
CLP(gRel): Explicit Manipulation of (ground)

Relational Dependencies in Logic Programming

Bernhard Pfahringer

(email: bernhard@ai.univie.ac.at)

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

Area: Automated Reasoning/Constraint Logic Programming

Category: Short Paper

Abstract

In this paper we introduce CLP(gRel), a kind of CLP language allowing for explicit manip-

ulation of relational dependencies between variables. It is a straight-forward generalization

of domain variables, a successful constraint propagation technique introduced by [5], Do-

main variables are the special case of arity one. Uni�cation is extended to handle variables

ranging over relations correctly (and e�ciently). Constraints expressed by variables rang-

ing over relations can be used to actively prune the search space by detecting combinations

of values that are bound to fail early (cf forward checking [5]). The bene�t of relations

is demonstrated in the context of a non-toy problem: diagnostic usage of the KARDIO

system, a qualitative simulation model of the electrical activity of the heart, is sped up

considerably.

1 Introduction

In this paper we show how domain variables, a successful constraint propagation technique

introduced by [5], can be generalized to capture relational dependencies of logical variables.

Uni�cation will be extended to handle variables ranging over relations correctly (and ef-

�ciently). Such constraints can be used to actively prune the search space by detecting

combinations of values that are bound to fail early (cf forward checking [5]). The bene�t

of relations will be demonstrated in the context of a non-toy problem. We are using the

KARDIO system [1], a qualitative simulation model of the electrical activity of the heart,

to exemplify our points. Given a state of the heart (some combination of arrhythmias) the

KARDIO model can be used to compute possible ECG patterns and vice versa. The design

of the model inuences e�ciency heavily : simulation (going from arrhythmias to ECG

patterns) is fast whereas diagnosis (going from ECG patterns to arrhythmias) is slow. By

use of CLP(gRel) the latter can be sped up without changing the structure of the model

considerably.

This paper is outlined as follows: Section 2 de�nes domain variables and CLP(gRel), an

instance of the general CLP scheme [9] able to handle (g)round (rel)ational dependencies

of variables. Section 3 gives a procedural semantics by means of meta-interpreter. Section

4 introduces the KARDIO model and reports on experimental results. Section 5 discusses

the results, compares our solution to other approaches and outlines further research.

2 Variables ranging over relations

Domain variables can be seen as a way of representing disjunction explicitly by means of

a data-structure as opposed to encoding disjunction implicitly in two or more clauses for

a predicate. So the following predicate

?- nonzero(X) :- X <= [under_60, between_60_100, over_100].

where we assume <=/2 to be an operator specifying the set of legal values for a variable,

can be explained to be a syntactic variant of:

nonzero(under_60).

nonzero(between_60_100).

nonzero(over_100).

The di�erence is that the former does not necessitate the creation of a choice point during

search for a prove and allows for explicit reasoning about the disjunction. Now the straight-

forward generalization discussed in this paper is to allow predicates of arbitrary arity to

be rewritten instead of only unary predicates. This will allow for representing a predicate

like:

gen_ect(quiet, no).

gen_ect(veb, uni).

1

with the following single clause:

gen_ect(VEF, Focus) :-

t(VEF, Focus) in [t(quiet, no), t(veb, uni)].

if we assume an operator in/2 which relates an arbitrary number of variables - represented

by a structure of the appropriate arity taking the variables as arguments - to the according

set of legal atomic

1

solutions for the variables. - represented as a list of structures of the

appropriate arity taking the values as arguments. So in our example the variables VEF and

Focus are constrained to the values of either quiet and no or veb and uni respectively.

The extended uni�cation algorithm (described below) will ensure that variable VEF is only

bound to either quiet or veb and will furthermore instantiate Focus accordingly, and vice

versa. Speaking in relational database terms, this list could be called the table of rows

expressing the relation gen ect with columns labeled VEF and Focus.

3 Extended Uni�cation: Procedural Semantics

Uni�cation has to be extended to handle variables constrained to a relation. In the following

we will call such variables r-variables. Uni�cation has to handle the three following cases:

� If a standard variable and a r-variable have to be uni�ed, the standard variable is

simply bound to the r-variable.

� If a constant value and a r-variable have to be uni�ed, we have to select those rows of

the list of legal solutions, that have this constant value as ith argument, if r-variable

is the ith variable. Depending on the number N of such rows found, uni�cation either

fails - N = 0 - or uni�cation binds the r-variable to the constant value and all other

variables of the disjunction to their according values - N = 1 - or uni�cation binds

all the r-variables to newly created r-variables be constrained to the new list of legal

solutions - N > 1.

� If two r-variables have to be uni�ed, the two lists of legal solutions will be joined.

Again, depending on the number N of resultant rows, uni�cation either fails - N = 0

-, or uni�cation will bind all the variables involved in the two disjunctions to constant

values - N = 1 -, or uni�cation binds all the involved r-variables to newly created

r-variables which are constrained to the join result.

This behavior of uni�cation can be modeled by the following meta-interpreter. This in-

terpreter is only capable of handling uni�cations of atomic values, standard variables and

r-variables. r-variables are represented by terms attr(Var, N-dis(AllVars,AllRows)),

meaning Var is attributed by N-dis(AllVars,AllRows), where N speci�es that Var is the

1

We assume legal values to be atoms or numbers throughout this paper, but results are valid for ground

terms, too. Note that both domain variables and CLP(gRel) are constrained to be syntactic variants of

ground unit clauses. Nonground terms will be a non-trivial extension, which will be discussed later.

2

Nth argument of the term AllVars representing all the variables involved in this disjunct,

and lastly AllRows is the list of all legal solutions.

unify(X, Y) :- var(X), !, X = Y.

unify(X, Y) :- var(Y), !, X = Y.

unify(attr(V1, N1-dis(Vars1,Rows1)),

attr(V2, N2-dis(Vars2,Rows2))) :-

!,

join(N1, N2, Rows1, Rows2, NewRows),

joinbind(NewRows, N1, Vars1, N2, Vars2).

unify(attr(V, N-dis(Vars,Rows)), Atom) :-

!,

select(Rows, N, Atom, NewRows),

selectbind(NewRows, N, Vars).

unify(Atom, attr(V, N-dis(Vars,Rows))) :-

!,

select(Rows, N, Atom, NewRows),

selectbind(NewRows, N, Vars).

unify(X, X).

Uni�cation being such a basic operation in a logic programming environment, it cannot

be delegated to a meta-interpreter when expecting reasonable e�ciency. Some experimen-

tal Prolog systems already support user-de�ned extensions to uni�cation either by means

of meta-structures [10], [7] or by attaching attributes to variables [8]. None is comparable

to an industrial-strength Prolog system. But fortunately we were able to use a modi�ed

version of Sicstus Prolog [2] for implementing our experiments. This version of Sicstus

Prolog allows for the speci�cation and management of attributed variables and uni�cation

therefore or for the speci�cation and management of meta-structures by means of an un-

derlying delay-mechanism thus extending builtin uni�cation.

2

The user can specify both

uni�cation of two attributed variables and of an attributed variable and an arbitrary term

by writing (Prolog-) clauses for two predicates metametaunify and metatermunify.

4 The KARDIO Model

The KARDIO expert system models the electrical activity of the heart in a qualitative

way. We will just briey sketch the model, an extensive description of KARDIO can be

found in [1]. Overly simpli�ed, the heart works electrically as follows: certain generators

supply electrical impulses which are in turn conducted and combined through speci�c

pathways. These resultant impulses allow the model to predict possible ECG patterns.

The current version of KARDIO relates 943 di�erent combinations of basic arrhythmias to

3096 di�erent ECG patterns yielding a total of 5240 arrhythmia-ECG pairs. Simulation is

very e�cient, whereas diagnosis is much slower.

2

Thanks to Christian Holzbaur for implementing this modi�cations

3

In the following we will report results of our experiments. We were using the 1) original

model, 2) a version using just domain variables,

3

and 3) CLP(gRel). The necessary changes

to the original model for experiment 2) were rather small - we just rede�ned the original

member predicate to make use of domain variables where appropriate. For experiment 3)

changes were a bit more involved; the complete model was semi-automatically transformed

to make use of r-variables wherever possible. One example of this transformation has

already been presented above - the gen ect predicate. Both transformations were veri�ed

by exhaustive computation of all solutions and comparison to the original model for missing

or extra arrhythmia-ECG pairs.

The following table shortly summarizes the results. It reports on the runtimes for

�nding either just one or all arrhythmias possibly explaining a given ECG. Numbers are

averaged over all 3096 di�erent ECGs. Runtime is the timemeasured in milliseconds/ECG,

and Speedup is the ratio of the runtimes:

Approach Runtime-One Speedup-One Runtime-All Speedup-All

1. Original 671 1.00 1080 1.00

2. Domains 176 4.02 282 2.82

3. CLP(gRel) 56 11.98 96 11.25

We see that although explicit handling of disjunctions involves some overhead in build-

ing up and manipulating appropriate data-structures representing the disjuncts, the achieved

considerable reduction in fruitless backtracking still leads to a overall speedup of an order

of magnitude for either �nding a single or for �nding all possible solutions.

5 Discussion and Further Research

The following is a comparison of our approach to other possible approaches. Except for

[4] we are not aware of any experiments similar to ours. Typically constraint propaga-

tion is used to compute some form of local consistency, be it node- or arc- or path-(of

some length)consistency [3] plus backtrack search in the reduced solution space. E.g. the

element predicate in combination with forward-checking as it is introduced in [6] essentially

ensures arc-consistency. Our approach results in global consistency for given variables and

is able to combine partial solutions dynamically thus interweaving backtrack search with

consistency checks. This approach is of course not a panacea for all kind of search problems.

It is successful for the KARDIO model exactly because there are only a few solutions (this

seems to prevent combinatorial explosion of the size of the intermediate structures rep-

resenting the possible disjuncts) and the interaction of the di�erent constraints/sub-goals

is to complex for �nding a good ordering (either statically or dynamically) exploitable by

chronological backtracking. As the table given in the previous section shows, CLP(gRel)

3

In an earlier paper we have reported on results implementing domain variables in standard Prolog

[11]; for the experiments reported in this paper we have used the above mentioned modi�ed Sicstus-Prolog

for a straight-forward implementation of domain variables by means of attributed variables

4

can sometimes even be used successfully if one is only interested in one single of all possible

solutions, but this is certainly not true in general. Thus e.g. the n-queens problem is de�-

nitely not a fruitful application area whereas e.g. scene-labeling (waltz-�ltering) probably

is.

We are currently investigating whether other internal representations of the disjuncts

can be managed more e�ciently. Furthermore we have already completed a prototype

implementation generalizing the ground value-tupels to arbitrary structures allowing for

variables and sub-goal calls. Right now this su�ers from a severe runtime penality due to

excessive copying and we are not sure, if there can be a remedy to this problem. On the

other hand this further generalization allows for an even more radical transformation of a

search problem to an explicit construction of the search space with no backtracking at all.

The transformed application programs additionally bear some resemblance to or-parallel

logic program languages, a relationship that has to be researched in more depth. We

are also searching for more declarative ways of specifying extended uni�cation involving

attributed variables which are themselves related to one or more other variables.

6 Acknowledgements

I am indebted to Igor Mozetic for providing the KARDIO model, to Christian Holzbaur

for providing the modi�ed Sicstus-Prolog, to both of them for discussions on the topic, and

especially to Robert Trappl for creating a very special working environment. This work

was supported by the Austrian Federal Ministry of Science and Research.

References

[1] Bratko I., Mozetic I., Lavrac N.: Kardio - A Study in Deep and Qualitative Knowledge

for Expert Systems, MIT Press, Cambridge, MA, 1989.

[2] Carlsson M., Widen J.: Sicstus Prolog Users Manual , Swedish Institute of Computer

Science, SICS/R-88/88007C, 1990.

[3] Guesgen H.W., Hertzberg J.: Some Fundamental Properties of Local Constraint Prop-

agation, Arti�cial Intelligence, 36(2)237-247, 1988.

[4] Freuder E.C.: Synthesizing Constraint Expressions, in Communications of the ACM ,

21(11), 1978.

[5] Hentenryck P.van, Dincbas M.: Domains in Logic Programming, in Proceedings of the

Fifth National Conference on Arti�cial Intelligence (AAAI-86), Morgan Kaufmann,

Los Altos, CA, 1986.

[6] Hentenryck P.van: Constraint Satisfaction in Logic Programming, MIT Press, Cam-

bridge, MA, 1989.

5

[7] Holzbaur C.: Speci�cation of Constraint Based Inference Mechanisms through Ex-

tended Uni�cation, Institut fuer Med.Kybernetik u. AI, Universitaet Wien, Disserta-

tion, 1990.

[8] Huitouze S.le: A new data structure for implementing extensions to Prolog, in De-

ransart P., Maluszunski J.(eds.), Programming Language Implementation and Logic

Programming, Springer, Heidelberg, 136-150, 1990.

[9] Ja�ar J., Michaylov S.: Methodology and Implementation of a CLP System, in Logic

Programming - Proceedings of the 4th International Conference - Volume 1 , MIT

Press, Cambridge, MA, 1987.

[10] Neumerkel U.: Extensible Uni�cation by Metastructures, Proc. META90, 1990.

[11] Pfahringer B.: Constraint Propagation in Qualitative Modeling: Domains Variables

Improve Diagnostic E�ciency, in Proceedings of the Eighth Conference on Arti�cial

Intelligence and Simulation of Behaviour (AISB91), Springer, London, UK, 1991.

6

