
Constraintpropagation in Qualitative

Modelling: Domain Variables Improve

Diagnostic E�ciency

Bernhard Pfahringer

(email: bernhard@ai-vie.uucp)

Department of Medical Cybernetics and AI

University of Vienna, and

Austrian Research Institute for Arti�cial Intelligence

Freyung 6, A-1010 Vienna, Austria

September, 1990

Abstract

This paper shows how a speci�c constraint propagation technique

- namely domain variables - can speed up qualitative diagnosis con-

siderably. We are using the KARDIO system, a qualitative simulation

model of the electrical activity of the heart, to exemplify our points.

Furthermore we describe how the domain handling mechanism itself

can be implemented in PROLOG e�ciently. For a class of applica-

tions, where the constraint solver only performs a minor part of the

computation our approach is comparable to or better than specialised

constraint logic programming systems with regard to overall runtime.

Additionally we gain the bene�t of being able to specify all of the

system in a single language.

Keywords: Constraint Propagation, Uni�cation, Qualitative Modelling,

Implementation.

1

1 Introduction

This paper shows how a speci�c constraint propagation technique - namely

domain variables [1] - can speed up qualitative diagnosis considerably. We

are using the KARDIO system [2], a qualitative simulation model of the

electrical activity of the heart, to exemplify our points. Given a state of

the heart (some combination of arrhythmias) the KARDIO model can be

used to compute possible ECG patterns and vice versa. The design of the

model in
uences e�ciency heavily : simulation (going from arrhythmias

to ECG patterns) is fast whereas diagnosis (going from ECG patterns to

arrhythmias) is slow. By introducing domain variables the latter can be

sped up without changing the structure of the model. Furthermore we will

show how to implement all constraint handling in PROLOG itself with

good results regarding absolute runtimes.

This paper is outlined as follows: Section 2 introduces the KARDIO

model. Section 3 de�nes domain variables. In section 4 we �rst show a

(naive) implementation in standard PROLOG and then introduce some

improvements. Section 5 discusses the results and compares our solution

to other approaches.

2 The KARDIO Model

The KARDIO expert system models the electrical activity of the heart in a

qualitative way. We will just brie
y sketch the model, an extensive descrip-

tion of KARDIO can be found in [2]. Overly simpli�ed, the heart works

electrically as follows: certain generators supply electrical impulses which

are in turn conducted and combined through speci�c pathways. These

resultant impulses allow the model to predict possible ECG patterns.

The current version of KARDIO relates 943 di�erent combinations of

basic arrhythmias to 3096 di�erent ECG patterns yielding a total of 5240

arrhythmia-ECG pairs. Simulation is very e�cient: running on an Apollo

DN 3000 using compiled QUINTUS PROLOG computing all possible ECGs

for a given arrhythmia takes 0.024 seconds on the average. Diagnosis is

much slower: computing all possible arrhythmias for a given ECG takes 8.6

seconds on the average. In the following we show how to improve diagnos-

2

tic e�ciency by introducing and combining several constraint propagation

techniques.

3 Domain Variables

In this section we brie
y introduce Domain Variables, a more thorough

discussion can be found in [1]. The main idea is simple. Sometimes it is

known in advance that a certain variable in a clause should only be bound

to one of several possible values. Using standard PROLOG there are just

two ways of specifying such knowledge. Either correctness can be tested

after the variable has received a value or the set of legal values can be

enumerated via backtracking. Both solutions can lead to combinatorial

explosion in involved computations. Domain variables allow the variable to

be explicitly augmented with the set of legal values, its domain. Of course,

uni�cation has to be extended to handle such augmented variables. In the

following we restrict ourselves to domains consisting solely of atomic values.

Furthermore assume that domain variables are represented via a term:

domain(FutureValue, LegalValues)

Uni�cation has to properly handle three di�erent cases: (1) Unifying a

domain variable with a standard variable simply succeeds in binding the

standard variable to the domain variable. (2) Uni�cation of a domain

variable with an atomic value succeeds with the variable bound to the

value, i� the value is legal. (3) The interesting case is unifying two domain

variables: both domains have to be intersected to yield the new restricted

domain. If the resultant domain contains just one value, the variable can be

bound directly to this value. Lastly, if the intersection is empty, uni�cation

will simply fail.

Some (experimental) PROLOG systems already support either domains

directly [3], whereas others (like Metaprolog [4]) allow for user-de�ned ex-

tensions of the uni�cation algorithm. The latter was available to us, so some

test-runs were performed. As the latest version of the KARDIO model was

written with domains in mind [5], porting to Metaprolog turned out to

be rather simple. Extension of uni�cation for domains can be de�ned as

follows in Metaprolog:

3

:- metafunctor(domain/2).

metatermunify(domain(X,Values), X) :- member(X, Values).

metametaunify(domain(X,V1), domain(X,V2)) :-

intersection(V1, V2, V3),

new_domain(V3, X).

new_domain([SingleValue], SingleValue) :- !.

new_domain([X|L], domain(_,[X|L])).

First domain/2 is declared to be a special functor with regard to uni�-

cation, next unifying a domain variable with a term and unifying two do-

main variables is speci�ed by appropriate clauses for metatermunify/2 and

metametaunify/2. Uni�cation of standard variables with domain variables

is handled by the Metaprolog kernel itself. Note that uni�cation of domain

variables can result in chains of domain variables. The KARDIO model re-

quired just one modi�cation to incorporate domain variables; the original

clauses of mem/2:

mem(X, [X|_]).

mem(X, [_|L]) :- mem(X,L).

were replaced by the following clause:

mem(X, L) :- X = domain(_,L).

The �rst result - 61 seconds/ECG - was rather discouraging, but should

not come as a surprise. Metaprolog is essentially a modi�ed version of the

CPROLOG interpreter, whereas the above mentioned average 8.6 seconds

were obtained from compiled code. A closer inspection of the way the model

is stated revealed that reversing the order of subgoals in the toplevel pred-

icate heart4 could possibly yield a speed up. For the original (compiled)

KARDIO model this hope fails, 22.5 seconds are needed per ECG pattern

(see chapter 3.1.4 of [2] for an explanation), but with the advantage of (in-

terpreted) domains to reduce unnecessary backtracking e�orts, e�ciency is

improved to 12.1 seconds/ECG.

4

The bene�t of using domains can also be seen clearly from the total

number of subgoal calls (summed up for all 3096 ECG patterns), which is

reduced by a bit more than one order of magnitude, from 69 millions down

to 4.7 millions. But still absolute runtime is larger for running diagnosis

interpreted with domains (12.1 seconds) than running diagnosis compiled

without domains (8.6 seconds).

4 Implementing Domain Variables in vanilla

PROLOG

The standard way of adding to PROLOG extensions which are themselves

implemented in PROLOG is building a meta-interpreter. This technique

could of course be used to extend uni�cation by domain variables. But as

uni�cation is such a basic operation for a logic programming language, run-

time would increase intolerably. Nonetheless we can partially evaluate the

application of meta-interpreter to the KARDIO model. To cope with the

overwhelming increase in source code size, we have identi�ed three common

call patterns that need explicit handling of uni�cation. Before introducing

the appropriate predicates to handle these cases, we �rst show the result of

partially evaluating a simple clause which is part of the KARDIO knowl-

edge base:

ret_reg_4(_, reg(Loc, _, Rate), reg(Loc, none, zero)) :-

mem(Rate, [zero, between_250_350, over_350]).

is transformed to:

ret_reg_4(_, reg(L1, _, Rate1), reg(L2, Rhythm, Rate2)) :-

Rhythm := none,

Rate1 := zero,

Rate2 <= [zero, between_250_350, over_350],

L1 :=: L2.

This example clause fortunately covers all three cases. Uni�cation of an

arbitrary argument (possibly a domain variable) with an atomic value is

5

handled by :=, uni�cation of an arbitrary argument with a list of possi-

ble legal values is handled by <=, and lastly, uni�cation of two arbitrary

arguments is handled by :=:.

The predicate :=/2 is de�ned as follows:

V := Atom :-

deref(V, Vd),

(var(Vd) ->

Vd = Atom

;

atomic(Vd) ->

Vd = Atom

;

Vd = domain(Atom, Values),

memberchk(Atom, Values)

).

First, the arbitrary term V is dereferenced, as it could be the starting point

of a chain of domain variables. Next, dispatching takes place according to

the type of the derefenced value: an unbound variable will get bound to

Atom, an atom will be tested for equality, and a domain variable will get

bound in the case when membership-testing succeeds.

Derefencing is done by the predicate deref/2, which is de�ned as fol-

lows:

deref(X, Value) :-

nonvar(X), X = domain(Link, _), nonvar(Link),

!,

deref(Link, Value).

deref(Value, Value).

The �rst clause detects bound domain variables and dereferences them

recursively. The second clause catches all other cases.

The above mentioned predicates <=/2 and :=:/2 are de�ned in a sim-

ilar straightforward fashion. With these de�nitions runtime is 7.2 sec-

onds/ECG, a neglegible improvement in e�ciency compared to 8.6 sec-

onds/ECG as mentioned in section two. This result can be explained as

6

follows: backtracking is considerably reduced, but only at the expense of a

lot of runtime spent for explicitly unifying terms. After identifying the cul-

prit, remedies can be taken. One well-known principle in computer science

is special-case coding of frequently encountered, but easily handled situa-

tions. Some statistics gathering revealed the following: most of the time

:=/2, <=/2, and :=:/2 are called with either unbound variables or atomic

values as arguments and not with domain variables. So these predicates

had to be modi�ed accordingly to take these special cases into account

early. As an example the new de�nition of :=/2 is given:

V := Atom :-

(var(V) ->

V = Atom

;

atomic(V) ->

V = Atom

;

deref(V, Vd),

(atomic(Vd) ->

Vd = Atom

;

Vd = domain(Atom,Values),

memberchk(Atom,Values)

)

).

The argument is �rst of all checked for both of the special cases and if nec-

essary dealt with appropriately, and only then dereferencing and standard

dispatching takes place. The other predicates were modi�ed accordingly.

This simple and small modi�cation yielded a speedup of a factor of two:

3.4 seconds/ECG.

The next step we undertook was kind of a
ow analysis done by hand

revealing the following: certain attributes of impulses are never instanti-

ated to or compared with domain variables, namely the rhythm of regular

impulses and the focus of ectopic impulses. The same turned out to be

true for most of the variables depicting states of di�erent parts of the heart.

Therefore uni�cations involving only such attributes or variables could be

7

handled safely and much faster by the builtin uni�cation mechanisms of the

underlying PROLOG system. Thus the model was once more automatically

transformed to a form as exempli�ed by our running example ret reg 4:

ret_reg_4(_, reg(Loc1, _, Rate1), reg(Loc2, none, Rate2)) :-

Rate1 := zero,

Rate2 <= [zero, between_250_350, over_350],

Loc1 :=: Loc2.

Uni�cation of Rhythm to none is now implicit in the head of the clause.

Roughly one third of the number of calls to :=/2, <=/2, and :=:/2 were

eliminated by this transformation, and the gained e�ciency mirrored this

�gure nicely: runtime per ECG pattern was now down to 2.3 seconds on

the average.

So far all the reported transformations were domain-independent, prin-

cipled ways of improving e�ciency. Yet some analysis of the KARDIO

model, especially of the toplevel structure, reveals one more source of un-

necessary backtracking. When starting from given ECG attributes to gen-

erate impulses non-deterministically, these impulses cause backtracking a

considerable number of times when fed into the predicates representing the

impulse generators of the heart. Chronological backtracking clearly looses

in such situations where choices made several subgoals earlier need to be

reconsidered. Simple solutions like static or dynamic reordering of subgoal

calls did not perform well, either. The former encountered to much inter-

dependencies whereas the latter encurred to much runtime cost. Still there

is a simple domain-speci�c solution to the basic problem. Backtracking

e�orts can be reduced by supplying minimum constraints for certain im-

pulses beforehand. To stay on principled grounds, all these four impulses

were selected, which are directly produced by the generators. For each im-

pulse all solutions were computed (which were few, usually between 5 and

10). Forming the least general generalization for each solution set yielded

constraints on the impulses like the following:

ImpSA = form(reg(sa_node, _,

domain(_,[zero,under_60,between_60_100,

between_100_250])),

ect(sa_node,no))

8

When incorporating these constraints on the four basic impulses, the gained

speedup is an additional factor of almost two: 1.26 seconds/ECG. The fol-

lowing table shortly summarizes the results. Runtime is the time needed

to �nd all arrhythmias measured in seconds/ECG, Calls is the total num-

ber of subgoal calls measured in millions, and Speedup is the ratio of the

runtimes:

Approach Runtime Calls Speedup

1. Reverse Order 22.54 69.0 1

2. 1 + Domains 7.20 4.7 3

3. 1 + Improved Domains 3.40 4.7 7

4. 3 + Flow Analysis 2.30 4.7 10

5. 4 + Constrained Impulses 1.26 2.5 18

5 Discussion

The following is a comparison of our approach to other possible approaches.

Most of the literature on constraint logic programming either argues for,

or implicitly assumes that special builtin predicates are necessary for yield-

ing appropriate performance. Therefore available CLP systems are usually

prototype PROLOG implementations equipped with extended builtin uni-

�cation mechanisms like [6] or with additional builtin predicates like [3].

The provided functionality is opaque to the user, meaning that the supplied

constraint solving method(s) can only be used as is, there is no chance of

inspecting, modifying or extending them. And there is a price to be paid:

usually execution of the standard PROLOG part of such specialized sys-

tems is inferior to commercially available PROLOG systems.

Our example clearly shows that at least one constraint solving technique

- domain variables - can be implemented in PROLOG itself and still yields

results comparable to or better than specialised systems. This should be

true not only for the KARDIO model, but also for a larger class of applica-

tions exhibiting similar properties. The relatively small domains and their

quick reduction to atomic values eliminates the need for special-purpose

builtin representation and handling of domains, like what is provided in

CHIP [3]. If mechanisms for extending uni�cation as proposed by [4] or

[7] �nd their way into commercial systems, the more elegant approach of

9

section 3 will possibly be more e�cient, too. But till then, our prepro-

cessing way of amalgating PROLOG and domain variables is better o� for

applications like the KARDIO system.

6 Acknowledgements

I am indebted to Igor Mozetic for providing the KARDIO model, to Chris-

tian Holzbaur for providing Metaprolog, to both of them for discussions

on the topic, and especially to Robert Trappl for creating a very special

working environment. This work was supported by the Austrian Federal

Ministry of Science and Research.

References

[1] Hentenryck P.van, Dincbas M.: Domains in Logic Programming, in

Proceedings of the Fifth National Conference on Arti�cial Intelligence

(AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986.

[2] Bratko I., Mozetic I., Lavrac N.: Kardio - A Study in Deep and Qualita-

tive Knowledge for Expert Systems, MIT Press, Cambridge, MA, 1989.

[3] Hentenryck P.van: Constraint Satisfaction in Logic Programming, MIT

Press, Cambridge, MA, 1989.

[4] Holzbaur C.: Realization of Forward Checking in Logic Pro-

gramming through Extended Uni�cation, TR-90-11, Oesterreichisches

Forschungsinstitut fuer Arti�cial Intelligence, Wien, 1990.

[5] Mozetic I.: Diagnostic E�ciency of Deep and Surface Knowledge in

KARDIO , in Arti�cial Intelligence in Medicine, 2(2), pp.67-83, 1990.

[6] Ja�ar J.: CLP(R) Version 1.0 Reference Manual , IBM Research Di-

vision, T.J.Watson Research Center, Yorktown Heights, N.Y. 10598,

1990.

[7] Neumerkel U.: Extensible Uni�cation by Metastructures, Proc.

META90, 1990.

10

