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Abstract

The paper discusses methodological achievements which have been incorporated

into second generation expert systems. The key ideas are (1) to incorporate more

principled knowledge about the domain into a knowledge based system and to reason

from these (�rst) principles, (2) to de�ne the conceptual model explicitly, and (3)

to do some abstraction. Abstraction is done on three levels: the factual knowledge

level, the level of inference steps, and the task level. The challenges of these methods

are discussed from the viewpoint of medical and technical applications.
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Introduction

The great rumor about expert systems started in the late 1970s. It was provoked by

systems of great promise for medical diagnostic support and for interpretation, diagnosis

and con�guration in natural sciences areas and in technical domains. It resulted in a

widespread application of expert system technology. The goal was to represent the skills of

experienced domain experts in a knowledge based system (KBS) and make this knowledge

available to less experienced users when solving daily problems. And the goal is still the

same today.

Capturing the experience of experts focussed on his/her ability to �nd a quick solution

to the problem. This resulted in building systems in a straightforward manner by repre-

senting associations between symptoms often seen and a diagnosis (e.g. for the diagnostic

problem). Despite the success in several areas of application, a list of problems showed up:

� While working well in the central area of expertise, the systems reach horrible conclu-

sions on their knowledge boundaries. There is no graceful degradation of performance

when coming to these boundaries, as we would expect from an expert. More seriously,

the systems are not able to recognize their own boundaries.

� Besides simple backward tracing of rule invocations there is no chance to provide

meaningful and user-tailored explanations. This would require to explain the under-

lying principles how the problem at hand is solved.

� Knowledge acquisition is the most pressing problem. In what is commonly called

the Feigenbaum bottleneck: there is one knowledge engineer (the bottleneck) who

�lters all the expert's knowledge. The usual situation can be envisioned by having

an expert telling the knowledge engineer some pieces of knowledge which come to

his mind during a rather unstructured interview. The knowledge engineer has only

a vague idea how these pieces of knowledge �t into the overall picture of the domain

represented. As a result we are facing the problems of bad formalization, incorrect

representation of knowledge, inconsistencies, and last but not least the open question

of completeness.

A common cause of these problems is the lack of any understanding what the expert

is really doing. The expert systems are representing surface knowledge only. The surface

knowledge of the expert is transformed directly into a rule-based or frame-based form of

representation. As a result, these systems do not have any idea about the underlying causes

of the problem, the inherent structural relations and the tasks the expert is performing

when solving the problem. They stay on the surface level.
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Toward abstract knowledge structures, problem solv-

ing methods, task speci�cations

In the early 1980s several people stressed the importance of going away from the direct

implementation of surface knowledge. Donald Michie pointed towards high-road programs

incorporating structural information in the form of causal representations [Michie 1981].

Peter Hart identi�ed several levels of representation, introducing the term deep knowledge.

He put emphasis on the combination of surface and deep level systems in order to get fast

performance and a good understanding of what is going on:

\In the near term, success of AI as viewed from the external world is most likely

to come from the exploitation of surface systems, but long-term successes will

come from continuing research on deep systems and from understanding the

relation between deep and surface systems" [Hart 1982, p.15].

Allan Newell got one step further by introducing the knowledge level:

\Knowledge is to be characterized entirely functionally, in terms of what it

does, not structurally, in terms of physical objects with particular properties

and relations. This still leaves open the requirement for a physical structure

for knowledge that can �ll the functional role. In fact, that key role is never

�lled directly. Instead, it is �lled only indirectly and approximately by symbol

systems at the next lower level" [Newell 1982, p.105].

After nearly ten years of research we are able to see three methodological achievements:

1. An explicit representation of the application domain by incorporation of structural

and functional knowledge into knowledge based systems. These systems are often

called second generation expert systems or deep expert systems [Steels 1985].

2. A thorough description of the inference steps performed during problem solving. An

abstract view of these inference steps gives us inference structures [Clancey 1985]

and problem solving methods [McDermott 1988].

3. A speci�cation of the tasks performed during problem solving. Whereas it is quite

clear that the tasks di�er from application to application, researchers try to �nd

abstract task descriptions [Chandrasekaran 1986, 1987, 1988].

These three achievements are not to be seen as separating items, but rather as methods

for knowledge-based systems operating on di�erent levels. The integration of these levels

can be seen in the KADS system [Hayward et al. 1987, Schreiber et al. 1988]. KADS is a

system distinguishing knowledge at four di�erent levels: (1) domain knowledge, describing

concepts and elements of the domain and their interrelations; (2) the inference structure,

describing inferences which can be made. The inference structure relates meta-classes.

Meta-classes are an abstracted view of the domain knowledge by describing the role of
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domain concepts; (3) the task knowledge speci�es how the goals of the application can be

achieved using the available inference steps; and (4) the strategic level, which should be able

to control the execution of tasks by following speci�c strategies depending on the situation

of the current case or problem. This strategic level is rather small when looking at existing

KBS, but it reminds us of the possibility to follow di�erent reasoning or problem-solving

strategies. This will be de�nitely of importance in broad domains for future KBS.

1

Leaving the strategic level aside for a moment, we get the componential framework

of the layers: domain model, problem-solving methods, and task speci�cation (see also

[Steels 1990]). All three contribute essentially to the depth of a knowledge-based system

by making explicit what are the knowledge structures of the domain, how do reasoning

methods operate on these structures and what are the tasks performed during the problem-

solving process.

2

Key Ideas

Several key ideas which form the basis of these methodological developments are sum-

marized in the following. References are with respect to applications in medical and in

technical domains. This should enable us to contrast the biological �eld versus the technical

�eld in the discussion.

Incorporating More Principled Knowledge About Domains

The �rst key idea is to incorporate more principled knowledge about the domain into the

KBS. This can be done both by building a detailed model of the domain, and by following

the principled ways of reasoning within the domain.

Representing more principled knowledge about the domain means (1) to bring a lot of

structure into the model, often using the special form of taxonomies; and (2) to relate this

structures. This relation can be done by linking the structures due to known causality. In

this case we enter the area of causal modeling. The inference process follows the pathways

of the causal net during problem solving. The causal net approach has its foundations

in early medical (AIM-)systems (CASNET [Weiss et al. 1978], CADUCEUS [Pople 1982],

ABEL [Patil et al. 1982]). It supports the trace of known pathophysiological relations. In

addition, it is a convenient way to model the basic constituents of the medical domain:

anatomy [Horn 1989], physiology, pathophysiology, etiology and nosology [Senyk et al.

1989], thus providing a basis for AIM-systems with the intent to cover broad areas of

medical expertise.

1

The `Oxford System of Medicine' - a decision support system designed for the use by General Practi-

tioners - operates on the strategic level. It is able to modify medical strategies. Generic decision-making

schemata are tailored to suit the needs of the tasks to be performed during a consultation [Glowinski et

al. 1989].

2

A thorough discussion of factors being related to the depth of expert systems can be found in [Bylander

1987, Chandrasekaran et al. 1987, Klein and Finin 1987, Keravnou and Washbrook 1989, Steels 1988,

Washbrook and Keravnou 1990].
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A second form of relation is the functional relation. It describes the function or behavior

of components by giving the function of its subcomponents. More and more detailed

description levels can be reached using functional decomposition. This is of interest both

for medical diagnosis and technical diagnosis [Steels 1989, Sticklen and Chandrasekaran

1989, Sticklen et al. 1989].

A third way of bringing more principled knowledge about the domain into the KBS is by

describing the physiological structure of the system. This structure is used to simulate the

behavior of the system. The simulation can be done either by using a model describing the

physiological mechanisms in the form of qualitative relations (e.g. electrophysiology of the

heart [Bratko et al. 1989, Hunter et al. 1989]) or by using a qualitative, constraint model

like the QSIM approach [Kuipers 1986], which is mainly based on di�erential equations.

Qualitative simulation is well suited to model ows (of liquids, pulses, information, etc.)

both in the medical domain [Ironi et al. 1989] and the technical domain [Haag 1988].

The hard problem is how to make use of the simulation model for a diagnostic system.

One possibility is to assume each component to be faulty which does not produce the

expected behavior. The second is to explicitly de�ne faults by introducing fault models.

Model-based diagnosis currently concentrates on �nding single or multiple device faults at

hardware troubleshooting [Davis 1984, de Kleer and Williams 1987, Reiter 1987, de Kleer

et al. 1990].

A detailed description of the structure and behavior of devices enables to use more

principled methods of reasoning. That's what [Davis 1983] called reasoning from �rst

principles. This works �ne for technical domains as the correct or faulty behavior of

devices is well de�ned. In the medical �eld `correct' behavior is often impossible to de�ne

exactly. The �rst principles approach is therefore limited to areas with well described

physiological behavior, like renal physiology [Kunz 1983].

De�ning the Conceptual Model Explicitly

The second key idea is the explicit de�nition of a conceptual model, which is clearly sepa-

rated from the implementation. The conceptual model speci�es the KBS at the knowledge

level. The KADS approach provides interpretation models for creating a high-level func-

tional speci�cation of the problem solving process in the form of a conceptual model. The

interpretation models are de�ned for many di�erent inference methods. Similarly, Chan-

drasekaran's generic tasks are conceptual entities, which de�ne a speci�c function at the

knowledge level.

The conceptual model is an abstraction of the problem solving behavior of the domain

experts. It is completely independant of the implementation of the KBS. In addition to the

conceptual model, the KADS approach de�nes a design model, which is on the same level

of abstraction as the conceptual model. It takes into account constraints from performance

requirements, appearance of the system (e.g. user interfaces), and integration requirements

with existing hardware and software systems. The design model is a speci�cation of the

KBS at a level, which [Steels 1990] calls the knowledge-use level. It should support direct

implementation of the AI system.

5



Abstraction

Abstraction has a central role in designing KBS. Corresponding to the levels of a KBS

previously mentioned, there are di�erent forms of abstraction:

� There is abstraction of factual knowledge. Knowledge is represented at di�erent levels

of abstraction supporting the inference steps to be performed at di�erent levels of

detail. An early example is the ABEL system [Patil 1981, Patil et al. 1982]. The

importance of abstraction steps for diagnosis was also recognized early in the CA-

DUCEUS system for internal medicine [Pople 1982] by introducing planning links

associating manifestations with abstract involvement structures. The use of abstrac-

tions during diagnosis helps to focus the reasoning process. The resulting improve-

ment of e�ciency when applying abstractions on model based diagnosis has been

shown by [Mozetic 1990]. But abstraction is not only of high importance to diag-

nosis. Planning has to look for ways to reuse solutions of one problem for a broad

range of new problems. This can be achieved by building abstract plans [Tenenberg

1986].

� From the viewpoint of reasoning steps, Pople's planning links form the basis of the

inference step `match abstract solution'. That is the second step in the three step

procedure: data abstraction { match abstract solution { re�nement of solution. This

procedure was found by [Clancey 1985] to be a fundamental abstract inference method

when building the NEOMYCIN system. It is called `heuristic classi�cation'. In the

meantime several other abstract inference methods and problem solving classes have

been identi�ed (e.g. cover-and di�erentiate, propose-and-revise, hierarchical design).

This is of high importance to knowledge acquisition. Using a repertoire of standard

problem solving methods it is possible to instantiate the templates of these methods

[Breuker et al. 1987, Marcus 1988], if the way an expert solves a problem matches

one of the abstract problem solving methods. The templates guide the knowledge

acquisition process by telling what to look for.

� Comparable to the idea of abstract inference methods is the idea of abstract task

structures: The generic task approach [Chandrasekaran 1986, 1987, 1988] has its focus

on tasks like diagnosis, classi�cation, or design. They are generic in the sense, that

they will be instantiated to real tasks when confronted with a speci�c application.

A generic task de�nes its function { the kind of problem it solves {, the knowledge

structure and organization, and the control strategy to accomplish the function of

the task. The focus is here on improvement of the knowledge acquisition process,

too. Tools are provided for instantiating generic tasks: CSRL [Bylander et al. 1983],

IDABLE [Sticklen 1983], DSPL [Brown and Chandrasekaran 1988]. If the application

problem to solve is associated correctly with a generic task or a combination of tasks,

the corresponding tool(s) will guide the knowledge acquisition process.
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What can we expect?

Let us review the methodological achievements under the aspects of the limitations of

�rst-generation expert systems:

� Robustness vs. performance: The use of structural domain knowledge and the use

of principled reasoning methods based on this �ne-grained domain knowledge is the

way to achieve robustness when solving uncommon problems. But deep models

are very slow performing knowledge structures when applying principled ways of

reasoning during problem solving. Their challenge is the ability to serve as a ground

for automatic construction of surface models by use of machine learning techniques

analyzing cases often seen. In combination we get a fast performing problem solver

when confronted with common cases, which can fall back to its robust reasoning

methods on complicated situations.

� Explanability: The knowledge about the tasks and the inference steps the KBS is

performing allows for explanations what is really going on. But not much focus has

been put to explanation issues by the research community. In addition, explanations

are expected to be user-tailored in the sense that they should take into account the

level of experience of the user, the facts he/she already knows, and his/her intentions.

This results in the need of an explicit user model. User modeling is a current area of

AI research, but it will take some time until user models will guide the explanation

(and reasoning) methods of expert systems in practice.

� Knowledge acquisition support: The support tools using the speci�cation of domain

models, problem solving classes and abstract task descriptions give us a chance to

build KBS in a more consistent and complete way by having a speci�cation of the

whole problem solving process. They provide a basis to keep the system expandable

and maintainable during the whole lifecycle. But (unfortunately) the knowledge en-

gineer is needed more than before. At moment direct knowledge transfer from the

expert to the KBS is possible only for �xed domains with speci�c forms of repre-

sentation (e.g., OPAL [Musen 1989]). Model-based knowledge acquisition [Shadbolt

and Wielinga 1990] will hopefully guide the complex knowledge acquisition process

in the form of an active and directive system in the future.

Of essential importance is the functional de�nition of the problem solver at a concep-

tual level. The speci�cation of KBS at the knowledge level as instantiation of abstract

knowledge structures may help us (1) to create understandable, expandable, and portable

systems. We are not captured by the implementation details which often override the con-

ceptual structures of the application. (2) It may give us new insights to domain models,

problem solving classes and task structures, thus, enhancing our repertoire of methods.

Comparing the biological versus the technical domain we recognize the inuence of

medical applications not only to �rst-generation expert systems, but also to model-based

architectures. The comparison of these two domains raises the question: Is there a unifying
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perspective? I.e., are there completely domain-independent architectures? What speaks

against is the fact that we have very di�erent domains (medical vs. technical): analog sys-

tems with tolerances and correcting feed-back loops vs. digital systems with 0-1 behavior

and errors e�ecting the whole system; partial models resulting from an incomplete under-

standing of biological processes vs. complete technical models which are easy to describe

formally; external (environmental) causes of errors vs. internal causes of errors (material

problems); many di�erent knowledge structures vs. complex reasoning processes operating

on few knowledge types. This may be the reason why medical applications tend to focus on

the extensive task of representing domain knowledge, whereas applications in the technical

domains concentrate on �nding e�cient inference methods.

What speaks in favor of the unifying perspective is the fact that many medical appli-

cations formed the basis for more abstract methodologies, which have been used lateron

in the technical domain: MYCIN ! EMYCIN, NEOMYCIN ! the inference method

`heuristic classi�cation', MDX/PATREC ! the generic task architecture. What seems

to be identifyable are the same problem-solving methods and abstract domain concepts

throughout very di�erent domains. That makes abstract modeling a worthwhile thing to

do. But at moment, we have only a very restricted view: (1) most systems have dealt with

the problem of diagnosis, (2) the domains of application have been very restricted, and (3)

we are at the early beginning of the usage of structure-based knowledge acquisition tools.

In conclusion, second-generation architectures are still in the research labs. They will

have a hard time to �nd the way to daily practice. But they o�er a lot of possibilities to

overcome the limitations of currently widespread used KBS. We have a lot to expect and

it seems very worthwhile to put e�orts into these model-based architectures.
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