
Extending

Explanation-Based Generalization

by Abstraction Operators

�

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

igor@ai-vie.uucp

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

christian@ai-vie.uucp

Abstract

We present two contributions to the explanation-based generalization techniques.

First, the operationality criterion is extended by abstraction operators. These allow

for the goal concept to be reformulated not only in terms of operational predicates,

but also allow to delete irrelevant arguments, and to collapse indistinguishable con-

stants. The abstraction algorithm is presented and illustrated by an example. Sec-

ond, the domain theory is not restricted to variables with �nite (discrete) domains,

but can deal with in�nite (e.g., real-valued) domains as well. The interpretation

�

Appears in Machine Learning | EWSL-91 (Y. Kodrato�, Ed.), Proc. European Working Session on

Learning, pp. 282-297, Porto, Portugal, March 6-8, 1991, Springer-Verlag (LNAI 482).

1

and abstraction are e�ectively handled through constraint logic programming mech-

anisms. In the paper we concentrate on the role of CLP(<) | a solver for systems

of linear equations and inequalities over reals.

1 Introduction

Explanation-based generalization (EBG) is a technique to formulate general concepts on

the basis of an individual example and a domain theory (Mitchell et al. 1986). The

domain theory is used to explain the training example, and the resulting explanation is

generalized and reformulated in operational terms. Speci�cally, the input to the EBG

algorithm consists of:

� Domain theory,

� Goal concept | concept to be learned,

� Training example | an instance of the goal concept,

� Operationality criterion | easily evaluable predicates from the domain theory in

terms of which the goal concept should be reformulated.

It has been shown (Van Harmelen & Bundy 1988) that in the context of logic program-

ming, EBG is essentially equivalent to partial evaluation. The domain theory is represented

by a logic program, and the explanation is a proof that the example logically follows from

the program. The goal concept is the partially evaluated program, i.e., it is reformulated

in terms of leaves of the proof tree which contain only operational predicates. Further, the

training example can be either ground, partially instantiated, or even omitted, since its

role is just to restrict the search for the proof. In the case that no example is provided,

the resulting goal concept is equivalent to the original one, but expressed just in terms of

operational predicates and therefore more e�cient for subsequent use.

In the paper we push further the idea of performing EBG by partial evaluation. In EBG

the operationality criterion refers just to predicates | procedure calls of non-operational

predicates are unfolded. We extend the criterion to abstraction operators which refer to all

parts of atomic formulae. For example, predicates can become operational by deleting some

arguments, or di�erent constants can be collapsed into singletons. More systematically, if

P is a domain theory represented by a logic program then it can be abstracted into P

0

in

the following ways:

2

� by unfolding non-operational predicates throughout P (like in EBG),

� by deleting some arguments of functions and predicates throughout P ,

In contrast to partial evaluation (without training example), the abstracted goal concept

and domain theory are no longer equivalent to the original ones, but are their logical

consequences, respectively (Figure 1). The equivalence is lost due to the arguments deletion

and many-to-one renaming. As a consequence, a non-theorem from the detailed space can

be abstracted into a theorem in the abstract space. Each theorem is abstracted into a

theorem, however. A speci�c type of abstractions with this property are so-called truthful or

TI-abstractions (theorem increasing, Giunchiglia & Walsh 1989). In general, an abstraction

is a partial and not a total mapping (Mozetic 1990a) since one wants to ignore irrelevant

features of the domain theory for the task at hand. Note also that in contrast to EBG and

partial evaluation, an abstraction might introduce a di�erent language into the abstract

space.

The abstracted domain theory can be used either to answer the queries more e�ciently

and less precisely, or in conjunction with the original domain theory as a falsity preserving

�lter. Abstractions turned out to be useful in reducing the search space in theorem proving

(Plaisted 1981, Giunchiglia & Walsh 1990), planning (Sacerdoti 1974, Korf 1987), and

model-based diagnosis (Gallanti et al. 1989, Mozetic 1990b, Mozetic & Holzbaur 1991).

Section 2 motivates the introduction of abstraction operators by an example. Given is

a domain theory for a numerical model of an inverter. In section 3 the three abstraction

operators which replace the operationality criterion are de�ned. The numerical model is

�rst abstracted to a qualitative model, and then to a binary-logic model of an inverter.

Section 4 describes the abstraction algorithm and its Prolog implementation. In section

5 constraint logic programming inference over real-valued variables is outlined and its

application is illustrated by the inverter example.

2 Motivating example: a model of an inverter

We represent a domain theory by a constraint logic program (CLP, Ja�ar & Michaylov

1987) which is a logic program extended by interpreted functions. A proper implementation

of a CLP scheme allows for an easy integration of specialized problem solvers into the logic

programming framework. For example, in Metaprolog (an extension of C-Prolog, Holzbaur

1990) specialized solvers communicate with the standard Prolog interpreter via extended

3

wffs’

wffs’

wffs

wffs

wffs

wffs

wffs

wffs

TH(P’)

TH(P’)

Abstract spaceDetailed space

total mapping
Abstraction as

partial mapping
Abstraction as

evaluation
Partial

EBG
example

of goal
concept

goal
concept

theory
domain
part of
relevant

TH(P)

TH(P)

TH(P)

TH(P)

domain
theory

Figure 1: Relation between EBG, partial evaluation, and abstractions. P and P

0

denote a

detailed and an abstract domain theory, respectively, and TH(P) is the set of well formed

formulae provable from P .

� by renaming constant, function, and predicate symbols throughout P (the renaming

is typically many-to-one).

4

semantic uni�cation and are implemented in Prolog themselves. So far, three solvers

have been implemented: constraint propagation over �nite domains by forward checking,

CLP(B) | a solver over boolean expressions, and CLP(<) | a solver for systems of linear

equations and inequalities over reals (Holzbaur 1990). In the paper we concentrate on the

role of CLP(<) in the interpretation and abstraction of a domain theory.

switch

power

Vin Iin 4700 Vb
Ic

Ve=0

Icc

Vcc=+5

470

Vout

Iout

Figure 2: A numerical, qualitative, and logical model of an inverter.

We illustrate the EBG algorithm, realized by partial evaluation and without a training

example, on a model of an inverter. The initial domain theory consists of a numericalmodel

of an inverter (predicate inv

n

), which is later simpli�ed into a qualitative (inv

q

), and �nally

into a logical model (inv

l

, Figure 2). The inverter is realized by an npn transistor and two

resistors. The description of an npn transistor is from Heinze, Michaylov & Stuckey (1987).

The transistor operates in three states: cuto�, saturated, and active. In digital circuits only

the cuto� and saturated states are of interest, and therefore the active state, interesting in

ampli�er circuits, is omitted. Vx and Ix denote the real-valued voltages and currents for

the base, collector and emmiter, respectively. Constants Beta, Vbe, and Vcesat are device

parameters.

Domain theory:

inv

n

(S, b(Vin,Iin), b(Vout,Iout))

switch

n

(S, Vin, Iin, Vout, Ic),

power

n

(Ic, Vout, Iout).

switch

n

(S, Vin, Iin, Vc, Ic)

Ve=0, Beta=100, Vbe=0.7, Vcesat=0.3,

resistor(Vin, Vb, Iin, 4700),

transistor(S, Beta, Vbe, Vcesat, Vb, Vc, Ve, Iin, Ic, Ie).

5

power

n

(Ic, Vout, Iout)

Vcc=5, Ic+Iout=Icc,

resistor(Vcc, Vout, Icc, 470),

0�Iout, Iout�0.006.

resistor(V1, V2, I, R) R>0, V1�V2=I*R.

transistor(cuto�, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie)

Vb<Ve+Vbe, Ib=0, Ic=0, Ie=0.

transistor(saturated, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie)

Vb=Ve+Vbe, Vc=Ve+Vcesat, Ib�0, Ic�0, Ie=Ic+Ib.

Goal concept: inv

n

(State, In, Out).

Operational predicates: =; <;�; >;�.

Partial evaluation of the goal concept unfolds procedure calls of non-operational pred-

icates, propagates constant values, and branches out conditionals. Using Metaprolog with

CLP(<), this yields the following operational de�nition of the inverter.

Reformulated goal concept (through partial evaluation):

inv

n

(cuto�, b(Vin,Iin), b(Vout,Iout))

Vin<0.7,

Iin=0,

Vout=�470*Iout+5,

Iout�0.006, Iout�0.

inv

n

(saturated, b(Vin,Iin), b(Vout,Iout))

Vin=4700*Iin+0.7,

Iin�0,

Vout=0.3,

Iout�0.006, Iout�0.

The reformulated de�nition of the inverter is structureless and refers just to easily

evaluable arithmetic operators. However, it is still unnecessarily detailed for a number of

tasks. For diagnosis, for example, it does not really matter if the voltage is 4.4 or 4.6, but

whether it is qualitatively high or low, and whether the transistor properly operates as a

switching device. If we specify the transistor state and currents as irrelevant arguments,

and voltages 0{0.7 and 2{5 as indistinguishable, we can derive the following alternative

reformulation of the domain theory.

Alternative reformulation (through abstractions):

6

inv

l

(low, high).

inv

l

(high, low).

In the following section we specify abstraction operators more precisely. We illustrate

their applicability by showing a two-step abstraction: a qualitative model of the inverter

is derived �rst, and then abstracted into the above logical model.

3 Abstraction operators

Underlying the formulation of abstractions is a typed logic program (Lloyd 1987). Types

provide a natural way of expressing the concept of a domain and are convenient for spec-

ifying abstraction operators in a compact form. We assume that variables and constants

have types such as � . Functions have types of the form �

1

� : : :� �

n

! � , and predicates

have types of the form �

1

� : : :� �

n

.

The following three abstraction operators replace and extend the EBG operationality

criterion. Since they do not change the structure of formulae but refer just to atoms they

de�ne a class of atomic abstractions (Giunchiglia & Walsh 1990). We use a binary predicate

h

�

to denote abstractions of constants and functions of range type � , and a binary predicate

h to denote predicate abstractions.

1. Collapsing constants.

Di�erent constants can be renamed into a single constant. For example, assume that

a

1

and a

2

are of type � , and that they are collapsed into a single constant a

0

:

h

�

(a

1

; a

0

): h

�

(a

2

; a

0

):

2. Function abstractions.

Functions can be renamed and irrelevant arguments deleted. For example, let f be

of type �

1

� : : :� �

n

! � , its �rst argument be deleted, and f be renamed to f

0

:

h

�

(f(X

1

;X

2

: : : ;X

n

); f

0

(X

0

2

; : : : ;X

0

n

)) h

2�

(X

2

;X

0

2

); : : : ; h

n�

(X

n

;X

0

n

):

3. Predicate abstractions.

Operational predicates can be renamed and some arguments deleted. For example,

let p be of type �

1

� : : :� �

n

, its �rst argument be deleted, and p be renamed to p

0

:

h(p(X

1

;X

2

: : : ;X

n

); p

0

(X

0

2

; : : : ;X

0

n

)) h

2�

(X

2

;X

0

2

); : : : ; h

n�

(X

n

;X

0

n

):

The abstraction operators degenerate to the EBG operationality criterion as a special

7

case. In EBG one speci�es just the predicate abstractions by adding, for each operational

predicate p, a unit clause of the form:

h(p(X

1

; : : : ;X

n

); p(X

1

; : : : ;X

n

)):

Predicates for which no abstraction is speci�ed are assumed to be non-operational and

their de�nitions are unfolded.

The following speci�es the extended operationality criterion for the inverter example.

Collapsing constants:

h

s

(cuto�, ok).

h

s

(saturated, ok).

h

i

(0, zero).

h

i

(I, pos) I>0. % negative I has no abstraction

h

v

(V, low) 0�V, V<0.7.

h

v

(V, high) 2�V, V�5.

Function abstraction:

h

b

(b(V, I), V') h

v

(V,V'). % I is deleted

Predicate abstractions:

h(inv

n

(S,X,Y), inv

q

(S',X',Y'))

h

s

(S,S'), h

b

(X,X'), h

b

(Y,Y').

h(switch

n

(S,Vin, Iin,Vc,Ic), switch

q

(S',Vin',Vc',Ic')) % Iin is deleted

h

s

(S,S'), h

v

(Vin,Vin'), h

v

(Vc,Vc'), h

i

(Ic,Ic').

h(power

n

(Ic,Vout, Iout), power

q

(Ic',Vout')) % Iout is deleted

h

i

(Ic,Ic'), h

v

(Vout,Vout').

From the numerical model of the inverter and the above abstractions, a qualitative

model was automatically derived through term rewriting and partial evaluation. Pred-

icates, for which no abstractions are speci�ed (resistor, transistor) are treated as non-

operational and their de�nitions are unfolded. The remaining predicates and terms are

rewritten according to the abstraction speci�cations.

Reformulated goal concept (qualitative model of the inverter):

inv

q

(S, Vin, Vout)

switch

q

(S, Vin, Vout, Ic),

power

q

(Ic, Vout).

8

switch

q

(ok, low, , zero).

switch

q

(ok, high, low, zero).

switch

q

(ok, high, low, pos).

power

q

(zero, high).

power

q

(pos, low).

power

q

(pos, high).

In the next step switch

q

and power

q

are treated as non-operational, inv

q

is renamed to

inv

l

, and the argument S which denotes the internal state of the inverter is deleted.

Predicate abstraction:

h(inv

q

(S,X,Y), inv

l

(X,Y)). % S is deleted

The abstraction algorithm yields the binary-logic model of the inverter.

Reformulated goal concept (logical model of the inverter):

inv

l

(low, high).

inv

l

(high, low).

4 The abstraction algorithm

The algorithm takes as an input a goal concept, a domain theory, and abstraction operators.

The goal concept is an explicit parameter to the algorithm, while the domain theory and

abstraction operators are implicit inputs, accessible through the Prolog built-in clause/2

and call/1 predicates. A training example can be represented as a partially instantiated goal

concept, e.g., inv

n

(S,b(0.5,Iin),b(Vout,0.001)). However, we do not address the advantages

and disadvantages of providing an example here | the algorithm works in both cases.

The output of the algorithm is an abstracted goal concept in the form of a predicate

de�nition, i.e., a set of clauses with the same head. The procedure is run in a failure-

driven loop. At each iteration a clause de�ning the goal concept is selected, abstracted,

and written to the output:

abstract goal(Goal)

abstract clause(Goal, Clause'),

write clause(Clause'),

fail.

9

abstract goal(Goal).

The procedure write clause(Clause') extracts residual constraints over relevant vari-

ables, adds them to the body of the abstracted clause, and outputs the clause (see next

section). A clause is abstracted by �rst unfolding de�nitions of non-operational predicates,

abstracting the remaining atoms in the body, and �nally abstracting the head of the clause.

For brevity, we omit recursive de�nitions of predicates which traverse a list of atoms (un-

fold atoms, abstract atoms) and present just the base cases (unfold atom, abstract atom):

abstract clause(Head, (Head' Body'))

clause(Head, Body),

unfold atoms(Body, Leaves),

abstract atoms(Leaves, Body'),

abstract atom(Head, Head').

unfold atom(Atom, Leaves)

not clause(h(Atom,),), !, % non-operational predicate

unfold(Atom, Leaves).

unfold atom(Atom, Atom).

unfold(Atom, true) builtin(Atom), !, % evaluate built-ins

call(Atom).

unfold(Atom, Leaves)

clause(Atom, Body),

unfold atoms(Body, Leaves).

abstract atom(Atom, Atom') % predicate abstractions

clause(h(Atom, Atom'), Arguments),

abstract terms(Arguments).

A predicate is abstracted by referring to the abstraction operator h which de�nes the

new name and arity, and then by abstracting the arguments. A term abstraction depends

on its type: a variable is `abstracted' to the same variable, a constant of type � is renamed

according to the h

�

abstraction operator, and a function of range type � is abstracted by

referring to the abstraction operator h

�

and by recursively abstracting its arguments:

abstract term(h

�

(Variable, Variable)) var(Variable), !.

abstract term(h

�

(Constant, Constant')) constant(Constant), !,

call(h

�

(Constant, Constant')).

abstract term(h

�

(Term, Term')) % structured term

10

clause(h

�

(Term, Term'), Arguments),

abstract terms(Arguments).

constant(X) atomic(X). % constant or number

constant(X) ismeta(X). % constrained variable in Metaprolog

Note that a variable is treated as a constant if it is constrained and the constraints are

satis�able, i.e., if it can be substituted by a constant. See the next section for an example.

The following example illustrates the algorithm for a simple case when just predicates

and functions are renamed and some arguments deleted. A standard Prolog interpreter

su�ces for such abstractions. The next section presents a more involved example where

a Prolog interpreter has to be augmented by the CLP(<) solver in order to collect linear

constraints over reals and verify their satis�ability.

Example. Assume that the following clause is to be abstracted:

inv

n

(S, b(Vin,Iin), b(Vout,Iout))

switch

n

(S, Vin, Iin, Vout, Ic),

power

n

(Ic, Vout, Iout).

Both atoms in the body are operational and no unfolding takes place. Switch

n

is

abstracted to switch

q

with the argument Iin deleted, and power

n

is abstracted to power

q

with the argument Iout deleted:

inv

n

(S', b(Vin',Iin), b(Vout',Iout))

switch

q

(S', Vin', Vout', Ic'),

power

q

(Ic', Vout').

The head of the clause inv

n

is abstracted to inv

q

by abstracting its arguments. The

variable S' remains a variable, and both terms b(V,I) are abstracted according to the

function abstraction speci�ed by the h

b

clause. As a result, currents I are dropped and

only voltages V' remain:

inv

q

(S', Vin', Vout')

switch

q

(S', Vin', Vout', Ic'),

power

q

(Ic', Vout').

11

5 The role of CLP(<) in abstractions

Whereas the previous abstraction of the inv

n

clause did not rely on any CLP(<) function-

ality, the abstraction of switch

n

to switch

q

does, however. All atoms in the body of switch

n

are non-operational so that unfold atoms in the abstraction algorithm essentially calls

switch

n

(S,Vin,Iin,Vc,Ic) and returns the following two answer substitutions with residual

constraints:

switch

n

(cuto�, Vin, 0, Vc, 0)

Constraints: Vin<0.7 ;

switch

n

(saturated, Vin, Iin, 0.3, Ic)

Constraints: Vin=4700*Iin+0.7, Vin�0.7, Ic�0

Abstraction of the �rst solution. The abstraction algorithm proceeds with the

abstraction of the head of switch

n

for there are no body goals left. The constant cuto� is

abstracted into ok through an application of h

s

. The next argument Vin is a constrained

variable and there are two h

v

clauses that specify the abstraction rules for voltages. The

�rst clause succeeds as the combined set of constraints fVin<0.7, 0�Vin, Vin<0.7g is

satis�able. Vin is abstracted to low. The argument Iin is deleted through predicate

abstraction. The fourth argument Vc is again a voltage. It remains unchanged in the

abstraction since it is unconstrained. The last argument Ic is instantiated to 0 which is

abstracted to zero in turn. This yields the �rst de�ning clause of the abstract switch

q

predicate:

switch

q

(ok, low, Vc, zero).

During backtracking the abstraction of Ic to pos fails as this is incompatible with the

constraint Ic>0. Backtracking proceeds until transistor and therefore switch

n

delivers the

second solution.

Abstraction of the second solution. Again the abstraction algorithm proceeds with

the head of switch

n

for there are no body goals left. The constant saturated is abstracted

into ok through an application of h

s

. The next argument Vin is a constrained variable and

there are two h

v

clauses that specify the abstraction rules for voltages:

h

v

(V, low) 0�V, V<0.7.

h

v

(V, high) 2�V, V�5.

The �rst clause fails as the combined set of constraints fVin�0.7, 0�Vin, Vin<0.7g is

unsatis�able. The second clause, however, succeeds with the abstraction of Vin to high.

12

The argument Iin is deleted through predicate abstraction. The fourth argument Vc, a

voltage, is instantiated to 0:3. This value satis�es the constraints of the �rst clause of h

v

and Vc is abstracted to low. The last argument Ic is a constrained variable and there are

two h

i

clauses that specify the abstraction rules for currents:

h

i

(0, zero).

h

i

(I, pos) I>0.

The residual constraint Ic�0 from switch

n

is compatible with both clauses of h

i

, and

therefore we get the �nal two de�ning clauses of the abstract switch

q

predicate:

switch

q

(ok, high, low, zero).

switch

q

(ok, high, low, pos).

The role of CLP(<) in this derivation is manyfold. First, it allows to compute with a

domain theory over real-valued variables at the numerical level of the model. Second, it

admits the speci�cation of abstraction operators that share the computational domain with

the numerical model. The third function is to guarantee the satis�ablity of the constraints

collected during partial evaluation and abstraction. The ability to deal with partially

instantiated constraints is vital if we want to apply EBG in the absence of an example |

in particular if we operate in an in�nite domain.

One traditional method for deciding linear inequalities is the simplex method. The

simplex method works by turning inequalities into equations through the introduction

of so-called `slack variables'. This leads to a `contamination' of the equation system with

arti�cial variables from the user's point of view. In our experience, the amount of code that

is needed to compute a human readable form of the (in)equation system is unproportionally

high in comparison to the code that does the actual job. Therefore, we rather selected the

Shostak's `Loop Residue' method (Shostak 1981). Besides being better suited for small

inequalities, this method operates with a `direct' representation of inequalities. For each

set of inequalities a graph is constructed whose vertices correspond to the variables and

edges to the inequalities. Kraemer (1989) proves the equivalence between a satis�able set

of inequalities and the corresponding closed graph without any infeasible loop.

As far as the derivation of the abstract model is concerned, the residual set of constraints

that are not related to the variables in the abstract model are not used any longer. They

can be added to the numerical model, however. This leads to a specialization of the model

or a relevance projection with respect to the abstractions. In analogy to the traditional

EBG framework we can thereby prune irrelevant computations when the numerical model

is used for diagnosis, say.

13

Our Metaprolog implementation of CLP(<) is preferred over other existing implemen-

tations of CLP(<) (Heintze et al. 1987, Ja�ar 1990) since it allows for the simultaneous

use of solvers for di�erent domains in a consistent framework. In this respect Metaprolog

is very well suited for the computational demands that arise in the context of hierarchi-

cal abstractions. The numerical level of the model can be formulated with CLP(<) for

example, and successive qualitative abstractions thereof typically utilize constraint propa-

gation over �nite domains. The implementation of the specialized solvers is based on the

user-de�nable

1

extended uni�cation. As the solvers themselves are written in Prolog they

can easily be customized to speci�c demands. The choice of Prolog as an implementation

language for the equation solver leads to a reduction in code size by an order of magni-

tude. On the other hand, the CLP(<) solver implemented in interpreted Prolog is about

six times slower than a dedicated C implementation (Holzbaur 1990). More important,

however, is the fact that the solvers operate on the same data structures | Prolog terms

in fact. Therefore it is easy to combine di�erent, independent solvers in the same program.

Additionally, the user is supplied with an external representation of the residual constraints

which can be manipulated further (printed, for example).

6 Conclusion

The paper makes two contributions to the EBG techniques. First, the proposed scheme is

less dependent on a training example. We can even get away without an example and still

perform nontrivial and useful computations at the partial evaluation time. If we accept

that one intention behind the EBG is to derive specialized, and therefore more e�cient

reformulations of the domain theory, it is obvious that the choice of a richer computational

domain contributes to this aspect. If the examples of this paper were to be partially

evaluated in an empty semantic theory (pure Prolog with the Herbrand interpretation) one

would have to declare all relational operators and equations over real-valued variables of

the domain theory as operational. This results in specializations where the set of collected

constraints (operational predicates) is neither minimal, nor is it guaranteed to be satis�able.

The choice of a richer computational domain allows for the resolution of some constraints

at the EBG time already.

The second contribution are abstraction operators which extend the standard EBG op-

erationality criterion. Further, abstractions perform a kind of `relevance projection' of the

1

In Metaprolog, CLP(<), CLP(B), and forward checking over �nite domains are provided as libraries.

14

domain theory even in the absence of an example. Through this explicit speci�cation, the

usual problem of estimating the relevance of training examples is circumvented. In the case

of a domain theory over in�nite domains, it is only the combination of abstractions with

a powerful computational domain that allows for the application (a partial or complete

resolution) of the abstraction operators at the EBG time.

Acknowledgements

This work was supported by the Austrian Federal Ministry of Science and Research.

Thanks to Bernhard Pfahringer for valuable comments and to Robert Trappl for mak-

ing this work possible.

References

Gallanti, M., Roncato, M., Stefanini, A., Tornielli, G. (1989). A diagnostic algorithm

based on models at di�erent level of abstraction. Proc. 11th IJCAI, pp. 1350-1355,

Detroit, Morgan Kaufmann.

Giunchiglia, F., Walsh, T. (1989). Abstract theorem proving. Proc. 11th IJCAI, pp.

372-377, Detroit, Morgan Kaufmann.

Giunchiglia, F., Walsh, T. (1990). Abstract theorem proving: mapping back. IRST Tech-

nical Report 8911-16, Istituto Ricerca Scienti�ca e Tecnologica, Trento, Italy.

Heintze, N., Ja�ar, J., Michaylov, S., Stuckey, P., Yap, R. (1987). The CLP(<) program-

mer's manual. Dept. of Computer Science, Monash University, Australia.

Heintze, N., Michaylov, S., Stuckey, P. (1987). CLP(<) and some electrical engineering

problems. Proc. 4th Intl. Conference on Logic Programming, pp. 675-703, Melbourne,

Australia, The MIT Press.

Holzbaur, C. (1990). Speci�cation of constraint based inference mechanisms through ex-

tended uni�cation. Ph.D. Thesis, Technical University of Vienna, Austria.

Ja�ar, J. (1990). CLP(<) version 1.0 reference manual. IBM Research Division, T.J.

Watson Research Center, Yorktown Heights, NY.

15

Ja�ar, J., Michaylov, S. (1987). Methodology and implementation of a CLP system. Proc.

4th Intl. Conference on Logic Programming, pp. 196-218, Melbourne, Australia, The MIT

Press.

Korf, R.E. (1987). Planning as search: a quantitative approach. Arti�cial Intelligence 33,

pp. 65-88.

Kraemer, F.-J. (1989). A decision procedure for Presburger arithmetic with functions and

equality. SEKI working paper SWP-89-4, FB Informatik, University of Kaiserslautern,

Germany.

Lloyd, J.W. (1987). Foundations of Logic Programming (Second edition). Springer-Verlag,

Berlin.

Mitchell, T., Keller, R., Kedar-Cabelli, S. (1986). Explanation-based generalization: A

unifying view. Machine Learning 1 (1), pp. 47-80.

Mozetic, I. (1990a). Abstractions in model-based diagnosis. Report TR-90-4, Austrian

Research Institute for Arti�cial Intelligence, Vienna, Austria. Proc. Automatic Generation

of Approximations and Abstractions, AAAI-90 Workshop, pp. 64-75, Boston.

Mozetic, I. (1990b). Reduction of diagnostic complexity through model abstractions. Re-

port TR-90-10, Austrian Research Institute for Arti�cial Intelligence, Vienna, Austria.

Proc. First Intl. Workshop on Principles of Diagnosis, pp. 102-111, Stanford University,

Palo Alto.

Mozetic, I., Holzbaur, C. (1991). Integrating qualitative and numerical models within

Constraint Logic Programming. Report TR-91-2, Austrian Research Institute for Arti�cial

Intelligence, Vienna, Austria. Workshop on Qualitative Reasoning about Physical Systems,

Genova, Italy.

Plaisted, D.A. (1981). Theorem proving with abstractions. Arti�cial Intelligence 16, pp.

47-108.

Sacerdoti, E.D. (1974). Planning in a hierarchy of abstraction spaces. Arti�cial Intelligence

5, pp. 115-135.

Shostak, R. (1981). Deciding linear inequalities by computing loop residues. Journal of

the ACM 28 (4), pp. 769-779.

16

Van Harmelen, F., Bundy, A. (1988). Explanation-based generalisation = partial evalua-

tion. Arti�cial Intelligence 36, pp. 401-412.

17

