate the

said prediction rates (values a through d) the same threshold of (0.5) was

used.

4.2 Diagnosing the Location of the CAD

To make the diagnosis more speci�c it is possible to distinguish between the

left and the right region of the heart. This distinction of a�ected vessels is a

more di�cult task even for the medical expert. This is why angiography was

used as reference method for this task. The network used two output units

for the right/left distinction of the physiological region. 23 examples were

used as a training set, 82 as the test set. Training the net on randomally

selected examples achieved prediction rates of 44 % after 50 epochs.

The network was trained using the following symbolic rule with respect

to physiological areas for the left/right-distinction.

If one scan value is below 60 or the washout rate is negative

then classify the case as pathological.

A set of numeric values referring to the corresponding position of a vessel in

the picture was tested on having one value below 60 or representing a nega-

tive washout rate. In Fig.1 prediction rates of the symbolic rule are compared

with the normally trained net, the network trained on the rule and with the
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1: Increase by Net-Rule

Symbolic rule

Regularly trained net

with symbolic rule

and refinement
After pretraining

After pretraining

2: Increase by Refinement

Location of CAD - Rule 1
100%

75%

50%

25%

0%
46%
(a) (c) (d)

44% 32% 50%

6%

Figure 1: Results of supporting rule 1 in a network trained to predict the

location of disease. The prediction rate of a regularly trained network is

compared to the rule itself (value a), the network trained by the rule (c),

and the re�ned network (d). For a description of the values see text.

additionally re�ned network. The di�erence in the prediction rate between

the symbolic rule alone (value a) and the network trained on the rule (value

c) is 29 %. Additional training with the original task increased the prediction

rate by another 4 % (value d). The rule itself was learned to 55 % (value b),

i.e. the network correctly implemented the rule with this percentage.

4.3 Support with a Relevant Concept

So far we have described the support of symbolic rules. As mentioned earlier

the support of concepts relevant for the given domain can also be used to

improve generalization. One idea about the heart-scan data is that there are

di�erences in the scans of men and women. Thus, a patient's sex was decided

to be a relevant concept with which the network should be supplied. Again,

two training phases were conducted. In this experiment the task for the net-

work consisted in predicting the disease without locating it. In the �rst phase

a net with two output units was trained on the male/female distinction. In

the second phase the output units were replaced by a single unit and the

resulting network was trained on the original task. Fig. 2 shows the results.

When taking the original threshold of 0.5, the percentage of correctly clas-

si�ed cases rose from 60 % to 73 % due to preprogramming with the concept.

8



60%

73%

100%

75%

50%

25%

0% threshold = 0.5

Support with a Concept - 1 (m/f)

Figure 2: Results from supporting the male/female-distinction as a relevant

concept. The prediction rate of a network that was pretrained on this dis-

tinction is compared to a regularly trained network. The results are shown

for two di�erent output thresholds, i.e. the criterion to interpret the output

as a binary value.

5 Discussion

The results show that applying the method of concept support consistently

improves the generalization performance of a multi-layer feedfoward network

trained on a classi�cation task, compared to reference tasks with the same

conditions but without support. It provides a feasible way of incorporating

existing symbolic knowledge about the task domain into the network learn-

ing. Very often the task for an application of this kind is to obtain a neural

network that generalizes as well as possible to novel cases, in order to make

use of it in practice (in clinical routines, in our case). Introducing knowledge

in the described way therefore proves a considerable advance toward achiev-

ing this task.

The two main e�ects of the method are that

� no alterations to the network architecture, or interpretation thereof, is

necessary for achieving the results.
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� the generalization increases after regular training on the data samples.

This phase can therefore indeed be seen as a re�nement of what was

given by the rule. In this sense, rule and distributed network comple-

ment each other optimally.

In the following we attempt to give a qualitative explanation of the ob-

served e�ects. A rule, by being symbolic and formulated by a human expert,

covers some of the \obvious

1

" features in the input that lead to a certain

diagnosis. At the same time the rule is reductionist in that it concentrates

on a perspicuous part of the input. A network only trained on samples can-

not easily pro�t from such obvious dependencies but has to extract them

from the presented patterns in a tedious and costly process. This is how the

rule can help the network by \telling" it what features in the input to turn to.

In our particular case, during the preprogramming phase the network has

to learn to classify as pathological only those cases that ful�ll the obvious

features in the input (such as \one value below 60"), therefore becoming

sensitive to them. At the same time, however, the network always works in

a holistic way in that it always considers all inputs during learning. So it is

capable of discovering correlations among the not-so-obvious features in the

input that also lead to the same diagnosis even in the absence of the obvious

feature. The rule might also supply information about cases that might not

be contained in the training set. The re�nement phase then adds cases which

are not covered by the rule or its fuzzy neighborhood, leading to a further

increase (value d).

This property of a rule does not seem speci�c to this particular appli-

cation but rather appears to be more generally the case for many problems

which lend themselves to neural network solutions. If knowledge exists for

such problems it mostly consists in a handful of heuristic rules (otherwise a

rule-based approach would appear more feasible). Those rules can help the

neural network approach in the described sense. In this way, even a single

rule or a few rules can be of use. It was not even realistic to expect much

more knowledge than that described in the previous section. Therefore, al-

though it cannot formally be proven at this point, the approach appears to

1

I.e. \easily" identi�able for the expert
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be viable for a great variety of practical applications. It is assumed that the

method extends to larger sets of rules also. At least it can be proven that

the method can never prevent the network from learning or make the overall

generalization rate worse.

The following additional interesting observations can be made

� The training time for the combined training (pre-training with rules or

concepts plus regular training with the sample data) was comparable

to the training time without concept support. The important result is

that it is not increased considerably.

� In any case, training times to improve results in the second phase tend

to be short. In other words, re�nement of the performance achieved

through learning the rule to higher levels based on the real-world ex-

amples is rather quick.

� The rules or concepts used during the support phase need not be

checked on their consistence, relevance, or completeness. Rules, even

only crude ones, or concepts that are in some sense relevant lead to

at least some improvement. Totally irrelevant rules at worst increase

training time, but usually cannot disturb the �nal results (in our case,

it was even improved slightly, probably for reasons of random matching

of the \nonsense rule"). As a result, any piece of knowledge, including

heuristics, can be helpful in improving the results.

� The usual search for an optimal training set, which usually plagues an

application with the above-mentioned goals (a good generalizer), can be

reduced considerably. The results have shown that concept support can

re�ne the performance even for training sets that are less representative

as needed for learning from scratch.

6 Conclusion

This paper has introduced a method for incorporating knowledge into a neu-

ral network during the coarse of training. By training the network on the

symbolic realization of the knowledge (rules or single concepts) this knowl-

edge is transformed into a distributed version, of which the network can
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make optimal use. The results of several experiments in a medical diagnosis

task have shown that the method consistently improves generalization perfor-

mance considerably above the levels reached by crude training from scratch.

Thus it has proven as a viable and useful method for combining symbolic

knowledge with subsymbolic techniques, which is an important general goal

in recent arti�cial intelligence endeavors.
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