
Model-Based Analogue Circuit

Diagnosis with CLP(<)

�

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

Franc Novak

Jozef Stefan Institute

Jamova 39, 61000 Ljubljana, Slovenia

Marina Santo-Zarnik

Iskra HIPOT

�

Sentjernej, Slovenia

Abstract

Model-based diagnosis is the activity of locating malfunctioning components of

a system solely on the basis of its structure and behavior. Diagnostic systems usu-

ally rely on qualitative models and reason by local constraint propagation methods.

However, there is a large class of applications where ATMS-like systems or pure logic

programs are unpractical since they are unable to solve simultaneous equations. In

particular, modeling real-valued system parameters with tolerances requires some

degree of numerical processing, and feedback loops in general cannot be resolved by

�

Appears in Proc. 4th Intl. GI Congress (W. Brauer, D. Hernandez, Eds.), pp. 343-353, M�unchen,

October 23-24, 1991, Springer-Verlag (IFB 291).

1

local constraint propagation methods. Examples of such systems are analogue cir-

cuits, e.g., ampli�ers or �lters. In the paper we describe the role of Constraint Logic

Programs over the domain of reals (CLP(<)) in representing both, qualitative and

numerical models. CLP(<) is a logic programming system extended with a solver for

systems of linear equations and inequalities over real-valued variables.

1 Introduction

Di�erent Computer Aided Engineering tools are available for electronic circuit and systems

design. CAE solutions to the digital design problem can be regarded as mature, while

analogue design still lacks su�cient support even in the early design phases. In digital

design, schematic capturing process and simulation with timing analysis are tightly coupled

to fault simulation and test vector generation. Once a designer has veri�ed the logic scheme

of a circuit and has completed logic simulation, a full description of a defect-free version

of the circuit together with an initial set of test vectors are available. Fault simulation

uses the description and systematically inserts defects (i.e., simulates faults) to check if the

given set of test vectors can detect the di�erence between the operation of the defect-free

and the simulated faulty circuit. Usually, the initial set of test vectors has to be upgraded

to reach the desirable fault coverage, typically close to 100%.

A similar approach in analogue design would face serious di�culties due to the fact

that fault modeling is still a controversial issue (Ohletz 1991). Besides catastrophic (hard)

faults which could be to some extend related to the popular digital stuck-at fault model,

the class of deviation (soft) faults, due to the parameters deviating from the nominal

values, must be considered (Duhamel & Rault 1979, Bandler & Salama 1985). As regards

fault simulation, in the worst case a complete transient simulation must be performed for

each fault. Fault simulation time for a given range of deviation faults may quickly reach

unacceptable limits (Ohletz 1991). Hence, fault simulation is relatively uncommon for

analogue circuits (Duhamel & Rault 1979).

This situation seems ideal for the application of an AI technique called model-based

diagnosis (e.g., Genesereth 1984, Davis 1984, de Kleer & Williams 1987, Reiter 1987).

In model-based approach one starts with a model of a real-world system which explicitly

represents just the structure and normal behavior of the system components. When the

system's actual behavior is di�erent from the expected behavior, the diagnostic problem

arises. The model is then used to identify faulty components and their internal states

which account for the observed behavior.

However, the applicability of model-based techniques is largely limited to academic

problems. In our view one of the major obstacles which prevented a wider application to

real-world problems is that models are usually restricted to qualitative (non-numeric) de-

scriptions, and to an ATMS-like local constraint propagation methods. General Diagnostic

Engine (GDE, de Kleer & Williams 1987), for example, is unable to solve simultaneous

2

equations, which makes it unpractical for a large class of applications.

In the paper we describe the role of Constraint Logic Programs over the domain of <eals

(CLP(<), Ja�ar et al. 1986, Cohen 1990) in representing and diagnosing a larger class of

models. CLP(<) is a logic programming system extended with a solver for systems of

linear equations and inequalities. It is well suited to model real-valued system parameters

with tolerances and feedback loops which in general cannot be resolved by local constraint

propagation methods.

In section 2 we give a brief overview of the CLP(<) system. In section 3 we show how

models of analogue circuits (operating under the AC conditions) can be concisely speci�ed

in CLP(<). The main advantage of our approach, in contrast to standard simulation

packages, is that the same model can be used for both, simulation and diagnosis. In

section 4 we concentrate on diagnosis of soft faults due to a single parameter value (e.g.,

a resistor or a capacitor) out of tolerances. The manufacturing technology of a speci�c

device under consideration makes internal probing di�cult and undesirable. Preliminary

results indicate that CLP(<) has a potential to become a basis for software tools used in

the design and testing of analogue circuits.

2 The CLP(<) system

The Constraint Logic Programming scheme (Ja�ar et al. 1986) provides a general frame-

work from which extensions of Prolog can be derived. The uni�cation mechanism, as used

in Prolog, is replaced by a more general operation | constraint satisfaction over speci�c

domains (Cohen 1990). An instance of the scheme, CLP(<), extends Prolog with inter-

preted arithmetic functions and a solver for systems of linear equations and inequalities

over the domain of <eals.

We illustrate the CLP(<) language by specifying addition and multiplication of complex

numbers. A complex number Z = Re+j*Im is represented by a pair c(Re,Im).

add(c(Re1,Im1), c(Re2,Im2), c(Re1+Re2, Im1+Im2)).

mult(c(Re1,Im1), c(Re2,Im2), c(Re1*Re2�Im1*Im2, Re1*Im2+Im1*Re2)).

The above program allows for queries involving not only addition and multiplication, but

subtraction and division of two complex numbers as well. For example:

 mult(c(1,2), c(3,4), Z).

Z = c(�5,10)

 mult(X, c(3,4), c(�5,10)).

X = c(1,2)

Answering the second query actually requires to solve the following system of equations:

3*Re1 � 4*Im1 = �5,

4*Re1 + 3*Im1 = 10.

3

which yields the solution Re1=1, Im1=2.

In our implementation of CLP(<) linear equations are kept in solved form. Variables

appearing in the equations are split into two disjoint sets: dependent variables and indepen-

dent variables. Dependent variables are expressed through terms containing independent

variables. When a new equation is to be combined with a system of equations in solved

form, all its dependent variables are replaced by their de�nitions which results in an ex-

pression over independent variables. An independent variable is selected then, and the

expression is solved for it. After the resulting de�nition has been back-substituted into the

equation system, the isolated variable can be added as a new dependent variable, and the

equation system is in solved form again. Inequalities are expressed in terms of independent

variables.

The satis�ability of a system of linear inequalities is decided by a version of the Shostak's

`Loop Residue' algorithm (Shostak 1981, Kraemer 1989). Each inequality is represented

as an edge in the inequality graph G. The algorithm only deals with loops in G. For each

loop, the residual inequality of the loop is computed and entered as a new edge into G. The

loop residue computation is iterated until no more loops can be created, or one of these

new edges is determined to correspond to an unsatis�able inequality. Each loop residue

computation essentially eliminates one variable | therefore an unsatis�able inequality will

eventually result in a ground inequality k < 0, where k is a positive constant. The basic

algorithm was extended to strict and nonstrict inequalities.

The ability to solve systems of linear inequalities enables simple computation with

intervals. Each interval is implemented as a conjunction of two inequalities which associate

an upper and a lower bound with a variable. Having the graph G to encode the set of

inequalities is particularly useful when one is interested in implied inequalities, i.e., in

current upper and lower bounds of a variable. Asking for implied inequalities is nothing but

the residual inequality computation along a path in G. In many cases one is interested in a

relation between a speci�c variable and zero, i.e., in interval bounds for the variable. The

algorithm computes the set of all paths from the variable to zero, which is a distinguished

node in G. Among many possible paths the one yielding the tightest bound is selected.

In order to account for tolerances in model parameters we allow constants in linear

expressions to be speci�ed by a pair i(Min, Max) which denotes a lower and an upper

bound. Take the following speci�cation of the behavior of a resistor:

resistor(R, V1, V2, I) V1�V2 = R*I.

Now consider two resistors in a series, with voltages of 12.5 and 10 Volts applied at the

ends (an example from McKeon & Wakeling 1990). Both resistances are within the range

i(1000, 2000)
. The question is: What is the voltage range at the node between the two

resistors? The query returns the following set of constraints:

 resistor(i(1000,2000), 12.5, V, I), resistor(i(1000,2000), V, 10, I).

12.5 � 1000*I + V,

2000*I + V � 12.5,

4

V � 10 + 1000*I,

10 + 2000*I � V,

I > 0

from which the interval bounds for the voltage 11.6667 � V, V � 10.8333 are deduced.

In contrast to our, symbolic approach, McKeon & Wakeling use an iterative, numeric

approach to compute the interval bounds.

Our implementation of CLP(<) is preferred over existing versions (Heintze et al. 1987a,

Ja�ar 1990) since it allows for the simultaneous use of solvers for di�erent domains in

a consistent framework. This suits well the computational demands that arise in the

context of hierarchical abstractions (Mozetic & Holzbaur 1991a). The numerical level

of the model can be formulated with CLP(<) for example, and successive abstractions

thereof typically utilize constraint propagation over �nite domains. The implementation

of the specialized solvers is based on user-de�nable extended uni�cation. As the solvers are

written in Prolog, they can easily be customized to speci�c demands. The choice of Prolog

as an implementation language for the equation solver for CLP(<) led to a reduction in

code size by an order of magnitude.

Beside the principal (software engineering) issues that motivated our implementation of

CLP(<), the availability and the quality of Sicstus Prolog (Carlsson & Widen 1990) some-

how aposteriori justi�ed the selection of Prolog as an implementation language. Sicstus

Prolog has a compiler which can produce native machine code and a garbage collector. The

basic mechanisms provided for the implementation of freeze/2 and dif/2 are very useful for

the implementation of extended uni�cation, the basis of our approach.

Our �rst CLP(<) implementation was based on the C-Prolog interpreter (Holzbaur

1990). For the performance comparison against the C implementations of CLP(<) this was

disadvantageous, as the uni�cation extensions, i.e., the CLP(<) solver, were interpreted

only. However, given the Sicstus compiler, the performance of our current Prolog CLP(<)

implementation is somewhere in-between the IBM (Ja�ar 1990) and the Monash (Heintze

et al. 1987a) implementations. A further improvement of our version of CLP(<), which did

not require any extra e�ort from our side, accrues from the increased numerical precision in

oating point operations in Sicstus (double precision). Since Sicstus also provides in�nite

precision integer arithmetics, the implementation of CLP(Q) (Q = rationals) is easy and

reasonably e�cient.

3 Modeling analogue circuits

Model-based reasoning about a system requires an explicit representation (a model) of the

system's components and their interconnections. Reasoning is typically based on theorem

proving if a model is represented by �rst-order logic (Genesereth 1984, Reiter 1987), or on

constraint propagation coupled with an ATMS (de Kleer & Williams 1987). Dague et al.

(1990) use an ATMS-like system, augmented with the ability to compute with intervals,

5

but unable to solve simultaneous equations, for the diagnosis of analogue circuits.

We represent models by logic programs, by CLP(B) (B = booleans) (Mozetic & Holzbaur

1991b), or by CLP(<), depending on the domain of application. The �rst application of

CLP(<) to the analysis of analogue circuits was reported by (Heintze et al. 1987b).

De�nition. A model of a system is a triple hSD, COMPS, OBSi where

1. SD, the system description, is a logic program with a distinguished top-level binary

predicate m(COMPS, OBS) which relates states of the system components to obser-

vations.

2. COMPS, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n is the

number of components, and variables S

i

denote states (e.g., normal or abnormal) of

components.

3. OBS, observations, is anm-tuple hP

1

; : : : ; P

i

; In

i+1

; : : : ; In

j

; Out

j+1

; : : : ; Out

m

i where

P are the model parameters, and In and Out denote inputs and outputs of the model,

respectively.

In a logic program, n-tuples are represented by terms of arity n. Variables start with

capitals and are implicitly universally quanti�ed in front of a clause, and constants start

with lower-case letters. In SD we refer to a distinguished constant ok to denote that the

state S

i

of the component i is normal.

We illustrate design and modeling of analogue circuits on a �lter example. Using

Micro-cap III (Spectrum), a standard electronic circuit simulation package, an active 5th

order low pass RC �lter has been designed (Figure 1). The �lter is actually composed of

two FDNR stages realized in thick �lm hybrid technology connected on a printed circuit

board. In order to simplify the example, we concentrate on a single �lter stage and ignore

parameter tolerances. In what follows we also omit the operational ampli�er model which

was taken from the Micro-cap III manual and instantiated with the data provided by the

manufacturer.

SD of the �lter stage model (Figure 1) consists of the following CLP(<) program.

COMPS is a seven-tuple comps(R1,: : : ,R5,C1,C2), where R

i

and C

i

denote states of re-

sistors and capacitors, respectively | we assume that the ampli�ers do not fail. OBS is

a triple obs(F,V1,V2), where F is a given frequency, and V1, V2 are input and output

voltages of the stage, respectively.

stage(comps(R1,R2,R3,R4,R5,C1,C2), obs(F,V1,V2))

W = 2*3.14159*F, Vgnd = c(0,0),

resistor(R1, 5513, V1, V2, Ir1), Ir1 = Ir2,

resistor(R2, 727, V2, V3, Ir2),

add(Ic1, Ia1, Ir2),

capacitor(C1, 10.0e-9, W, V3, V4, Ic1),

add(Ic1, Io2, Ir3),

6

d d

Q

Q

Q

�

�

�

Q

Q

Q

�

�

�

�

�

�

Q

Q

Q Q

Q

Q

�

�

�

V2V1

R4

R5

C2

R9

R10

C4

C1

R3

C3

R8 C5

R2 R7

R1 R6 R11

+

�

+

�

+

�

+

�

C6

VoutVin

Figure 1: A low pass �lter consisting of two structurally equivalent stages, and additional

resistor R11 and capacitors C5 and C6.

resistor(R3, 10000, V4, V5, Ir3),

add(Ir4, Ib, Ir3), add(Ib1, Ib2, Ib),

resistor(R4, 10000, V5, V6, Ir4),

add(Ir4, Io1, Ir5),

resistor(R5, 5693, V6, V7, Ir5),

add(Ic2, Ia2, Ir5),

capacitor(C2, 10.0e-9, W, V7, Vgnd, Ic2),

ampli�er(W, V3, V5, V6, Ia1, Ib1, Io1),

ampli�er(W, V7, V5, V4, Ia2, Ib2, Io2).

The model relates states of resistors and capacitors to the frequency and measurable volt-

ages. Since the �lter operates under the AC conditions, all the voltages and currents are

represented by complex numbers. Literals in the body of the clause represent model com-

ponents which enforce local constraints between voltages and currents (e.g., Ohm's law).

In nodes, Kircho�'s current law is enforced by the add/3 predicate. Shared variables rep-

resent connections between the components and enforce global constraints, e.g., Kircho�'s

law for voltages.

In addition to the structure of the model, behavior of its components must be de�ned.

Normal behavior of a component speci�es a relation between voltages and currents when

7

the component is in a state ok (e.g., for a capacitor, V 1 � V 2 = �

j

!C

� I):

resistor(ok, R, V1, V2, I)

add(DV, V2, V1),

mult(c(R,0), I, DV). capacitor(ok, C, W, V1, V2, I)

add(DV, V2, V1),

mult(c(0,W*C), DV, I).

For analogue components, it is relatively easy to specify the behavior in the case of

hard faults (e.g., open or shorted). However, there is an in�nite number of soft faults in

between, due to the possible shifts in parameter values. In order to capture them all, no

constraints between voltages and currents should be imposed by the fault model, i.e., a

weak fault model must be used:

resistor(ab(R), , V1, V2, I)

add(DV, V2, V1),

mult(c(R,), I, DV).

capacitor(ab(C), , W, V1, V2, I)

add(DV, V2, V1),

mult(c(,W*C), DV, I).

We denote an abnormal state of a component by a term ab(X) instead of a constant ab. The

idea is that a faulty resistor exhibits some unknown resistance R, and a faulty capacitor

some unknown capacitance C which can be computed from voltages and currents. This

can help in estimating relative likelihood of an individual component beeing faulty during

diagnosis, as described in the next section.

4 Analogue diagnosis

Assume that the design of the �lter stage has been proven to meet the desired speci�cation

and that a prototype series has been manufactured. The gain-frequency characteristics of

the designed stage is depicted in Figure 2 (top). The graph was obtained by simulating

the CLP(<) model, and results closely match the simulation results of the Micro-cap III

package. However, it should be noted that in practice the simulation results might be

quite di�erent from reality, and that construction of good simulation models of analogue

circuits cannot be taken for granted. Nevertheless, we will assume that for our purposes

the simulation model does match the reality.

During the fabrication process, thick �lm resistors R1, R2, R3, and R4 are adjusted to

nominal values within the expected tolerances. Resistor R5 is used for active laser trimming

to compensate for variations in other components values. In the process of adjusting R5,

possible hard faults are detected, hence only deviation faults in R1, R2, R3, R4 and C1,

C2 may pass undetected. The �lter stage is set to a chosen pole frequency by adjusting R5.

Now, let us assume that due to a drift or possible failures in laser trimming process, the

8

0 1 2 3 4 5 6 7 8 9 10

Frequency (kHz)

�80

�60

�40

�20

0

20

40

60

Gain (Db)

...................................
................

...........
.......
.......
.......
......
.......
.........
...
...
...
...
...
..
...
...
...
...
...
...
...
...
..
...
...
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..
.
.

.

.

.

.

..

.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
...
.
.
..
.
.
..
.
..
..
..
.
..
.
..
.
..
...
..
..
..
.
..
..
..
..
.
..
..
..
...
..
...
..
..
..
..
..
..
...
...
..
...
..
..
...
..
...
..
..
....
..
...
..
...
...
..
...
..
....
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.

.

.

.
.

.

.

.

.
.
.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

..
.

.

.

..

.
.
.

.

.

.

.

..

.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
..
..
..
.
..
..
.
..
...
..
...
..
..
...
..
...
..
..
....
....
...
....
...
....
...
......
......
.....
......
.....
.....
......
.....
........
........
........
........
........
....

0 1 2 3 4 5 6 7 8 9 10

�80

�60

�40

�20

0

20

40

60

Gain (Db)

...................................
...............

...........
.......
.......
.......
.......
.......
.......
....
...
..
...
...
...
...
..
...
...
...
...
...
..
...
...
....
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..
.
.
.

.

.
.
..
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
..
..
.
..
.
.
.
..
.
..
..
..
.
..
.
..
..
.
...
..
..
..
..
..
..
..
.
..
..
..
...
..
...
..
..
..
..
..
...
..
..
...
...
..
..
...
..
...
..
..
....
..
...
..
...
..
...
...
..
....
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.
..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

.

.

..
.
.

.

..
.
.
.
.
.

.
..
.
.
.
.
.
..
..
.
.
..
.
.
..
.
...
..
.
..
..
..
...
..
...
..
...
..
...
...
..
....
...
....
....
...
....
....
......
.....
......
......
.....
......
.....
......
........
........
.........
........
.........
.

.....
.....
....
..
..
..
...
...
.
.
.
..
.
.
.
..
.
.
..
.
.
.

.
.
.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.
.
..

.
.
.
.

.

.
..
.
.
.
.
.
.

.

.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..
..
.
.
..
.
.
.
..
.
.
....
..
..
..
...
..
..
..
...
..
....
....
.....
....
....
.....
.......
........
.......
.......
........
.......
.................

..................
.................

..................
.................

..
...

..
...

..

Figure 2: The gain-frequency graph of a normal �lter stage (top), and two examples of

faults (bottom). Pole and zero shifted to the left are due to a wrong capacitor (C1 = 100

nF instead of 10 nF), and cut o� peaks are due to a resistor out of tolerances (R5 = 5760

 instead of 5693
).

resistor R5 has achieved a value that deviates from the correct one. Let faulty R5 value

be 5760
 instead of the correct 5693
; assume also that other components have correct

nominal values (Figure 2, bottom).

Analogue testing can be regarded as a process of checking whether a given product

operates within acceptable margins for critical parameters (GO, NO-GO test). If a speci�-

cation is not met we try to localize faults. Fault location is motivated either by the cost of

rejecting and the possibility of repairing a board containing discrete analogue components,

or by identi�cation of a possible cause in order to prevent malfunctioning of the subsequent

series of products. In our particular case, imprecise laser trimming process may cause mal-

functioning of the whole series of products. Hence, it is neccessary to locate possible faults

in the very �rst few manufactured stages.

The stage production process makes internal probing di�cult and potentially destruc-

tive, therefore we rather avoid it. Instead, measurements are taken under di�erent testing

conditions, and a consistent hypothesis which explains most of the di�erences between

9

the expected and measured values is sought after. For diagnosis one can use a standard

simulation package. Based on the expert knowledge, a value is assigned to a suspected

component, the circuit operation is simulated, and results are compared to the measured

values. The process is repeated until the simulated values are close to the measured ones.

On the other hand, we can use the same CLP(<) model for both, simulation and

diagnosis. The simulation proceeds under the assumption that all model components are

ok. For a given frequency F , an input voltage V1 is applied to the model, and the amplitude

Vmax and Phase delay of the output voltage V2 are computed:

simulate(F, Vmax, Phase)

V1 = c(1,0),

stage(comps(ok,ok,ok,ok,ok,ok,ok), obs(F,V1,V2)),

polar coord(V2, Vmax, Phase).

Suppose that we measured Vmax and Phase delay at 7400 and 2800 Hz. The simulation

yields the following predicted values which di�er from the measured ones:

 simulate(7400, Vmax, Phase). % Measured Vmax = 0.00054, Phase = �145

Vmax = 0.00440081, Phase = �3.75498

 simulate(2800, Vmax, Phase). % Measured Vmax = 6.27, Phase = �180

Vmax = 4.8306, Phase = �179.894

For diagnosis, the same model is used just the other way around. Input and output

voltages, V1 and V2, are given and we are asking for the states of the model compo-

nents (presumably some will be abnormal) such that the consistency between the input

and output is restored. This e�ectively means that some local constraints, governing the

behavior of abnormal model components, are suspended. Here we also make a single fault

assumption, i.e., all but one component are ok:

diagnose(F, Vmax, Phase, Diag)

V1 = c(1,0),

complex coord(Vmax, Phase, V2),

single fault(Diag),

stage(Diag, obs(F,V1,V2)).

For the �rst measurement, we get the following seven alternative diagnoses:

 diagnose(7400, 0.00054, �145, comps(R1,R2,R3,R4,R5,C1,C2)).

R1 = ab(�46503.5), R2=ok, R3=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R2 = ab(700.32), R1=ok, R3=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R3 = ab(9647.06), R1=ok, R2=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R4 = ab(10365.8), R1=ok, R2=ok, R3=ok, R5=ok, C1=ok, C2=ok ;

R5 = ab(5759.79), R1=ok, R2=ok, R3=ok, R4=ok, C1=ok, C2=ok ;

C1 = ab(9.6334e-09), R1=ok, R2=ok, R3=ok, R4=ok, R5=ok, C2=ok ;

C2 = ab(9.65935e-09), R1=ok, R2=ok, R3=ok, R4=ok, R5=ok, C1=ok

A diagnosis consists of an assignment of states ok or ab(X) to all the components. In

10

addition, for an abnormal component, its predicted value X (resistance or capacitance) is

computed. The measured output voltage can be accounted for only if the faulty resistor

or capacitor actually assumes the predicted value. From the above diagnoses we can

immediately rule out R1 as a candidate of beeing faulty, since a resistor cannot have

negative resistance. In order to decide between the remaining alternatives we take another

measurement.

The seconds measurement yields the following diagnoses:

 diagnose(2800, 6.27, �180, comps(R1,R2,R3,R4,R5,C1,C2)).

R1 = ab(5296.07), R2=ok, R3=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R2 = ab(539.949), R1=ok, R3=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R3 = ab(9658.83), R1=ok, R2=ok, R4=ok, R5=ok, C1=ok, C2=ok ;

R4 = ab(10353.3), R1=ok, R2=ok, R3=ok, R5=ok, C1=ok, C2=ok ;

R5 = ab(5759.62), R1=ok, R2=ok, R3=ok, R4=ok, C1=ok, C2=ok ;

C1 = ab(9.65867e-09), R1=ok, R2=ok, R3=ok, R4=ok, R5=ok, C2=ok ;

C2 = ab(9.65894e-09), R1=ok, R2=ok, R3=ok, R4=ok, R5=ok, C1=ok

Now we make an assumption that faults are non-intermittent. A faulty component assumes

some value di�erent than nominal, but this value does not change during testing. This

means that predicted values should remain stable across several measurements. Conse-

quently, we can rule out R2 as a possible diagnosis since its predicted values considerably

vary.

Faulty Relative standard Predicted (mean) Nominal

component deviation (%) value (
,nF) value (
,nF)

R5 0.002 5760 5693

C2 0.003 9.66 10

R4 0.085 10360 10000

R3 0.086 9653 10000

C1 0.19 9.65 10

R2 18 620 727

R1 180 �20600 5513

Table 1: Relative ordering of components in decreasing likelihood of faults after two mea-

surements.

Due to the imprecision of measurements, even the predicted value of the component

known to be faulty slightly varies. We assume the standard Gaussian distribution of

predicted values of individual components, and calculate the mean and standard deviation

across several measurements. Table 1 gives a list of faulty components, ranked by the

relative standard deviation of their predicted values. R5 seems the most probable cause

of malfunctioning, but additional test measurements have to be taken to single it out. R2

11

and R1 can already be eliminated as possible causes with a high degree of con�dence.

In general, predicted values of faulty components are not constants but intervals. We

have to take into account the accuracy of measurements and tolerances of fault-free com-

ponents which leads to internal voltages and currents beeing within some interval ranges.

Their tightest bounds can be extracted only at the end of the model simulation, and from

them the predicted interval values of faulty components can be computed. This increases

the computational demands of the CLP(<) model interpreter, but the basic diagnostic

strategy remains the same.

5 Conclusion

In the paper we outlined �rst experiences with the use of CLP(<) for analogue circuits

testing. For a non-trivial circuit we re-created simulation results as produced by a dedicated

simulation package. The advantage of CLP(<) is that it is a general purpose programming

language, and that it tightly integrates numeric and symbolic computation. Models of

circuits can be speci�ed concisely, and used for both, simulation and diagnosis.

For a designer of analogue circuits, closing the gap between the simulation model and

the reality is important. More realistic models may require more sophisticated numerical

processing that current implementations of CLP(<), restricted to linear systems, provide.

However, our implementation of CLP(<) makes extensions easier, and allows for the inte-

gration of several specialized solvers within the same framework. We envision CLP(<) as a

potential basis for software tools which support rapid model speci�cation, experimentation

in the design process, and testing during the early manufacturing phases.

Acknowledgements

The �rst two authors are supported by the Austrian Federal Ministry of Science and

Research. They wish to thank Robert Trappl for making some of this work possible. The

last two authors acknowledge the support of the Slovene Research Council.

References

Bandler, J.W., Salama, A.E. (1985). Fault diagnosis of analog circuits. Proc. IEEE 73

(8), pp. 1279-1826.

Carlsson, M., Widen, J. (1990). Sicstus Prolog user's manual, SICS/R-88/88007C, Swedish

Institute of Computer Science, Kista, Sweden.

12

Cohen, J. (1990). Constraint logic programming languages. Communications of the ACM

33 (7), pp. 52-68.

Dague, P., Deves, P., Luciani, P., Taillibert, P. (1990). Analog systems diagnosis. Proc.

9th ECAI, pp. 173-178, Stockholm.

Davis, R. (1984). Diagnostic reasoning based on structure and behaviour. Arti�cial Intel-

ligence 24, pp. 347-410.

de Kleer, J., Williams, B.C. (1987). Diagnosing multiple faults. Arti�cial Intelligence 32,

pp. 97-130.

Duhamel, P., Rault, J.C. (1979). Automatic test generation techniques for analog circuits

and systems: a review. IEEE Trans. on Circuits and Systems CAS-26 (7), pp. 411-440.

Genesereth, M.R. (1984). The use of design descriptions in automated diagnosis. Arti�cial

Intelligence 24, pp. 411-436.

Heintze, N., Ja�ar, J., Michaylov, S., Stuckey, P., Yap, R. (1987a). The CLP(<) program-

mer's manual. Dept. of Computer Science, Monash University, Australia.

Heintze, N., Michaylov, S., Stuckey, P. (1987b). CLP(<) and some electrical engineering

problems. Proc. 4th Intl. Conference on Logic Programming, pp. 675-703, Melbourne,

Australia, The MIT Press.

Holzbaur, C. (1990). Speci�cation of constraint based inference mechanisms through ex-

tended uni�cation. Ph.D. Thesis, Vienna University of Technology, Austria.

Ja�ar, J. (1990). CLP(<) version 1.0 reference manual. IBM Research Division, T.J.

Watson Research Center, Yorktown Heights, NY.

Ja�ar, J., Lassez, J.-L., Mahler, J. (1986). A logic programming language scheme. In D.

de Groot, G. Linstrom (eds.), Logic Programming: Functions, Relations, and Equations,

Prentice-Hall, Englewood Cli�s, NJ.

Kraemer, F.-J. (1989). A decision procedure for Presburger arithmetic with functions and

equality. SEKI working paper SWP-89-4, FB Informatik, University of Kaiserslautern,

Germany.

McKeon A., Wakeling, A. (1990). Model-based analogue circuit fault diagnosis. Proc.

TEST'90, pp. 1-14, London.

Mozetic, I., Holzbaur, C. (1991a). Integrating qualitative and numerical models within

Constraint Logic Programming. Proc. 1991 Intl. Logic Programming Symposium, ILPS-

91, San Diego, MIT Press.

Mozetic, I., Holzbaur, C. (1991b). Controlling the complexity in model-based diagnosis.

13

Report TR-91-3, Austrian Research Institute for Arti�cial Intelligence, Vienna, Austria.

Ohletz, M.J. (1991). Hybrid built-in self test for mixed analogue/digital integrated circuits.

Proc. 2nd European Test Conf. TEST'91, pp. 307-316, Munich.

Reiter, R. (1987). A theory of diagnosis from �rst principles. Arti�cial Intelligence 32, pp.

57-95.

Shostak, R. (1981). Deciding linear inequalities by computing loop residues. Journal of

the ACM 28 (4), pp. 769-779.

Spectrum. Micro-cap III electronic circuit analysis program instruction manual. Spectrum

Software, 1021 S. Wolfe Road, Sunnyvale, CA 94086.

14

