
Comparisons in NLIs:

Datenbank-DIALOG and the Relevance of

Habitability

Harald Trost

�

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz GmbH

Stuhlsatzenhausweg 3

D-6600 Saarbr�ucken, Germany

Wolfgang Heinz, Johannes Matiasek, Ernst Buchberger

�

Osterreichisches Forschungsinstitut f�ur Arti�cial Intelligence

Schottengasse 3

A-1010 Wien, Austria

Email: fharald,wolfgang,john,ernstg@ai-vie.uucp

Abstract

This paper describes certain aspects of Datenbank-DIALOG

1

, a German lan-

guage interface to relational databases developed at the Austrian Research Institute

for Arti�cial Intelligence. Besides giving a short overview of the system architec-

ture it emphasizes the issues of portability and habitability and how they are being

tackled in the design of Datenbank-DIALOG. To demonstrate how design strate-

gies support the development of a habitable system we take examples from the area

of comparisons and measures, both of which are important for many application

domains and nontrivial from a linguistic point of view.

Datenbank-DIALOG has been fully implemented and is accessible world-wide

via email coupled to a database containing information about all Austrian AI-projects.

�

�

Osterreichisches Forschungsinstitut f�ur Arti�cial Intelligence during the period of development of Da-

tenbank-DIALOG

1

The development of Datenbank-DIALOG was carried out jointly with \Software Management

GmbH", Vienna and has been sponsored by the Austrian Government within the \Mikroelektronik

F�orderungsprogramm, Schwerpunkt S7".

1

1 Introduction

Datenbank-DIALOG is a German language interface to relational databases. It enables

the casual user to enter questions in the form of relatively unrestricted German sentences.

These utterances are translated into SQL statements and passed on to the database man-

agement system (DBMS) which in turn provides the user with an answer. A �rst pro-

totype of Datenbank-DIALOG was developed at the Austrian Research Institute for

Arti�cial Intelligence from 1985 to 1988. Since then the system has been tested in di�erent

environments. As a result of continuing development, the performance of Datenbank-

DIALOG has improved considerably. Currently a large �eld test is taking place. Daten-

bank-DIALOG has been interfaced to a database containing information about Arti�cial

Intelligence research in Austria (cf. Trappl et al. (1991)). Questions to that system can be

sent by electronic mail (Email-address: aiforsch%ai-vie.uucp@relay.eu.net) and are

answered automatically.

In this paper we will emphasize those properties of Datenbank-DIALOG which are

crucial for smooth interaction, both with the system manager and the end-user. Accord-

ingly, the main points are portability and habitability. First, we will show how di�erent

aspects of portability have been given consideration in Datenbank-DIALOG. Then a

short overview of the architecture of Datenbank-DIALOG is given. Finally we will go

into the crucial issue of habitability, which is further exempli�ed by a detailed example

study on how comparisons and measures are dealt with in Datenbank-DIALOG.

2 Portability

Portability is an important aspect for every software system. With natural language inter-

faces there are many di�erent levels of portability. In this section we will have a look at

each of these levels in turn and show how they have been accounted for in Datenbank-

DIALOG.

� Hardware Portability: Datenbank-DIALOG is highly portable in this respect:

it has been ported to various types of computers, among them machines from DEC,

Nixdorf and Apollo. Hardware portability was secured by the development envi-

ronment chosen: Datenbank-DIALOG was developed in LISP

2

to enable rapid

prototyping. A cross compiler translates the code into standard FORTRAN IV. As

a result the system runs in practically every hardware environment with minimal

adaptation.

� Portability with respect to the DBMS:Datenbank-DIALOG translates Ger-

man language utterances into SQL queries. Since SQL can be considered to be the

de-facto standard query language for relational databases, the decision to use it as

2

actually a subset of INTERLISP

2

output language followed quite naturally. Although SQL is standardized to some

extent, versions di�er slightly for di�erent DBMSs. In order to make Datenbank-

DIALOG easily adaptable, the query generator has been separated into a module

of its own. That way adaptation to di�erent SQL dialects is easy.

The use of Datenbank-DIALOG with non-relational databases was not considered

because older types of DBMSs do not provide a
exible enough access to data. But

it is precisely this
exibility which is needed to make natural language access really

useful.

� Portability with respect to the domain: Domain knowledge encompasses all the

facts which are important for a certain application. It must be distinguished from

the way these data are actually represented in the database (the so-called database

model) on the one hand and the purely linguistic knowledge (the grammar) on the

other hand. In Datenbank-DIALOG domain knowledge is stored in a so-called

meaning lexicon, which maps lexical entries onto domain-level predicates and pro-

vides syntactic and semantic restrictions for their arguments. Two advantages result

from this intermediate level of representation: First, separating grammatical from

domain knowledge leads to equal linguistic coverage in di�erent applications, since

no changes to linguistic knowledge are required when modelling a new application.

Second, abstracting away from the particular database model allows for a linguisti-

cally oriented modelling of the domain, thus providing a smooth interaction between

linguistic and domain knowledge.

� Portability with respect to the data model: As mentioned above, Daten-

bank-DIALOG discriminates between the domain model and the database model.

The database model (as the name suggests) is strictly modelled according to the

database. There is an explicit translation step between representations in the domain

model (so-called caseframes) and representations in the database model (so-called

DB-caseframes). This translation step is done with the help of a translation table

which speci�es explicitly the mappings between the two models. This gives more

exibility with regard to linguistic coverage because the grammar component need

not take into account the database model where facts may be expressed in a way

very di�erent from the way they are expressed in German.

This separation makes it possible to use the same linguistic domain model for di�erent

databases. Only the translation table must be rewritten to conform to the respective

database model. Since the bulk of the work in adapting to a new domain lies in the

creation of the linguistic domain model (vocabulary, concept hierarchy, etc.) this

saves a lot of e�ort. It is also a prerequisite for providing users of Datenbank-

DIALOG with a ready-to-use core version.

� Portability across di�erent natural languages: As has already been stated,

Datenbank-DIALOG was speci�cally created for German. We did not seek porta-

bility between di�erent natural languages because we think that { with the current

3

state-of-the-art in computational linguistics { it is not possible to write a parame-

terizable grammar component. Instead, we concentrated on a linguistic core system

which handles a considerable subset of German in an e�cient way.

3 Architecture of Datenbank-DIALOG

Datenbank-DIALOG consists of four main components. At the scanner level, the natu-

ral language query is broken up into tokens and a pattern matching module handles input

following special formatting conventions such as dates (e.g. \15. 1. 1991", \91/01/15",

\15-JAN-91", \8:30pm" ...), amounts (\20,000", \20.000,{" ...), numerical data along with

a unit of measure (e.g. \2,54cm", \1.0in", \$20" ...), abbreviations (e.g. \Dr.", \Univ.-

Prof.", \PhD" ...), etc. Then a morphological analysis is performed, which is especially

important in languages like German, where many syntactic features (such as number, case,

tense etc.) are marked by in
ection. The resulting representation of the input query is

then presented to the parser which performs the syntactic and semantic analysis. German

solution
next

correction
spelling

next solution

next solution

spelling correction

Expression
SQL

Chart
Morph

Caseframe

Tokens

Chart

LF

DB-CF

Generator
Answer

Interpreter

Parser

Scanner

Caseframe Module

A T N

Answer Generator

DBMS

Query Generator
LF Generator

CF to DB-CF Translation

morphological analysis

reader & patterns

R

E

S

U

D
I
A
L
O
G

+
B
D

Query
NL

Answer

Figure 1: Architecture of Datenbank-DIALOG

is a language with fairly free word (i.e. constituent) order in clause-like phrase types (sen-

tences, APs), but �xed word order in other types of phrases (such as NPs, PPs). For that

reason we have elected to use two di�erent strategies for parsing: An augmented transition

4

network (ATN) grammar handles the phrases with �xed word order and a caseframe com-

ponent deals with free constituent order. These two components interact closely with each

other communicating by means of a chart (for details see Trost et al. (1988)). The parse

results in one or more (if there are ambiguities) caseframe(s) containing the representation

of the query at the domain level.

The interpretation of the query is performed in three stages. First, the mapping from

domain-level to database-level predicates is performed, resulting in a DB-Caseframe, then

a linearization step produces the Logical Form (LF) and �nally a syntactic transformation

leads to the interpretation in the form of an SQL query.

The answer is then given directly by the DBMS as the result of executing the SQL query.

In the case of ambiguities, the user is given the possibility of selecting the di�erent inter-

pretations suggested before the queries are executed.

4 Habitability

Experiments with NLIs indicate that the linguistic coverage of state-of-the-art systems is

adequate since savings in training time outweigh the problems encountered with queries

the system cannot handle. People usually adapt very well to grammatical restrictions in

the language they use (Hendler & Michaelis (1983)). What is very important though is

that the system perform in a way predictable by the user, i.e. that the system is habitable

(Krause (1982), p.15�). Users should be able to learn very fast which types of queries

are acceptable to the system. Otherwise they will either have to face a continuously high

rejection rate or|what is more likely, owing to the fact that humans adapt much better

than computers|they will formulate their queries in an unnecessarily simple and ine�cient

way (Tennant (1980)).

In the light of these facts, what are then useful restrictions in de�ning the accepted sublan-

guage? Some properties of natural languages seem to be so ubiquitous that humans cannot

do without them. Such properties are, for example, the use of anaphoric expressions (pro-

nouns) and elliptic constructions. Therefore, every NLI will need at least a basic capacity

to deal with them. Datenbank-DIALOG has been equipped with such a capability.

One obvious restriction concerns the vocabulary. Besides function words that have to

be present in any case, there will be no problems with restricting the vocabulary. More

critical are restrictions on word senses. If they are not clearly motivated by the domain

model there will be problems. Separating the domain model from the database model,a

factor which contributes in Datenbank-DIALOG to increased portability (see above),

also helps in this respect.

As stated above, clear syntactic restrictions|there are in fact relatively few in Daten-

bank-DIALOG|are readily accepted by the user. However, syntactic coverage cannot be

judged in isolation. Queries are accepted only if they are correctly interpreted syntactically,

semantically and pragmatically. While syntactic coverage depends solely on the parser

5

of the NLI, semantic and pragmatic coverage must be considered with respect to the

contents of the database to which the NLI connects. We will show the interaction of

syntax, semantics and pragmatics in an example study on the treatment of comparison in

the next chapter. But �rst, we should like to say a few more words about the grammar of

the system.

Unlike some other NLIs, Datenbank-DIALOG has a separate grammar component

which is completely domain-independent. The grammar was designed to make the accepted

sublanguage as consistent as possible. In order to tackle this goal, we tried to formulate the

grammar in a clean and concise way. Accordingly, much e�ort was undertaken to incor-

porate recent advances of linguistic theory in the development of the grammar component

for Datenbank-DIALOG, thus also facilitating implementation and maintenance.

Two examples for this strategy are the use of Generalized Quanti�ers Theory (Barwise

& Cooper (1981), Keenan & Stavi (1986)) for the representation of logical form and the

translation into SQL, and the implementation of a GB-type theory of verb second (Haider

(1985)) for a uniform treatment of di�erent clause types (main and subordinate).

Generalized Quanti�er Theory gives a general framework for the treatment of nonstandard

determiners (e.g. \seven", \between 2 and 10", \many") that includes the standard logical

quanti�ers \for all" and \exists" as special cases. The quanti�er is viewed as a combination

of the determiner and its restricting predicate. The use of the determiner as a relation

between two predicates is made explicit.

Using the results of Keenan & Stavi (1986) for natural language quanti�ers (e.g. conserva-

tivity) a formal correspondence between GQ-formulas (our means of representing the logical

form of a query) and SQL-statements (representing formulas over the relational calculus)

can be established and straightforwardly implemented. This gives us a sound theoretical

basis for semantic interpretation and SQL generation. As a result, all extensional natural

language determiners can be handled. Given the extensional nature of relational database

systems this treatment su�ces in a query system (cf. Heinz & Matiasek (1989) for details

of our solution).

A cumbersome problem for systems dealing with German is the verb-second phenomenon|

�nite verbs occur in second position in main clauses and in �nal position in subordinate

clauses.

(1) a) Wieviele Patienten werden von Dr. Haid behandelt?

(How many patients are treated by Doctor Haid?)

b) Sag mir, wieviele Patienten von Dr. Haid behandelt werden.

(Tell me how many patients are treated by Doctor Haid.)

Both utterances in (1) should get the same interpretation. To avoid writing completely

di�erent subgrammars for main and subordinate clauses ideas from GB-Theory have been

used for a uniform treatment.

In GB-theory verb second is considered to be the result of a movement from an underlying

6

�nal position in the verb cluster to clause initial complementizer (C) position (cf. Haider

(1985)). In constituent questions, the speci�er-position in front of C is �lled with the

wh-phrase, in yes/no-questions it remains empty. In subordinate clauses the C position is

�lled with a complementizer (e.g. ob (\whether") or the wh-phrase).

(2) a) [

CP

Wieviele Patienten [

C

werden]

i

von Dr. Haid behandelt t

i

]

(How many patients are treated by Doctor Haid?)

b) Sag mir [

CP

wieviele Patienten [von Dr. Haid behandelt werden]]

(Tell me how many patients are treated by Doctor Haid.)

c) [

CP

[

C

Werden]

i

von Dr. Haid mehr als 30 Patienten behandelt t

i

]

(Are more then 30 patients being treated by Doctor Haid?)

d) Sag mir [

CP

ob [von Dr. Haid mehr als 30 Patienten behandelt werden]]

(Tell me whether more then 30 patients are being treated by Doctor Haid.)

In the implementation ofDatenbank-DIALOGthis movement is interpreted as a relation

between the \moved" �nite verb and its trace. In the case of main clauses, V

fin

is added at

the end of the verb cluster (\moved back"), and now the same mechanisms (ATN-subnet

and Caseframe-principles) apply uniformly in V2 and verb-�nal sentences. Thus both

clause types are subject to the same syntactic and semantic constraints (which thus need

only be stated once) and give rise to the same interpretation.

5 Example Study: Treatment of Comparison

We will now have a closer look at the treatment of comparison and measurements in Da-

tenbank-DIALOG to demonstrate our e�orts to create a habitable system. A central

concern in querying databases is dealing with comparisons between various kinds of objects.

In linguistic terms comparison is mainly associated with gradable adjectives and adverbials.

5.1 Variation in expression

The means for expressing comparison vary widely. Consider (3):

(3) a) Welche

�

Arzte haben ein h�oheres Gehalt als 20.000,{ ?

(Which doctors have a salary higher than 20.000,{ ?)

b) Welche

�

Arzte verdienen mehr als 20.000,{ ?

(Which doctors earn more than 20.000,{ ?)

c) Gib mir alle

�

Arzte mit einem h�oheren Gehalt als 20.000,{ .

(Show all doctors with a salary higher than 20.000,{ .)

All the utterances in (3) should map onto the same database query, namely the SQL

statement given in (4):

7

(4) select ID, NAME

from DOCTOR

where SALARY > 20000;

This means that the interpretation of sentences (3a-c) should be the same. This is achieved

by using a compositional semantics and by separating the lexical item (word) from the

underlying semantic relation, which may be used with di�erent words. Thus in our example

we have the underlying predicate SALARY with two arguments describing the thematic roles

(deep cases) RECIPIENT and VALUE, both with the appropriate semantic restrictions:

3

(5) pred: SALARY

a1: RECIPIENT (sem-restr PERSON)

a2: VALUE (dimension MONEY)

The predicate SALARY shown in (5) is associated with di�erent words in the lexicon. Every

lexical entry gives the syntactic restrictions on the �llers of the arguments. Both the verb

verdienen (earn) and the noun Gehalt (salary) are mapped onto SALARY. The syntactic

information binds RECIPIENT to a nominative NP (in active contexts) in the case of the

verb and to a genitive NP or a PP with preposition von in the case of the noun.

(6) a) Wieviel verdient [

NP

nom

Dr. Haid] ?

(How much does Doctor Haid earn?)

b) Gib mir das Gehalt [

PP

von Dr. Haid]?

(Show me the salary of Doctor Haid?)

More problems arise when specifying the VALUE for SALARY:

(7) a) Welche

�

Arzte haben ein h�oheres Gehalt als 20.000,{ ?

(Which doctors have a higher salary than 20.000,{ ?)

b) Welche

�

Arzte haben ein Gehalt von mehr als 20.000,{ ?

(Which doctors have a salary of more than 20.000,{ ?)

c) Welche

�

Arzte haben mehr als 20.000,{ Gehalt ?

(Which doctors have more than 20.000,{ salary?)

d) Welche

�

Arzte verdienen mehr als 20.000,{ ?

(Which doctors earn more than 20.000,{ ?)

In (7a) the comparison consists of the comparative h�oheres, an adjective phrase which gives

the type of comparison, and the object it is compared to (i.e. the value) als 20.000,{. In

(7b-d) both are adjacent but are realized as distinct syntactic entities: a postnominal PP

modi�er in (7b), a complex determiner phrase in (7c), and an adverbial phrase in (7d).

3

domain level caseframes like (3) and subsequent examples are given in simpli�ed versions

8

All of these constructions map onto the same semantic representation, in our example

a relation (>), a value (20.000) along with a dimension and a unit (money in Austrian

Schillings), and a compared object. Therefore a uniform treatment is assured from a

semantic point of view. Note that because a unit is associated, comparisons with values

given in di�erent units (e.g. $ or DM) are possible. We will return to this aspect later

when discussing the relation between domain and database models.

5.2 Derived Comparison

Up to now we have assumed a constant value as given. But compare sentences (8a) and

(8b)

(8) a) Welche

�

Arzte verdienen mehr als 20.000,{ ?

(Which doctors earn more than 20.000,{ ?)

b) Welche

�

Arzte verdienen mehr als Dr. Haid?

(Which doctors earn more than Doctor Haid?)

In (8a) the value is speci�ed with the constant 20.000. The interpretation of this utterance

is given in (4). In contrast, in (8b) the value is speci�ed only implicitly by referring to the

salary of Doctor Haid. The resulting SQL query should be

4

(9) select ID, NAME

from DOCTOR

where SALARY > (select MAX (GEHALT)

from DOCTOR

where NAME = 'Haid');

Although (4) and (9) have a di�erent structure the user will hardly notice the fundamental

di�erence between query (8a) and (8b). For a habitable system it is therefore necessary to

provide solutions to both types of comparisons.

In Datenbank-DIALOG the di�erent interpretations are recognized by the semantic

type that is associated with the value of the phrase to be compared. If the value has the

correct dimension, it may safely be inserted as an argument into the comparison relation (in

our case \>"). Otherwise, Datenbank-DIALOG tries to construct a subquery giving a

value by using the dominating relation (in our example SALARY) and �tting the comparison

object into the \subject" slot of the attribute. In (9b) this results in a subquery equivalent

to

4

SQL requires the subquery to return an unique value for comparison with >, hence then MAX-function.

9

(10) Wieviel verdient Dr. Haid?

(How much does Doctor Haid earn?)

The resulting structure is processed in a manner analogous to the top-level query. As a

consequence, anaphora resolution may be applied to this structure enabling Datenbank-

DIALOG to give a correct interpretation|resulting in the correlated subquery (11b)

5

|for

(11a)

(11) a) Wer

i

verdient mehr als sein

i

Vorgesetzter?

(Who

i

earns more than his

i

superior?)

b) select A1.ID, A1.NAME

from DOCTOR A1

where A1.SALARY > (select MAX(A2.SALARY)

from DOCTOR A2

where A1.SUPERIOR = A2.ID);

5.3 Domain Model vs. Database Model

Domain predicates like SALARY need not uniquely determine the relation and attributes

of a corresponding predicate in the database. Datenbank-DIALOG therefore splits

the interpretation of an utterance into two stages: �rst, an interpretation in the domain

model (i.e. a caseframe) is given. Secondly, this caseframe is interpreted to yield an

interpretation in the database model (a DB-caseframe). The transformation step between

the two structures is performed with the use of a translation table. This approach enables

Datenbank-DIALOG to interpret super�cially similar queries in terms of quite di�erent

SQL queries.

Let us consider the following two structurally similar utterances:

(12) a) Welche

�

Arzte verdienen mehr als 20.000,{?

(Which doctors earn more than 20.000,{ ?)

b) Welche Schwestern verdienen mehr als 20.000,{?

(Which nurses earn more than 20.000,{ ?)

On the domain level this will lead to quite similar structures:

(13) a) pred: SALARY

a1: ?, (sem-restr DOCTOR)

a2: > 20000

b) pred: SALARY

a1: ?, (sem-restr NURSE)

a2: > 20000

Assume that our example database stores data about doctors and nurses in di�erent ta-

5

The attribute SUPERIOR shall contain the ID of the superior of the doctor.

10

bles. This would lead to an ambiguity in the translation of the domain predicate SALARY.

The translation table would contain two entries for SALARY with di�erent restrictions on

argument a1. Therefore utterances (12a) and (12b) would lead to SQL statements with

di�erent relations involved:

(14) a) select D.ID, D.NAME

from DOCTOR D, DOCTOR_SALARY DS

where D.ID = DS.ID and DS.SALARY > 20000;

b) select N.ID, N.NAME

from NURSE N, NURSE_SALARY NS

where N.ID = NS.ID and NS.SALARY > 20000;

Also, the salary need not be speci�ed in a single attribute in the database, a fact that

should not be of concern to the user. Such information may also be represented in the

translation table (separately for each relation). Let us assume that the nurses' salary

consists of a basic salary and a variable salary (contained in the attributes BASIC SALARY

and VAR SALARY of NURSE SALARY respectively). The interpretation for (12b) must then be

(15) select N.ID, N.NAME

from NURSE N, NURSE_SALARY NS

where N.ID = NS.ID and

(NS.BASIC_SALARY + NS.VAR_SALARY) > 20000;

This leads to another problem usually encountered in realistic applications af natural lan-

guage database interfaces. The user should not need to know about the actual encoding

of information. Consider:

(16) Wieviele Patienten behandelt Dr. Haid?

(How many patients does Dr. Haid treat?)

As an answer the user expects the number of patients which were treated by Doctor Haid.

In the domain level the query is represented as:

(17) pred: TREATMENT

a1: x, (sem-restr DOCTOR)

(modifier (pred: NAME

a1: x

a2: "Haid"))

a2: (? ; COUNT)

The necessary information can be realized in quite di�erent database models. Some of the

possibilities are given in (18):

11

(18)
Relation Attributes Comment

a)

DOCTOR ID identi�cation

NAME name

NR PATIENTS number of patients

b)

PERSON ID identi�cation

NAME name

STATUS doctor/nurse/patient

TREATMENT ID DOCTOR id of doctor

ID PATIENT id of patient

c)

DOCTOR ID id of doctor

NAME name of doctor

PATIENT ID id of patient

NAME name of patient

ID DOCTOR patient's doctor

Depending on the actual database model one gets of course quite di�erent SQL queries:

(19) a) select NR_PATIENTS

from DOCTOR

where NAME = 'Haid';

b) select COUNT (UNIQUE T.ID_PATIENT)

from PERSON P, TREATMENT T

where P.NAME = 'Haid' and

T.ID_DOCTOR = P.ID and

P.STATUS = 'DR';

c) select COUNT (UNIQUE C.ID)

from DOCTOR D, PATIENT C

where D.NAME = 'Haid' and

C.ID_DOCTOR = D.ID;

There is a fundamental di�erence between (19a) and (19b,c). Whereas in the database

model (18a) the attribute NR PATIENTS is contained in the database explicitly and can

be treated analogously to SALARY above, the other two database models contain this \at-

tribute" only implicitly. This means that the number of patients has to be computed (i.e.

counted) by the SQL query. To obtain these quite di�erent interpretations for (17), Da-

tenbank-DIALOG requires only a di�erent mapping of the (contents of the) a2-slot of

TREATMENT in the translation step between domain and database level.

A special case, where implicit attributes have to be made explicit in the database, occurs

with queries such as

12

(20) Wer behandelt mehr Patienten als Dr. Haid?

Who is treating more patients than Dr. Haid?

Since comparison of two subqueries is not possible within a single SQL query, the query

has to be split up into two parts. First, a temporary table has to be created containing the

relevant count-attribute together with information on the object bearing that attribute.

Secondly, the actual comparison can be made with the now explicit attribute. This results

in

6

(21) create table TEMP as

(select COUNT(UNIQUE P.ID) "ANZAHL", D.ID "ID", D.NAME "NAME"

from DOCTOR D, PATIENT P

where P.ID_DOCTOR = D.ID

group by D,ID, D.NAME) ;

select *

from TEMP T

where T.ANZAHL > (select MAX(COUNT(UNIQUE P.ID))

from DOCTOR D, PATIENT P

where D.NAME = 'Haid' and

P.ID_DOCTOR = D.ID);

5.4 Superlatives

Most of the problems encountered with comparatives also occur with superlatives. They

are dealt with in an analogous way. An interesting phenomenon which has no direct parallel

in comparative structures is shown in (22):

(22) Welcher Arzt, der in der Unfallambulanz arbeitet, verdient am meisten?

(Which doctor, who works in the casualty department, earns the most?)

There are at least two interpretations of utterance (22), i.e:

(23) a) Who has the highest salary among the doctors working in the casualty

department?

b) Who has the highest salary of all persons and is, by the way, a doctor

working in the casualty department?

Although interpretation (23b) can easily be derived by Datenbank-DIALOG using the

same formalism as for comparatives (copying the dominating relation) as in

7

6

for the database model given in (18c)

7

assuming an extended version of database model (18b)

13

(24) select P.ID, P.NAME

from PERSON P

where P.DEPT = 'CASUALTY' and

P.STATUS = 'DR' and

P.SALARY = (select MAX(P1.SALARY)

from PERSON P1);

in most circumstances (23a) is the most plausible interpretation and should be preferred.

To produce this reading, another kind of copying has to be performed: not only must the

dominating relation be copied but also the restrictions on the subject slot (i.e. on the

bearer of the attribute) have to be inherited. This results in

8

(25) select P.ID, P.NAME

from PERSON P

where P.DEPT = 'CASUALTY' and

P.STATUS = 'DR' and

P.SALARY = (select MAX(P1.SALARY)

from PERSON P1

where P1.DEPT = 'CASUALTY' and

P1.STATUS = 'DR');

This copying in Datenbank-DIALOG works on the caseframe representation, and thus

is able to handle restrictions resulting from di�erent syntactic constructions, such as:

(26) Welcher x verdient am meisten?

where restrictions on x may result from

a) the lexicon: Unfallambulanzarzt

\casualty department doctor"

b) adjective phrases: in der Unfallambulanz arbeitende Arzt

\in the casualty department working doctor"

c) prepositional phrases: Arzt aus der Unfallambulanz

\doctor from the casualty department"

d) noun phrases: Arzt der Unfallambulanz

\doctor of the (gen) casualty department"

e) relative clauses: Arzt, der in der Unfallambulanz arbeitet

\doctor, who works in the casualty department"

All these constructions end up as modi�cations in the caseframe due to the compositional

nature of our approach. Thus a uni�ed solution for inheritance of modi�ers in their various

forms is achieved.

8

Note that restrictions on the selected PERSON P (in the �rst part of the query) must not be omitted,

since persons from other departments or with other STATUS may accidentally have the same salary!

14

5.5 Dimensions and Units

A correct comparison is only possible if the values compared are of the same dimension and

share a unit of measure. Di�erences and incompatibilities may arise in di�erent places:

� From special formatting conventions (e.g. 20000, 20.000, 20.000,{,...) possibly com-

bined with a unit of measure (e.g. 0,3m, 30cm, 12,34in, $20, ...)

� In the NL expression, when the user speci�es a dimension and unit of measure ver-

batim (e.g. \10 Meter", \vor 3 Jahren" ...)

� In the encoding of the database, where comparable columns (e.g. DOCTOR.SALARY

and NURSE.SALARY) may have di�erent associated units of measure.

Datenbank-DIALOG solves this problem by de�ning a normalized form with a value

associated with a unit and associated transformation rules between measures of di�erent

units. The transformation rules operate on di�erent levels:

� at the scanner level: Patterns are de�ned that transform di�erent formats of numbers

to the corresponding numeric values and normalize abbreviations of units. At this

level \compound" numbers like dates are also normalized (see above).

� at the parser level: linguistic information is used to �ll the slots in the normalized

value frame.

� at the interpretation level: associated procedures are used to transform constant

values from one unit to another.

� at the database level: transformation functions of the query language are used to

perform conversions on variable data.

This enables Datenbank-DIALOG to give the correct interpretation for

(27) Welche Krankenschwester verdient genau so viel wie Dr. Haid ?

Which nurse has the same salary as Dr. Haid?

with the (admittedly pathological) database encoding mentioned above, assuming that

DOCTOR.SALARY is stored in dollars and NURSE.SALARY in cents.

(28) select N.ID, N.NAME

from NURSE N

where (N.SALARY / 100) in (select D.SALARY

from DOCTOR D

where D.NAME = 'Haid');

15

6 Summary

Two important desiderata for natural language interfaces are portability and habitability.

We have shown how these aspects have been accounted for in Datenbank-DIALOG, a

German language database interface. Portability is ensured for Datenbank-DIALOG at

a number of levels that are enumerated in detail and it is shown how they have in
uenced

the overall design of the system. The consequences of postulating habitability are discussed

and exempli�ed by a study of the treatment of comparison and measures that is tackled

in Datenbank-DIALOG in a way that

� gives a uniform interpretation to user queries of di�erent syntactic and morphological

appearance (equivalent, but syntactically di�erent queries get the same semantic

representation)

� enables users to enter data in the format and unit most convenient to them (format-

ting, unit conversion)

� removes the need for users to know about the database representations of the concepts

they use (domain concepts vs. database relations and attributes, implicit functions,

unit conversion)

� makes ambiguities explicit and incorporates presuppositions (relation and restriction

copying).

Datenbank-DIALOG is fully implemented. It is accessible world-wide via email coupled

to a database containing information about all Austrian AI-projects.

Acknowledgments

Financial support for the Austrian Research Institute for Arti�cial Intelligence is provided

by the Austrian Federal Ministry for Science and Research. We would like to thank Pro-

fessor Robert Trappl for his continuing support and Elizabeth Garner proofreading and

stylistic improvements.

References

Barwise, J. and R. Cooper (1981) `Generalized Quanti�ers and Natural Language', Lin-

guistics and Philosophy 4, 159-219

Haider, H. (1985) `Verb Second in German', in H. Haider and M. Prinzhorn (eds.) Verb

Second Phenomena in Germanic Languages, Foris, Dordrecht

16

Heinz, W. and J. Matiasek (1989) `Die Anwendung Generalisierter Quantoren in einem

nat�urlichsprachigen Datenbank-Interface', in J. Retti and K. Leidlmair (eds.) 5.

�

Oster-

reichische Arti�cial Intelligence Tagung, Springer, Berlin

Hendler, J.A. and P.R. Michaelis (1983) `The E�ects of Limited Grammar on Interactive

Natural Language', Proceedings of CHI'83: Human Factors in Comput. Systems, 190-

192, ACM, New York

Keenan, E.L. and J. Stavi (1986) `A Semantic Characterization of Natural Language De-

terminers', Linguistics and Philosophy 9, 253-326

Krause, J. (1982) Mensch-Maschine-Interaktion in nat�urlicher Sprache, Niemeyer, T�ubin-

gen

Tennant, H.R. (1980) `Evaluation of Natural Language Processors', University of Illinois,

Report T-103

Trappl, R., J. Matiasek and G. Helscher (1991) `Arti�cial Intelligence-Forschung in

�

Oster-

reich', K�unstliche Intelligenz 2/91, 78-82

Trost, H., E. Buchberger and W. Heinz (1988) `On the Interaction of Syntax and Seman-

tics in a Syntactically Guided Caseframe Parser', in Proceedings of the 12th COLING,

Budapest, 677-682

17

