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Abstract

Forward checking is one of the most promising a priori pruning techniques for

Constraint Satisfaction Problems [Mackworth 77, Mackworth and Freuder 85]. In the

past some schemes for the incorporation of forward checking and other consistency

techniques over �nite domains into Prolog have been introduced in [Hentenryck 89].

This work resulted in the implementation of a new prototype Prolog interpreter. In

this paper we present an implementation of forward checking in Prolog. This im-

plementation is based on a very general scheme for the incorporation of semantic

uni�cation into Prolog [Holzbaur 90, Neumerkel 90]. Constraint Satisfaction Prob-

lems can be formulated declaratively in Prolog. The problem with the standard

backtracking evaluation strategy however is that it does not execute this speci�-

cation e�ciently. Therefore, the Prolog implementation of forward checking serves

at least two purposes: the set of e�ectively executable declarative speci�cations in

Prolog is enlarged; the choice of Prolog as implementation language results in more

declarative, reliable, maintainable, accessible, and extendible code.
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1 Introduction

The outline of the paper is the following: We start with a sketch of the theoretical frame-

work for embedding consistency techniques into logic languages. Next, the user's view of

these extensions in a Prolog environment is condensed into a handful of new predicates. In

the subsequent section these predicates are applied in the formulation of some examples.

Finally, the main body of the paper deals with the implementation of forward checking. As

the use of semantic uni�cation as an implementation mechanism is not very common yet,

the �nal solution is derived step by step. Hereby it is shown how the application of partial

evaluation as a constructive means for the derivation of e�cient programs from general

speci�cations is facilitated through the choice of Prolog as the implementation language.

2 Logical background

This section presents the theoretical framework for embedding consistency techniques. A

declarative semantics that preserves the attractive semantic properties of the standard

theory is de�ned. In addition, a sound and complete procedural semantics is introduced.

The de�nitions were taken from [Hentenryck 89].

2.1 Domains

The domain concept allows for the speci�cation of the range of a variable. Domains carry

the same information as monadic predicates in logic languages. This information is used

during uni�cation as opposed to the use at resolvent level.

De�nition 1 A domain is a non-empty �nite set of constants.

A variable x with domain d is written as x

d

. Several domains may be used in the same

logic program.

De�nition 2 A �rst-order language with domain variables is composed of the following

alphabet:

1. a set of simple variables

2. a set of domain variables

3. sets of constants, functions, predicates, connectives, quanti�ers and a set of punctu-

ation symbols

Terms, de�nite programs, and goals can be constructed as usual [Lloyd 88, Chang and Lee

73]. The declarative semantics of a logic program is given by the model theoretic semantics

of �rst order logic with domain variables. The notions of logical consequences, Herbrand

interpretations, and models as well as the least Herbrand model can be de�ned as usual

[Hentenryck 89].
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The procedural semantics has to deal with doamins, too. The required modi�cation

consists in a rede�nition of the uni�cation algorithm.

De�nition 3 There are three additions to the usual de�nition [Lloyd 88] of the uni�cation

algorithm:

1. If a domain variable and a constant have to be uni�ed, the uni�cation succeeds if the

constant is a member of the domain of the domain variable and the domain variable

is instantiated to the constant. Otherwise the uni�cation fails.

2. If two domain variables have to be uni�ed, the uni�cation succeeds if the intersection

of their domains is non-empty and binds both variables to a new domain variable

ranging over this intersection. Otherwise the uni�cation fails.

3. If a domain variable and a simple variable have to be uni�ed, the uni�cation succeeds

and binds the simple variable to the domain variable.

The modi�ed uni�cation algorithm accepts a �nite set of expressions and produces

either a most general uni�er (mgu) or an indication of failure. Proving the soundness and

completeness of SLD-Resolution with the extended uni�cation is not too di�cult, because

the standard proofs do not rely on the assumption that the uni�cation takes place in an

empty equational theory. If we use the domain concept described so far, only equality

constraints

1

are handled yet. Forward checking is a new inference rule that operates upon

the domain concept; it allows the use of general constraints in an active way.

2.2 Forward checking

In forward checking, constraints are used as soon as only one variable of an atom is left

uninstantiated. The forward checking inference rule (FCIR) removes inconsistent values

from the domain of this last variable.

De�nition 4 Let p be an n-ary predicate. p is a constraint i� for any ground terms

t

1

; : : : ; t

n

p(t

1

; : : : ; t

n

) has a successful refutation or only �nitely failed derivations.

De�nition 5 Let p(t

1

; : : : ; t

n

) be an atom. p(t

1

; : : : ; t

n

) is forward checkable i�

1. p/n is a constraint.

2. there exists exactly one t

i

that is a domain variable, all others being ground.

This last variable is called the forward variable.

1

uni�cations between terms are equality constraints
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De�nition 6 (FCIR) Let P be a program, G

i

=  A

1

; : : : ; A

m

; : : : ; A

k

a goal. G

i+1

is

derived by the FCIR from G

i

and P using the substitution �

i+1

if the following conditions

hold:

1. A

m

is forward checkable and x

d

is the forward variable.

2. e = fa 2 d j P j= A

m

fx

d

=agg 6= 0.

3. �

i+1

is

� fx

d

=cg if e = fcg;

� fx

d

=z

e

g where z

e

is a new domain variable otherwise.

4. G

i+1

=  (A

1

; : : : ; A

m�1

; A

m+1

; : : : ; A

k

)�

i+1

.

The inference rule reduces the search space a priori as inconsistent values from the domain

of the forward variable are removed once and for all. According to the de�nition of a

constraint the derivation of a ground instance of a constraint in step 2 of the above de�nition

either succeeds or �nitely fails. Furthermore, this inference rule instantiates the forward

variable when only one consistent value remains. This instantiation possibly makes the

FCIR applicable to other atoms. The FCIR can also be viewed as a mechanism enforcing

node consistency [Mackworth and Freuder 85]. Since only one variable appears in the

forward checking atom, this atom can be considered a unary predicate. The domain of the

variable is reduced to satisfy it. The soundness and completeness of the FCIR has been

proved in [Hentenryck 89].

3 The user's view of the implementation

Just a small number of predicates are needed to enable the user to work with �nite domains

and constraints acting upon them in a forward checking manner:

1. domain/2 is used to attach a domain, i.e., a set of possible values, to a variable. The

potential values must be ground terms.

Example:

1 [Clp] ?- domain( X, [1,2,3]).

2 X = _17 <Constraint(s): [domain(_17,[1,2,3])]>

2. forward/1 is used to declare a goal as forward checkable. The current implementation

does not allow for structures in the arguments of the goal submitted to forward/1.

Example:

1 [Clp] ?- forward( A < 3).

2 A = _12 <Constraint(s): [forward(_12<3)]>
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3. neq/2 speci�es that the two arguments di�er. Allowed arguments are variables,

domain variables, atoms and numbers, but not structures.

Example:

1 [Clp] ?- domain( A, [1,2,3]), neq( A, B), B=2.

2 A = _214 <Constraint(s): [domain(_214,[1,3])]>

3 B = 2

4. indomain/1makes a domain variable ground. During backtracking the domain vari-

able is instantiated to the elements of its domain.

Example:

1 [Clp] ?- domain( X, [1,2,3]), indomain( X).

2 X = 1 ;

3 X = 2 ;

4 X = 3 ;

5. labeling/1 is used to label a list of domain variables. This is but the application of

indomain/1 to each element of the list.

Example:

1 [Clp] ?- domain( X, [1,2]), domain( Y, [a,b]),

2 L=[X,Y,z], labeling( L).

3 X = 1

4 Y = a

5 L = [1,a,z] ;

6

7 X = 1

8 Y = b

9 L = [1,b,z] ;

...

6. dump/3 produces a copy of a term with all metaterms

2

removed and a list that

describes the metastructures, i.e., the constraints on variables that were found in the

original term. Via dump/3 the user can get an external description of yet unsatis�ed

constraints in an answer substitution delivered by the Prolog system. The description

of the constraints together with the copy of the term can be put into the dynamic

Prolog database or written to a �le.

Example:

1 [Clp] ?- domain( X, [1,2,3]), forward( X < Y),

2 dump( f(X,Y,pos), Copy, Constraints).

3

4 Copy = f(_171,_172,pos)

5 Constraints = [domain(_171,[1,2,3]),forward(_171<_172)]

2

Metaterms are introduced in section 5.1. They are the basic data structure upon which forward

checking is implemented.
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4 Examples

This section lists a few examples to which forward checking was applied. Some of the

examples serve as benchmark programs in the later sections on the implementation of for-

ward checking. All execution times were gathered on an otherwise idling Apollo DN3000

workstation. Comparisons between Metaprolog and Quintus Prolog were made on the

same machine, under the same conditions. Metaprolog is an implementation of the speci-

�cation from [Holzbaur 90] in C-Prolog [Pereira 82], which is a Prolog interpreter written

in C for 32 bit machines.

4.1 Map coloring

The following problem statement is taken from [Coelho et al. 80]: `Write a program for

coloring any planar map with at most four colors, such that no two adjacent regions have

the same color.' The program consists of a list of connections between regions and of a

collection of admissible pairs of colors.

1 sample(Cs) :-

2 Cs=[Albania,Greece,Yugoslavia],

3 next(Albania,Greece),

4 next(Albania,Yugoslavia),

5 next(Greece,Yugoslavia).

6

7 next(blue,yellow). next(red,yellow).

8 next(blue,red). next(red,blue).

9 next(blue,green). next(red,green).

10 next(yellow,blue). next(green,yellow).

11 next(yellow,red). next(green,red).

12 next(yellow,green). next(green,blue).

Figure 1: Map coloring with Prolog

This implementation (see �gure 1) works pretty well for small maps. However, compiled

Quintus Prolog was trying to color the 32 countries of Europe for more than �ve weeks.

The process was stopped prior to termination. We are aware that the instantiation order

of variables plays a critical role in such a task, but we did not put any e�ort in �nding a

better one. The point is that with forward checking the problem was solved in 1:75 seconds

by interpreted Metaprolog.

Of course, this mainly proves the superiority of forward checking over chronological

backtracking. On the other hand, the reformulation e�ort was minor, and a previously

practically intractable problem was solved instantly, without forcing the user to become an

expert in graph theory. The adapted (sample) program is shown in �gure 2.
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1 fwd_sample(Cs) :-

2 Cs=[Albania,Greece,Yugoslavia],

3 domain(Albania, [red,green,blue,yellow]),

4 domain(Greece, [red,green,blue,yellow]),

5 domain(Yugoslavia,[red,green,blue,yellow]),

6 forward( next(Albania,Greece)),

7 forward( next(Albania,Yugoslavia)),

8 forward( next(Greece,Yugoslavia)),

9 labeling( Cs).

Figure 2: Map coloring with forward checking

4.2 Scene labeling

Scene labeling problems are usually solved with some arc-consistency algorithms [Mack-

worth and Freuder 85, Mohr and Henderson 86], together with a backtracking component.

Forward checking is applicable to such domains, too. An introduction to scene inter-

pretation in a world of crack-free polyhedra without shadows, where all vertices are the

intersection of exactly three object faces is given in [Winston 84, chapter 3]. Figure 3

depicts such a body, and its Prolog description is given in �gure 4.

Figure 3: L{shaped body

The predicates l junction/2 (�gure 5), fork junction/3 (�gure 6), tee junction/3

(�gure 7) and arrow junction/3 (�gure 8) describe the possible junction types.
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1 el([AB,BC,CD,DE,EF,FG,GH,HI,IA,IJ,GJ,FK,DK,BK]) :-

2 l_junction(AB,AI),

3 arrow_junction(BA,BC,BK),

4 l_junction(CD,CB),

5 arrow_junction(DC,DE,DK),

6 l_junction(EF,ED),

7 arrow_junction(FE,FG,FK),

8 tee_junction(GJ,GF,GH),

9 l_junction(HI,HG),

10 arrow_junction(IH,IA,IJ),

11 l_junction(JG,JI),

12 fork_junction(KF,KD,KB),

13 inversions( [AB,BC,CD,DE,EF,FG,GH,HI,IA,IJ,GJ,FK,DK,BK],

14 [BA,CB,DC,ED,FE,GF,HG,IH,AI,JI,JG,KF,KD,KB]

15 ).

Figure 4: Prolog description of the L{shaped body

1 l_junction(>,<).

2 l_junction(<,>).

3 l_junction(+,>).

4 l_junction(<,+).

5 l_junction(-,<).

6 l_junction(>,-).

Figure 5: Predicate l junction/2

1 fork_junction(+,+,+).

2 fork_junction(-,-,-).

3 fork_junction(<,>,-).

4 fork_junction(-,<,>).

5 fork_junction(>,-,<).

Figure 6: Predicate fork junction/3

1 tee_junction(>,<,+).

2 tee_junction(>,<,-).

3 tee_junction(>,<,<).

4 tee_junction(>,<,>).

Figure 7: Predicate tee junction/3

1 arrow_junction(<,>,+).

2 arrow_junction(-,-,+).

3 arrow_junction(+,+,-).

Figure 8: Predicate arrow junction/3
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The junctions of a scenario are connected by so-called inversions (�gure 9).

1 inversion(+,+).

2 inversion(-,-).

3 inversion(<,>).

4 inversion(>,<).

5

6 inversions([],[]).

7 inversions([A|As],[B|Bs]) :-

8 inversion(A,B),

9 inversions(As,Bs).

Figure 9: Predicate inversion/2

In analogy to the map coloring example, this program was also augmented with domain

declarations and forward de�nitions (�gure 10). In this example, labeling is done by

inversions/2.

1 el([AB,BC,CD,DE,EF,FG,GH,HI,IA,IJ,GJ,FK,DK,BK]) :-

2 domain_vars([AB,BC,CD,DE,EF,FG,GH,HI,IA,IJ,GJ,FK,DK,BK],[+,-,<,>]),

3 domain_vars([BA,CB,DC,ED,FE,GF,HG,IH,AI,JI,JG,KF,KD,KB],[+,-,<,>]),

4 forward( l_junction(AB,AI) ),

5 forward( arrow_junction(BA,BC,BK) ),

6 forward( l_junction(CD,CB) ),

7 forward( arrow_junction(DC,DE,DK) ),

8 forward( l_junction(EF,ED) ),

9 forward( arrow_junction(FE,FG,FK) ),

10 forward( tee_junction(GJ,GF,GH) ),

11 forward( l_junction(HI,HG) ),

12 forward( arrow_junction(IH,IA,IJ) ),

13 forward( l_junction(JG,JI) ),

14 forward( fork_junction(KF,KD,KB) ),

15 inversions( [AB,BC,CD,DE,EF,FG,GH,HI,IA,IJ,GJ,FK,DK,BK],

16 [BA,CB,DC,ED,FE,GF,HG,IH,AI,JI,JG,KF,KD,KB]

17 ).

Figure 10: Metaprolog description of the L{shaped body

The original program was run in compiled Quintus Prolog with a varying number of

instantiated variables, i.e., it was called as shown in �gure 11. The augmented version

was run in Metaprolog. The execution times for the determination of all solutions are

summarized in �gure 11. A more appealing summary is in �gure 12. The light bars

correspond to compiled Quintus Prolog, the black bars are for Metaprolog.
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Call Solutions Quintus Prolog, compiled Metaprolog, interpreted

el( L). 8 5596 7.05

el( [>|L]). 6 1881 4.33

el( [>,>|L]). 6 711 4.20

el( [>,>,>|L]). 3 243 2.37

el( [>,>,>,>|L]). 3 85 2.28

el( [>,>,>,>,>|L]). 3 29 2.00

el( [>,>,>,>,>,>|L]). 3 10 1.90

el( [>,>,>,>,>,>,>|L]). 2 2.6 1.00

el( [>,>,>,>,>,>,>,>|L]). 1 0.89 0.73

Figure 11: Execution times in seconds for the scene labeling example

0 Number of instantiated arguments 8

0:1

1

10

100

1000

5000

s

e

c

o

n

d

s

Figure 12: Execution times for the scene labeling example
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4.3 Inequalities

Inequalities are a kind of constraints that are found frequently in problem formulations

that work with domain variables. In particular, the predicate alldifferent/1 is used

in places where one would employ a permutation predicate in `ordinary' Prolog problem

formulation. A pattern as in �gure 13 is likely to be found in generate-and-test programs.

The crux with this is that the generator (permutation/2) is not steerable. If an arrange-

1 arrange( L, Perm) :-

2 permutation( L, Perm),

3 apply_constraints( Perm).

4

5 permutation( [], []).

6 permutation( Rest, [Ci|Cs]) :-

7 delete( Ci, Rest, Nrest),

8 permutation( Nrest, Cs).

9

10 delete( A,[A | L], L).

11 delete( A,[B | L], [B | L1]) :- delete( A, L, L1).

Figure 13: Generating and testing permutations

ment does not pass the validation, Prolog's usual chronological backtracking strategy is

used to generate alternative permutations. In Metaprolog we can do better by making

use of active constraints. The formulation in �gure 14 uses active inequality constraints

(neq/2) to generate permutations. The new generator is realized in three steps:

1. A domain of `positions' is assigned to the list of objects that are to be permuted.

2. Constraints stating the pairwise disjointness of the objects in the list are generated.

In lines 1 to 5 in �gure 15 the disjointness condition was omitted. Consequently

labeling generates all n

n

assignments instead of the n! permutations, where n is

the length of the list of objects. In lines 7 to 11 in �gure 15 we used the correct

formulation.

3. Labeling is applied to the elements of the list.

Note that for a list of length n, the application of alldifferent/1 creates

n(n�1)

2

in-

equality constraints. Thus it is a suitable benchmark for the implementation of inequality

constraints.
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1 arrange( L, Domain) :-

2 domain_vars( L, Domain),

3 alldifferent( L),

4 apply_constraints( L),

5 labeling( L).

6

7 domain_vars( [], _).

8 domain_vars( [X|Xr], Dom) :-

9 domain( X, Dom),

10 domain_vars( Xr, Dom).

11

12 alldifferent( []).

13 alldifferent( [X|R]) :-

14 alld_others( X, R),

15 alldifferent( R).

16

17 alld_others( _, []).

18 alld_others( X, [F|T]) :-

19 neq( X, F),

20 alld_others( X, T).

Figure 14: Predicate alldifferent/1, computing permutations with domains and inequal-

ities

1 [Clp] ?- L=[A,B], domain_vars( L, [1,2]), labeling( L).

2 L = [1,1] ;

3 L = [1,2] ;

4 L = [2,1] ;

5 L = [2,2] ;

6

7 [Clp] ?- L=[A,B], domain_vars( L, [1,2]),

9 alldifferent( L), labeling( L).

10 L = [1,2] ;

11 L = [2,1] ;

Figure 15: Computing permutations with alldifferent/1
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4.4 A combinatorial problem

The following problem can be solved by using just inequality constraints. It was taken

from [Hentenryck and Dincbas 86], where it is attributed to [Lauriere 78]. It is reproduced

here to emphasize the mentioned relation between the generation of permutations and the

use of alldifferent/1.

Problem statement: Six couples took part in a tennis match. Their names

were Howard, Kress, McLean, Randolph, Lewis and Rust. The �rst names of

their wives were Margaret, Susan, Laura, Diana, Grace and Virginia. Each

of the ladies hailed from a di�erent city: Fort Worth, Wichita, Mt. Vernon,

Boston, Dayton, Kansas City. Finally, each of the women had a di�erent hair

color, namely black, brown, gray, red, auburn and blond. Informations are

given to state doubles and singles which were played. For instance, Howard and

Kress played against Grace and Susan or the gray haired lady played against

Margaret. There is only one other fact we ought to know to be able to �nd the

last names, home towns, and hair colors of all six wives, and it is a fact that

\No married couple ever took part in the same game".

The Prolog program in �gure 16 can be used to determine the unique solution to the

problem. The translation to a forward checking program that uses just inequality con-

1 tennis( L) :-

2 L = [Ho,Ke,Mc,Ra,Le,Ru,

3 Fo,Wi,Mt,Bo,Da,Ka,

4 Bl,Br,Gr,Re,Au,Blo],

5 permutation( [ma,su,la,di,gr,vi], [Ho,Ke,Mc,Ra,Le,Ru]),

6 Ho \== gr, Ho \== su, Ke \== gr, Ke \== su, Mc \== la,

7 Mc \== su, Ra \== la, Ra \== su, Mc \== gr, Ra \== gr,

8 Le \== gr, Ke \== la, Ke \== vi, Mc \== di, Mc \== vi,

9 permutation( [ma,su,la,di,gr,vi], [Bl,Br,Gr,Re,Au,Blo]),

10 Br \== vi, Br \== Ho, Br \== Mc, Ra \== Gr, Gr \== la,

11 Blo \== la, Blo \== di, Le \== Blo, Blo \== ma,

12 permutation( [ma,su,la,di,gr,vi], [Fo,Wi,Mt,Bo,Da,Ka]),

13 Fo \== Ho, Fo \== Mc, Fo \== Ra, Wi \== Ho, Wi \== Mc,

14 Da \== ma, Mt \== ma, Mt \== di, Da \== di, Mt \== vi,

15 Wi \== Ra, Wi \== Ke, Ru \== Fo, Fo \== Ke, Gr \== Bo,

16 Re \== Da, Gr \== Fo, Re \== Mt, Blo \== Da,

17 Bl \== Bo, Bl \== Da, Ka \== ma.

18

19 % solution: [la,di,ma,vi,su,gr,su,gr,la,ma,vi,di,la,su,di,ma,vi,gr]

Figure 16: Prolog description of a tennis match

straints is straightforward (�gure 17). This program does not even need labeling | the

constraints are strong enough that all domains are reduced to single values. The unique
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1 tennis(L) :-

2 L = [Ho,Ke,Mc,Ra,Le,Ru,

3 Fo,Wi,Mt,Bo,Da,Ka,

4 Bl,Br,Gr,Re,Au,Blo],

5 domain_vars( L, [ma,su,la,di,gr,vi]),

6 neq(Ho,gr), neq(Ho,su), neq(Ke,gr), neq(Ke,su), neq(Mc,la),

7 neq(Mc,su), neq(Ra,la), neq(Ra,su), neq(Mc,gr), neq(Ra,gr),

8 neq(Le,gr), neq(Ke,la), neq(Ke,vi), neq(Mc,di), neq(Mc,vi),

9 neq(Mt,ma), neq(Mt,di), neq(Da,di), neq(Mt,vi),

10 neq(Blo,la), neq(Blo,di), neq(Da,ma), neq(Ka,ma),

11 neq(Br,vi), neq(Gr,la), neq(Blo,ma),

12 alldifferent( [Ho,Ke,Mc,Ra,Le,Ru]),

13 neq(Fo,Ho), neq(Fo,Mc), neq(Fo,Ra), neq(Wi,Ho), neq(Wi,Mc),

14 neq(Wi,Ra), neq(Wi,Ke), neq(Ru,Fo), neq(Br,Ho),

15 neq(Br,Mc), neq(Le,Blo), neq(Ra,Gr), neq(Fo,Ke),

16 alldifferent( [Bl,Br,Gr,Re,Au,Blo]),

17 neq(Gr,Bo), neq(Re,Da), neq(Gr,Fo), neq(Re,Mt),

18 neq(Blo,Da), neq(Bl,Bo), neq(Bl,Da),

19 alldifferent( [Fo,Wi,Mt,Bo,Da,Ka]).

Figure 17: Forward checking version of the Tennis puzzle

ground solution is generated without any choice for the value of a domain variable and

therefore without any backtracking in making such choices. The execution times for the

tennis example are summarized in �gure 18.

Quintus Prolog, compiled C-Prolog Forward checking in Metaprolog

First solution 22.1 135.5 1.75

All solutions 55.2 338.4 1.77

Figure 18: Execution times in seconds for the Tennis puzzle
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4.5 Another old puzzle

In this section we solve another problem that has been in use as an example in slight

variations

3

for quite some time [Dechter 86, Hentenryck 89].

Problem statement: There are �ve houses of di�erent colors, inhabited by

di�erent nationals, with di�erent pets, drinks, and cigarettes. The following

facts are known:

1. The Englishman lives in the red house.

2. The Spaniard owns a dog.

3. Co�ee is drunk in the green house.

4. The Ukranian drinks tea.

5. The green house is to the right of the ivory house.

6. The Old-gold smoker owns snails.

7. Kools are being smoked in the yellow house.

8. Milk is drunk in the middle house.

9. The Norwegian lives in the �rst house on the left.

10. The Chester�eld smoker lives next to the fox owner.

11. Kools are smoked next to the house with the horse.

12. The Lucky-Strike smoker drinks orange juice.

13. The Japanese smokes Parliaments.

14. The Norwegian lives next to the blue house.

The question is: who owns the zebra and who is drinking water?

The Prolog program in �gure 19 assigns each of the 25 variables

4

a domain of the house

numbers one to �ve. The facts are encoded in the same sequence as they were stated

above. The comments at the end of the lines point to the facts. The subsidiary predicates

right of/2 and next to/2 are given in �gure 20, alldifferent/1was de�ned in �gure 14.

3

renamed variables

4

�ve colors, nationals, pets, drinks, and cigarettes
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1 houses( Vars) :-

2 Vars = [Englishman,Spaniard,Ukranian,Japanese,Norwegian,

3 Red,Green,Blue,Yellow,Ivory,

4 Tea,Water,Coffee,Orange_juice,Milk,

5 Dog,Snails,Fox,Horse,Zebra,

6 Kools,Parliament,Lucky_strike,Chesterfield,Old_gold],

7 domain_vars( Vars, [1,2,3,4,5]),

8

9 Red = Englishman, % 1

10 Spaniard = Dog, % 2

11 Coffee = Green, % 3

12 Ukranian = Tea, % 4

13 forward( right_of(Green,Ivory)), % 5

14 Old_gold = Snails, % 6

15 Kools = Yellow, % 7

16 Milk = 3, % 8

17 Norwegian = 1, % 9

18 forward( next_to(Chesterfield,Fox)), % 10

19 forward( next_to(Kools,Horse)), % 11

20 Lucky_strike = Orange_juice, % 12

21 Japanese = Parliament, % 13

22 forward( next_to(Norwegian,Blue)), % 14

23

24 alldifferent([Englishman,Spaniard,Ukranian,Japanese,Norwegian]),

25 alldifferent([Red,Green,Blue,Yellow,Ivory]),

26 alldifferent([Tea,Water,Coffee,Orange_juice,Milk]),

27 alldifferent([Dog,Snails,Fox,Horse,Zebra]),

28 alldifferent([Kools,Parliament,Lucky_strike,Chesterfield,Old_gold]),

29

30 labeling( Vars).

Figure 19: Forward checking formulation of the Zebra puzzle

1 right_of(A,B) :- A is B+1.

2

3 next_to(A,B) :- 1 is B-A.

4 next_to(A,B) :- 1 is A-B.

Figure 20: Predicates right of/2 and next to/2
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The table in �gure 21 lists the variables of the problem together with their domains at

eight junctures. Digits indicate possible house number assignments for the variables, dots

indicate removed values. Labeling processes the variables top down and the domains left

to right. Readers that are primarily interested in the implementation of forward checking

might want to skip the rather detailed execution trace. It is provided for those who would

like to compare it to their own line of reasoning on this puzzle.

Step 1: This is the situation when labeling starts. Facts eight and nine already instan-

tiated the variables `Milk' and `Norwegian', the constraint from fact 14 instantiated

`Blue' to 2. The remaining dropouts are due to inequality constraints.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,japanese), neq(chester�eld,orange juice),

neq(chester�eld,snails), neq(chester�eld,yellow), neq(englishman,japanese),

neq(englishman,spaniard), neq(englishman,ukranian), neq(fox,horse),

neq(fox,snails), neq(fox,spaniard), neq(fox,zebra), neq(green,englishman),

neq(green,ivory), neq(green,orange juice), neq(green,ukranian),

neq(green,water), neq(green,yellow), neq(horse,snails), neq(horse,spaniard),

neq(horse,zebra), neq(ivory,englishman), neq(ivory,yellow),

neq(japanese,orange juice), neq(japanese,snails), neq(orange juice,snails),

neq(spaniard,japanese), neq(spaniard,snails), neq(spaniard,zebra),

neq(ukranian,japanese), neq(ukranian,orange juice), neq(ukranian,spaniard),

neq(ukranian,water), neq(water,orange juice), neq(yellow,englishman),

neq(yellow,japanese), neq(yellow,orange juice), neq(yellow,snails),

neq(zebra,snails)

The choice of 3 for `Englishman' leads us to the next step.

Step 2: Inequality constraints remove the value 3 from `Spaniard' and `Japanese'.

`Spaniard' is equal to `Dog' and therefore the value is removed there, too. The variable

`Japanese' is equal to `Parliament' which loses 3. `Red' is equal to `Englishman' and

therefore simultaneously instantiated to 3. This instantiation removes 3 from `Yellow'

and `Ivory'. The equality between `Yellow' and `Kools' drops 3 from `Kools'.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,japanese), neq(chester�eld,orange juice),

neq(chester�eld,snails), neq(chester�eld,yellow), neq(fox,horse), neq(fox,snails),

neq(fox,spaniard), neq(fox,zebra), neq(green,ivory), neq(green,orange juice),

neq(green,ukranian), neq(green,water), neq(green,yellow), neq(horse,snails),

neq(horse,spaniard), neq(horse,zebra), neq(ivory,yellow),

neq(japanese,spaniard), neq(japanese,ukranian), neq(orange juice,japanese),

neq(orange juice,snails), neq(orange juice,ukranian), neq(snails,japanese),

neq(snails,spaniard), neq(ukranian,spaniard), neq(water,orange juice),

neq(water,ukranian), neq(yellow,japanese), neq(yellow,orange juice),

neq(yellow,snails), neq(zebra,snails), neq(zebra,spaniard)
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Our next choice is 2 for `Spaniard'.

Step 3: Inequality constraints remove the value 2 from `Ukranian' and `Japanese', via

the equality between `Tea' and `Ukranian' from `Tea', and via the equality between

`Parliament' and `Japanese' from `Parliament'. The equality between `Spaniard' and

`Dog' instantiates `Dog' to 2, which removes this value from the other pets. The

equality between `Old gold' and `Snails' drops the value 2 from the latter.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,japanese), neq(chester�eld,orange juice),

neq(chester�eld,snails), neq(chester�eld,yellow), neq(fox,horse), neq(fox,snails),

neq(fox,zebra), neq(green,ivory), neq(green,orange juice), neq(green,ukranian),

neq(green,water), neq(green,yellow), neq(horse,snails), neq(horse,zebra),

neq(ivory,yellow), neq(japanese,ukranian), neq(orange juice,japanese),

neq(orange juice,snails), neq(orange juice,ukranian), neq(snails,japanese),

neq(water,orange juice), neq(water,ukranian), neq(yellow,japanese),

neq(yellow,orange juice), neq(yellow,snails), neq(zebra,snails)

We proceed with 4 for `Ukranian'.

Step 4: Inequality constraints remove the value 4 from `Japanese' which instantiates this

variable to the only remaining value, 5. The equality between `Ukranian' and `Tea'

instantiated `Tea' to 4, which removes this value from the other drinks. The instan-

tiation of `Japanese' propagates the value 5 via an equality to `Parliament', which in

turn removes this value from the other cigarette brands. The equality between `Yel-

low' and `Kools' drops 5 from `Yellow'. Another equality between `Orange juice' and

`Lucky strike' removes 5 from the former, too. The equality between `Old gold' and

`Snails' drops 5 from the latter. `Lucky strike' loses the value 4 through an equality

with `Orange juice'.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,orange juice), neq(chester�eld,snails), neq(chester�eld,yellow),

neq(fox,horse), neq(fox,snails), neq(fox,zebra), neq(green,ivory),

neq(green,orange juice), neq(green,water), neq(green,yellow), neq(horse,snails),

neq(horse,zebra), neq(ivory,yellow), neq(snails,orange juice),

neq(water,orange juice), neq(yellow,orange juice), neq(yellow,snails),

neq(zebra,snails)

The assignment of 1 to `Green' fails because of the constraint from fact 5. The

instantiation of `Green' to 5 fails because the constraint from fact 5 instantiates

`Ivory' to 4. Inequalities between colors remove 4 from `Yellow', leaving the only

value 1. As `Yellow' equals `Kools', this triggers the constraint from fact 11, which

fails as there is no suitable value for `Horse'. Having no further value for `Green', we

must backup to the previous variable `Ukranian' and try the value 5.
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Step 5: Again the choices 1 and 4 for `Green' fail. Backtracking to `Ukranian' propagates

to `Spaniard' as we exhausted the choices for `Ukranian', too. We alter `Spaniard' to

4.

Step 6: The previous instantiation removes 4 from `Ukranian', `Japanese', `Tea', all pets

but `Dog', `Parliament', and via `Snails' from `Old gold'.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,japanese), neq(chester�eld,orange juice),

neq(chester�eld,snails), neq(chester�eld,yellow), neq(fox,horse), neq(fox,snails),

neq(fox,zebra), neq(green,ivory), neq(green,orange juice), neq(green,ukranian),

neq(green,water), neq(green,yellow), neq(horse,snails), neq(horse,zebra),

neq(ivory,yellow), neq(japanese,ukranian), neq(orange juice,japanese),

neq(orange juice,snails), neq(orange juice,ukranian), neq(snails,japanese),

neq(water,orange juice), neq(water,ukranian), neq(yellow,japanese),

neq(yellow,orange juice), neq(yellow,snails), neq(zebra,snails)

We choose 2 for `Ukranian'.

Step 7: The previous instantiation removes 2 from `Japanese' which leaves the only value

5. `Tea' and `Parliament' get also instantiated to 2 and 5. The remaining dropouts

are due to inequality constraints.

Residual constraints: forward(next to(chester�eld,fox)),

forward(next to(yellow,horse)), forward(right of(green,ivory)),

neq(chester�eld,orange juice), neq(chester�eld,snails), neq(chester�eld,yellow),

neq(fox,horse), neq(fox,snails), neq(fox,zebra), neq(green,ivory),

neq(green,orange juice), neq(green,water), neq(green,yellow), neq(horse,snails),

neq(horse,zebra), neq(ivory,yellow), neq(snails,orange juice),

neq(water,orange juice), neq(yellow,orange juice), neq(yellow,snails),

neq(zebra,snails)

Once again the values 1 and 4 for `Green' fail because of the constraint from fact 5,

but we succeed with the value 5. The constraint from fact 5 instantiates `Ivory' to 4.

An inequality removes 4 from `Yellow', instantiating it to 1. `Co�ee' equals `Green'

and is instantiated simultaneously to 5, removing this value from `Water'. `Yellow'

equals `Kools' and is instantiated simultaneously to 1, removing this value from the

other cigarette brands, `Snails' and `Orange juice', instantiating the latter to 4, and

instantiating `Water' to 1 in turn. The instantiation of `Kools' triggers the constraint

from fact 11, instantiating `Horse' to 2. Removal of this value from the other pets

instantiates `Snails' and `Old gold' to 3. The removal of 1 from the cigarette brands

instantiated `Lucky strike' to 4, which in turn removed 4 from `Chester�eld'. Now

the constraint from fact 10 is enabled to instantiate `Fox' to 1, leaving the only value

5 for `Zebra'.
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Step 8: The previous assignment instantiated all remaining variables. This is the solution

state.

Variable Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

englishman ..345 ..3.. ..3.. ..3.. ..3.. ..3.. ..3.. ..3..

spaniard .2345 .2.45 .2... .2... .2... ...4. ...4. ...4.

ukranian .2.45 .2.45 ...45 ...4. ....5 .2..5 .2... .2...

japanese .2345 .2.45 ...45 ....5 ...4. .2..5 ....5 ....5

norwegian 1.... 1.... 1.... 1.... 1.... 1.... 1.... 1....

red ..345 ..3.. ..3.. ..3.. ..3.. ..3.. ..3.. ..3..

green 1..45 1..45 1..45 1...5 1..4. 1..45 1..45 ....5

blue .2... .2... .2... .2... .2... .2... .2... .2...

yellow 1.345 1..45 1..45 1..4. 1...5 1..45 1..4. 1....

ivory 1.345 1..45 1..45 1..45 1..45 1..45 1..45 ...4.

tea .2.45 .2.45 ...45 ...4. ....5 .2..5 .2... .2...

water 12.45 12.45 12.45 12..5 12.4. 12.45 1..45 1....

coffee 1..45 1..45 1..45 1...5 1..4. 1..45 1..45 ....5

orange juice 12.45 12.45 12.45 12... 12... 12.45 1..4. ...4.

milk ..3.. ..3.. ..3.. ..3.. ..3.. ..3.. ..3.. ..3..

dog .2345 .2.45 .2... .2... .2... ...4. ...4. ...4.

snails 12345 12345 1.345 1.34. 1.3.5 123.5 123.. ..3..

fox 12345 12345 1.345 1.345 1.345 123.5 123.5 1....

horse 12345 12345 1.345 1.345 1.345 123.5 123.5 .2...

zebra 12345 12345 1.345 1.345 1.345 123.5 123.5 ....5

kools 1.345 1..45 1..45 1..4. 1...5 1..45 1..4. 1....

parliament .2345 .2.45 ...45 ....5 ...4. .2..5 ....5 ....5

lucky strike 12.45 12.45 12.45 12... 12... 12.45 1..4. ...4.

chesterfield 12345 12345 12345 1234. 123.5 12345 1234. .2...

old gold 12345 12345 1.345 1.34. 1.3.5 123.5 123.. ..3..

Figure 21: Zebra puzzle execution trace

Metaprolog computes the �rst and only solution of the program in �gure 19 in 1:9

seconds. The proof for the uniqueness of the solution requires another 3:3 seconds. Al-

though forward checking programs tend to be less sensitive to the instantiation ordering

of the variables than generate and test programs, there is some dependence. Therefore we

used 200 random permutations of the 25 variables for the labeling stage of the program to

gather the statistics of �gure 22.



4 Examples 22

Execution time First solution All solutions

Minimum 0.45 1.15

Average 4.25 9.33

Standard Deviation 4.96 7.83

Maximum 32.57 38.87

Figure 22: Execution time statistics in seconds for the Zebra puzzle
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5 Implementation

This section deals with the implementation of domains and the forward checking inference

rule. The reader might prefer to have a look at the examples �rst and return to the teasing

issues of implementation details after being convinced of the utility of the extensions.

In the following speci�cation the representation of sets is kept abstract. Later, realiza-

tions of sets and the corresponding operations will be presented.

5.1 The general mechanism

The implementation of domains and forward checking is based on semantic uni�cation as

described in [Holzbaur 90]. One particular property of the `forward checking theory'

5

is

that variables have an associated domain which is narrowed subsequently. This narrowing

is re
ected by `reassignments' of new domains.

As our forward checking mechanism is implemented in Prolog, there is no way to

actually reassign values to logical variables. The escape from this problem is the concept

of `open' data structures. Instead of representing the value of a variable directly, we package

it into a structure. The special property of this structure is that it can be extended, i.e.,

updated with subsequent values. A familiar example of this technique are open tailed

lists [Sterling and Shapiro 86]. Such lists can be extended inde�nitely by appending any

number of open tailed lists. If we assume the convention that the last element of such a list

represents its `value' we have a mechanism for nondestructive (re)assignments. Of course,

the data structure does not have to be a list | any structure that is extended by a value

and an unbound variable for subsequent updates works. The process of scanning such a

data structure to �nd its `value' is called `dereferencing'.

Metaterms as introduced in [Holzbaur 90] are such open data structures. The �rst

argument

6

of a metaterm might itself be a metaterm | we proceed the scan for its value

recursively in analogy to the open tailed lists. If the �rst argument is an unbound variable,

the value of the metaterm is undetermined. Any other object in the �rst argument position

of a metaterm represents the value of this metaterm. As a result of this coding scheme, a

very frequent operation in extended theories is dereferencing such chains of metaterms, for

all operations usually apply to the current value of an object, which is found at the end of

the chain. For this reason, the convention about the special meaning of the �rst argument

of a metaterm and the process of dereferencing has been included in the speci�cation of

Metaprolog.

5.2 Domains

Domains are attached to variables by binding them to a metaterm which represents the

domain. This new sort of metaterms is introduced in �gure 23, line 1. After the sort is

5

purists read `method'

6

this is just another convention | it could be any argument
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introduced, we have to specify how this sort uni�es with any other sort. Uni�cations of

ordinary Prolog terms with the new sort are covered by metatermunify/2 in lines 3 to 5 in

�gure 23: the predicate succeeds if the term is an element of the domain. In addition, the

term is bound to the �rst position of the metaterm dom/2. According to the conventions of

Metaprolog [Holzbaur 90] this assigns the term as `�nal' value to the constrained variable

for which this metaterm stands. If two domain-variables are to be uni�ed, a new metaterm

with the intersection of the two domains is bound to both metaterms, according to section 2.

If the intersection consists of just one element this very element is assigned as the �nal

value to both domain-variables (line 11 in �gure 23). Empty intersections indicate non-

satis�ability, i.e., the uni�cation of the two domain-variables has to fail (line 12 in �gure 23).

1 :- meta_functor( '$dom'/2).

2

3 metatermunify( '$dom'(Term,Dom), Term) :-

4 set_valid_elem( Term),

5 set_test_membership( Term, Dom).

6

7 metametaunify( '$dom'(V,Dom1), '$dom'(V,Dom2)) :-

8 set_intersection( Dom1, Dom2, Dom3),

9 newdom( Dom3, V).

10

11 newdom( Dom, V ) :- set_singleton( Dom, V), !.

12 newdom( Dom, '$dom'(_,Dom)) :- set_nonempty( Dom).

Figure 23: Domains in Metaprolog

The user de�nes domains and refers to domains via the predicate domain/2, which

succeeds if the second argument is a list of domain-elements of the �rst argument of the

predicate. There are some examples in �gure 24. Line 1 in �gure 24 is probably the most

Example:

1 | ?- domain(X,[c,a,b]).

2 X = $dom(_159,[a,b,c])

3

4 | ?- domain(X,[c,a,b]),domain(X,Dom).

5 X = $dom(_171,[a,b,c])

6 Dom = [a,b,c]

7

8 | ?- domain(X,[c,a,b]),domain(X,[c,d]).

9 X = c

Figure 24: Examples of the use of domain/2

common use of domain/2: a domain, i.e., a set of possible values, is associated with an

unbound variable. The predicate domain/2 takes care of representing the domain. After
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the attachment of the domain, the variable is bound to a metaterm (line 2). Please note

that the actual representation of the domain inside the metaterm need not always be as

readable as in this example. The predicate domain/2may also be used the other way round

to refer to the domain of a variable (lines 4 to 6). If the �rst argument to domain/2 does

already have a domain then it is restricted further by subsequent domain-de�nitions (line

8). The atom `c' is the only element in the intersection of the given domains. Figure 25

gives the de�nition of the predicate domain/2. The predicate domain/2 dispatches on its

second argument:

1. The caller of domain/2 provided a list of domain elements. This list is converted into

the internal representation for sets (line 6 in �gure 25). Depending on the type of

the �rst argument to domain/2 the equation in line 7 in �gure 25 might give rise to

a metauni�cation.

2. The caller left the second argument uninstantiated. Therefore we try to extract a

domain from the �rst argument (lines 3 and 4 in �gure 25). There are �ve cases that

correspond to the �ve kinds of results of dereferencing a (meta)term [Holzbaur 90]

can yield.

1 domain( X, List) :-

2 (var( List) ->

3 meta_deref(X,Tx,Dx,Ax),

4 extract_domain( Tx, Dx, Ax, List)

5 ;

6 list_to_set( List, Set),

7 X = '$dom'(_,Set)

8 ).

9

10 extract_domain( 1, _, V, [V]) :- set_valid_elem( V).

11 extract_domain( 4, _, V, [V]) :- set_valid_elem( V).

12 extract_domain( T, X, _, Set) :-

13 extract_domain_internal( T, X, Dom),

14 set_to_list( Dom, Set).

15

16 :- syntactic_headunification( extract_domain_internal/3).

17

18 extract_domain_internal( 2, '$dom'(_,Dom), Dom).

Figure 25: Predicate domain/2

type 1: There was a nonempty chain of metaterms. The last metaterm in the chain

has its �rst argument bound to something other than a metaterm. We call such

a metaterm instantiated. The predicate extract domain/4 receives the �rst

argument of the last metaterm in the chain as its third argument. A list with

this argument as its only element is returned if the element is representable as



5 Implementation 26

an element of a set (line 10 in �gure 25). Some set implementations might not

allow for arbitrary terms as set elements. The astute reader might wonder why

this test is needed, as all assignments to the �rst argument of a metaterm are

made via metatermunify/2 or metametaunify/2. If we had just one sort of

metaterm as presented so far, the test would be truly redundant, but there are

more to come.

type 2: There was a nonempty chain of metaterms. The last metaterm in the chain

has its �rst argument unbound. The `value' of the metaterm is yet undeter-

mined. The domain is extracted from the metaterm via syntactic uni�cation

(note line 16 in �gure 25) and converted from the internal set representation

into a list.

type 3: The �rst argument to meta deref/4 was an unbound variable. There is no

clause in extract domain/4 covering this case. Therefore a call to domain/2

with both arguments uninstantiated fails. This is what we want, as unbound

7

variables cannot possibly have an associated domain.

type 4: The �rst argument to meta deref/4 was neither metaterm nor variable.

This is resolved like type 1.

type 5: After skipping an arbitrary number (possibly zero) of metaterms a non-

derefable metaterm was encountered. This type is not used in this application.

This concludes the description of the implementation of �nite domains in Metaprolog.

7

as opposed to constrained variables
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5.3 Forward checking

It was pointed out in section 2 that the realization of �nite domains alone is not yet very

powerful. The only constraint covered so far is equality between domains and other terms.

This section extends the implementation such that arbitrary

8

predicates can be used as

constraints over variables with �nite domains. From the user's point of view, there is one

new predicate forward/1 which accepts a goal as its only argument. This goal is subject

to the forward checking inference rule (FCIR).

In order to implement forward checking, it makes sense to analyze the events that can

happen to a generalized Prolog variable in some detail. A variable starts out as an unbound

variable with no associated domain. Later it might get bound to another variable, to a term,

or to a constrained variable (one that has an associated domain). Figure 26 summarizes

the possible state transitions. The operational semantics of the forward checking inference

assignment of
 a domain

unifications between
unbound variables

domain shrinks

domain becomes singleton

variable gets
instantiated

Figure 26: State transition of variables

rule makes it necessary to delay the application until the submitted goal is su�ciently

instantiated. These delayed FCIR applications have to be reconsidered on state transition

events of the associated variables.

The task of the predicate forward/1 is to analyze the goal that should be forward

checked. In order to verify the applicability of the FCIR and to provide some means to

delay and to reconsider FCIR applications, we introduce the new metaterm $fwd/3. It

associates goals submitted to forward/1 with their arguments. The �rst argument of

$fwd/3 is the usual placeholder for the �nal value of the metaterm, the second and third

arguments are the parts of a di�erence list of goals subject to the FCIR in which the

metaterm occurs as an argument. The example in �gure 27 clari�es why we need a list of

goals: the variable `A' occurs in two goals submitted to forward/1.

1 | ?- forward( A \== 3 ), forward( A < 10 ).

Figure 27: forward/1 application

8

refer to section 2
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The implementation of forward/1 in �gure 28 uni�es each argument of the goal with

a $fwd/3 metaterm (line 10). The previous example yields the binding for `A' shown in

1 forward( Goal) :-

2 nonvar( Goal),

3 functor( Goal, N, A),

4 functor( Copy, N, A),

5 forward_args( 0, A, Goal, fwdgoal(_Mutex,A,Copy,Goal)).

6

7 forward_args( N, N, _, _) :- !.

8 forward_args( N, A, G, Mg) :-

9 N1 is N+1,

10 arg( N1, G, '$fwd'( _, [Mg|Tail], Tail)),

11 forward_args( N1, A, G, Mg).

Figure 28: Predicate forward/1

�gure 29. Actually, a cyclic term structure was created, but Metaprolog has means to

deal with them. In line 2 in �gure 29 we see that the former variable `A' is now bound

to a metaterm $fwd/3. The �rst argument of the metaterm is unbound and the metaterm

participates in two goals that are subject to the FCIR. As one can deduce from line 5 of

�gure 28, this is not the whole, but the essential truth. Additional information that is

assembled into the list facilitates future computations, from the logical point of view it is

redundant.

1 | ?- forward( A \== 3 ), forward( A < 10 ).

2 A = $fwd(_57,[_57\==3,_57<10)|_59],_59)

Figure 29: forward/1 application, continued

Each time we introduce new metaterms we have to specify how they socialize with

other terms and metaterms. In �gure 30 we have the de�nition of metatermunify/2

and metametaunify/2 for $fwd/3 metaterms to start with. If two $fwd/3 metaterms

1 metatermunify( '$fwd'(Term,Fgs1,_), Term) :-

2 reconsider( Fgs1).

3

4 metametaunify( '$fwd'(NewMeta,Fgs1,FgsTail1),

5 '$fwd'(NewMeta,Fgs2,FgsTail2)) :-

6 append_otl( Fgs1, FgsTail1, Fgs2, FgsTail2, Fgs3, FgsTail3),

7 NewMeta = $fwd(_,Fgs3,FgsTail3).

8

9 append_otl( H, T1, T1, T, H, T).

Figure 30: Uni�cation of $fwd/3 metaterms

meet, their di�erence lists of pending FCIR applications are appended in constant time
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by append otl/6. A new $fwd/3 metaterm with the resulting list is bound to the �rst

arguments of both metaterms, which e�ectively replaces the old metaterms by the new

one. The connection between the forward checking mechanism and domain variables is

introduced through an additional clause for metametaunify/2 in �gure 31. The example

1 metametaunify( '$dom'(NewMeta,Dom1),

2 '$fwd'(NewMeta,Fgs2,FgsTail2)) :-

3 NewMeta = '$dom$fwd'(_,Dom1,Fgs2,FgsTail2),

4 reconsider( Fgs2).

Figure 31: Uni�cation of $dom/2 with $fwd/3 metaterms

1 | ?- domain( A, [1,2,3]),

2 forward( B < 2),

3 A=B.

Figure 32: Example: uni�cation of $dom/2 with $fwd/3 metaterms

in �gure 32 presents the new metametaunify/2 clause at work. Just before the execution

of line 3 in �gure 32 we have the following bindings (�gure 33). The equation in line 3

1 A = $dom(_32,[1,2,3])

2 B = $fwd(_162,[fwdgoal(_151,2,_152<_153,_162<2)|_164],_164)

Figure 33: Example: uni�cation of $dom/2 with $fwd/3 metaterms

of �gure 32 causes a metauni�cation between the two metaterms `A' and `B'. The corre-

sponding clause of metametaunify/2 from �gure 31 replaces both metaterms with a new

one that consists of the arguments of the $dom/2 and the $fwd/3metaterm. The resulting

metaterm is shown in �gure 34.

1 A = B =

2 $dom$fwd(_206,[1,2,3],

3 [fwdgoal(_151,2,_152<_153,_206<2)|_164],_164)

Figure 34: Example: uni�cation of $dom/2 with $fwd/3 metaterms

In our example this combined metaterm has a short life. The reconsideration of FCIR

applications that is started by line 4 in �gure 31 just after the construction of the new

metaterm instantiates it to 1. This is the only element from the domain of `A' that satis�es

the constraint A < 2. For the user the matters are somewhat simpler and less procedural

| she/he observes what is shown in �gure 35. And of course, she/he would get the same

results for all six permutations of the three goals.

In general, the new metaterm will not be instantiated immediately after its creation.

For this reason we have to specify how the new metaterm uni�es with other terms and

metaterms. The de�nitions are in �gure 36, �gure 37 and in �gure 38.
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1 | ?- domain(A,[1,2,3]), forward( B < 2), B=A.

2

3 A = 1

4 B = 1

Figure 35: Example: uni�cation of $dom/2 with $fwd/3 metaterms

1 metatermunify( '$dom$fwd'(Term,Dom1,Fgs1,FgsTail1), Term) :-

2 metatermunify( '$dom'(_,Dom1), Term),

3 metatermunify( '$fwd'(_,Fgs1,FgsTail1), Term).

Figure 36: Uni�cation of $dom$fwd/4 metaterms with ordinary terms

The fact that the new metaterm $dom$fwd/4 combines the properties of the metaterms

that led to its composition is mirrored by the metatermunify/2 clauses in �gure 36. The

metaterm is decomposed and each of the two component metaterms is uni�ed with the

term through other clauses of metatermunify/2 that we saw in �gure 23 lines 3 to 5

and in �gure 30 lines 1 and 2, respectively. In fact, this formulation is already somewhat

optimized. The de�nition in �gure 37 would work just as well. The derivation of the

optimized form is left as an exercise to the reader.

1 metatermunify( '$dom$fwd'(Term,Dom1,Fgs1,FgsTail1), Term) :-

2 '$dom'(_,Dom1) = Term,

3 '$fwd'(_,Fgs1,FgsTail1) = Term.

Figure 37: Uni�cation of $dom$fwd/4 metaterms with ordinary terms

The de�nition of metametaunify/2 has to deal with the new metaterm, too. The new

metaterm might be uni�ed with every other metaterm, including itself. The treatment of

the combined forms of metaterms during metauni�cation reduces to their decomposition

and the treatment of the resulting already speci�ed base cases. The code in �gure 38

follows this idea. The most general case is covered by lines 1 to 5 in �gure 38. Both

$dom$fwd/4 metaterms are decomposed into their $dom/2 and $fwd/3 components which

are equated in turn (lines 3 and 4).

Although logically sound and concise, this formulation has a few computational dis-

advantages. In lines 7 to 10 for example, a $dom$fwd/4 metaterm is decomposed. The

$dom/2 component is uni�ed with the other argument to metametaunify/2 and the equa-

tion in line 10 leads to a call to metatermunify/2 or to metametaunify/2, depending on

the outcome of the equation in line 9. The bad thing about this is that this �nal, potential

metametaunify/2 call triggers useless reconsiderations of FCIR applications. The recon-

siderations are useless because they were executed once already just after the $dom$fwd/4

metaterm was composed. All that happened to the $dom$fwd/4 metaterm now, was that

its domain was reduced. This makes FCIRs potentially applicable only if the domain is

reduced to a single element. Further, in lines 12 to 15 such FCIR reconsiderations are

triggered for both metaterms involved, whereas only one truly received a domain. For

these reasons, the actual implementation takes care of these special cases.
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1 metametaunify( '$dom$fwd'(NewMeta,Dom1,Fgs1,FgsTail1),

2 '$dom$fwd'(NewMeta,Dom2,Fgs2,FgsTail2)) :-

3 '$dom'(_,Dom1) = '$dom'(NewMeta,Dom2),

4 '$fwd'(_,Fgs1,FgsTail1) = '$fwd'(NM1,Fgs2,FgsTail2),

5 NM1 = NewMeta.

6

7 metametaunify( '$dom'(NewMeta,Dom1),

8 '$dom$fwd'(NewMeta,Dom2,Fgs2,FgsTail2)) :-

9 '$dom'(_,Dom1) = '$dom'(NewMeta,Dom2),

10 NewMeta = '$fwd'(_,Fgs2,FgsTail2).

11

12 metametaunify( '$dom$fwd'(NewMeta,Dom1,Fgs1,FgsTail1),

13 '$fwd'(NewMeta,Fgs2,FgsTail2)) :-

14 '$fwd'(_,Fgs1,FgsTail1) = '$fwd'(NewMeta,Fgs2,FgsTail2),

15 NewMeta = '$dom'(_,Dom1).

Figure 38: Uni�cation of $dom/2 with $fwd/3 metaterms, continued

The predicate reconsider/1 in �gure 39 browses through the associated goals of

$fwd/3 and $dom$fwd metaterms and tries to apply forward checking to each of the goals

in turn. Line 1 recognizes the end of the list, lines 8 and 9 continue the reconsideration

if the applicability test in line 4 failed. A goal is forward checkable if there is at most

1 reconsider( L) :- var( L), !.

2 reconsider( [fwdgoal(Mutex,A,C,G)|Xs]) :-

3 var( Mutex),

4 applicable( 0, A, G, C, D, Dd, Ds),

5 !,

6 apply_fc( D, Dd, Ds, C, Mutex),

7 reconsider( Xs).

8 reconsider( [_|Xs]) :-

9 reconsider( Xs)

Figure 39: Predicate reconsider/1

one domain variable left among its arguments. The predicate applicable/7 in �gure 40

veri�es this condition and builds a copy of the goal in parallel. The need for copying

stems from the desired generality of the operation of forward/1: any predicate should

be usable as a constraint. Arbitrary predicates do not know anything about metaterms

and the associated conventions | therefore metaterms are stripped o�. An alternative

convention would put the burden of dealing

9

with metaterms on the constraint predicates.

The chosen convention keeps the corresponding code local to one place in the program.

The predicate applicable/7 is just the iterator for applicable one/7 in �gure 41. The

arguments are the passed on results from meta deref/4 of the n-th argument of the goal,

9

essentially dereferencing
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1 applicable( N, N, _, _, _, _, _) :- !.

2 applicable( N, A, G, C, D, Ds, Dd) :-

3 N1 is N+1,

4 arg( N1, G, Ga),

5 arg( N1, C, Ca),

6 meta_deref( Ga, Tga, Dga, Aga),

7 applicable_one( Tga, Dga, Aga, Ca, D, Ds, Dd),

8 applicable( N1, A, G, C, D, Ds, Dd).

Figure 40: Predicate applicable/7

the corresponding n-th argument from the copy of the goal, the �nal domain variable, the

surrogate variable that is used in place of the �nal domain variable in the copy of the

goal, and the domain of the �nal domain variable. Constants and instantiated metaterms

instantiate the corresponding arguments of the copy of the goal (lines 1 and 2 in �gure 41).

Upon the �rst occurrence of an uninstantiated metaterm (lines 3 to 7) we verify that it has

indeed an associated domain (line 6) and remember it preliminarily as the �nal domain

variable of the goal. If subsequent uninstantiated metaterms are encounted, they must be

equal to the one seen already (lines 8 and 9). As we introduced the $dom$fwd/4metaterm

1 applicable_one( 1, _, X, X, _, _, _).

2 applicable_one( 4, _, X, X, _, _, _).

3 applicable_one( 2, M, X, X, D, X, Dom) :-

4 var( D),

5 !,

6 extract_domain_internal( 2, M, Dom),

7 M = D.

8 applicable_one( 2, _, X, X, _, Ds, _) :-

9 Ds == X.

Figure 41: Predicate applicable one/7

with a domain component, we have to extend the de�nitions for the extraction of a do-

main from a domain variable (�gure 42). A goal submitted to forward/1 can be forward

1 :- syntactic_headunification( extract_domain_internal/3).

2

3 extract_domain_internal( 2, '$dom'(_,Dom), Dom).

4 extract_domain_internal( 2, '$dom$fwd'(_,Dom,_,_), Dom).

Figure 42: Predicate extract domain internal/3

checkable because of being ground. In this case, the predicate applicable/7 succeeds,

but the arguments 5 to 7 are left unbound. This is detected by apply fc/5 in �gure 43

(lines 1 and 2). A missing domain variable indicates a ground goal which is executed via

call/1. The �fth argument of apply fc/5 instantiates the mutual exclusion variable that
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is a component of every delayed FCIR application. It is used to inhibit subsequent recon-

siderations of FCIRs (line 3 in �gure 39). Lines 3 to 5 in �gure 43 actually realize the FCIR

1 apply_fc( Domvar, _, _, Goal, done) :-

2 var( Domvar), !, call( Goal).

3 apply_fc( Domvar, Dom, Su, Goal, done) :-

4 set_filter( Dom, Su, Goal, NewDom),

5 Domvar = '$dom'(_,NewDom).

Figure 43: Predicate apply fc/5

via set filter/4. This predicate successively binds its second argument to the elements

from the set in the �rst argument during backtracking. The second argument also occurs in

the third argument, the goal. The enumeration makes the goal ground. It is executed via

call/1. Instantiations that let the call succeed are collected. The �ltered set constitutes

the new domain of the �nal domain variable of the goal submitted to forward/1. The

1 | ?- domain(A,[1,2,3]), forward( A < 3).

2 ...

3 Call:

4 applicable( 0, 2,

5 $dom$fwd(_186,[1,2,3],[fwdgoal(_153,2,_154<_155,_186<3)|_160],_160)<3,

6 _154<_155,

7 _65922, _65923, _65924)

8 Exit:

9 applicable( 0, 2,

10 $dom$fwd(_154,[1,2,3],[fwdgoal(_153,2,_154<3,_154<3)|_160],_160)<3,

11 _154<3,

12 $dom$fwd(_154,[1,2,3],[fwdgoal(_153,2,_154<3,_154<3)|_160],_160),

13 [1,2,3], _154)

14 Call:

15 apply_fc(

16 $dom$fwd(_154,[1,2,3],[fwdgoal(_153,2,_154<3,_154<3)|_160],_160),

17 [1,2,3], _154,

18 _154<3, _153)

19 Call: set_filter([1,2,3],_154,_154<3,_65934)

20 Exit: set_filter([1,2,3],_154,_154<3,[1,2])

21 ...

22 A = $dom$fwd(_223,[1,2],[fwdgoal(done,2,_223<3,_223<3)|_160],_160)

Figure 44: Example: apply fc/5

execution trace in �gure 44 shows how applicable/7 works together with apply fc/5:

the goal A < 3 is determined to be forward checkable. Upon return from applicable/7

(lines 8 to 13), the second argument of the copy of the goal _154 < _155 has been instan-

tiated to 3, `A' has been determined as the �nal domain variable of the goal, its domain is

[1,2,3], and the surrogate used in the copy of the goal is the variable _154. This variable

is instantiated to 1,2 and 3 in turn. The set [1,2] passes the �lter, which is the resulting
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domain of `A'. The mutual exclusion variable _153 is instantiated to `done' (line 22). This

prevents reconsiderations of the goal A < 3 | the constraint was solved once and for all.
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5.3.1 Optimizations

In the previous section forward checking was achieved through mere uni�cations of the

arguments of goals submitted to forward/1 with $fwd/3 metaterms (�gure 28). The

`real' actions took place somewhere inside metatermunify/2 and metametaunify/2. The

only drawback of this construction is that it triggers too many reconsiderations per goal.

Imagine an n-ary constraint with constants or distinct domain variables as arguments. The

code in �gure 28 leads to a reconsideration of the constraint for each of the arguments. This

is clearly suboptimal, as one initial check per goal submitted to forward/1 is su�cient to

determine the applicability of the FCIR. The code in �gure 45 eliminates this 
aw.

1 forward( Goal) :-

2 nonvar( Goal),

3 functor( Goal, N, A),

4 functor( Copy, N, A),

5 forward_n( A, Goal, fwdgoal(_Mutex,A,Copy,Goal)).

6

7 forward_n( 0, Goal, _) :- !, call( Goal).

8 forward_n( A, Goal, fwdgoal(Mutex,_,Copy,_)) :-

9 applicable( 0, A, Goal, Copy, D, Dd, Ds),

10 !,

11 apply_fc( D, Dd, Ds, Copy, Mutex).

12 forward_n( A, Goal, Mg) :-

13 forward_args( 0, A, Goal, Mg).

Figure 45: Predicate forward/1, new version

A goal submitted to forward/1 is checked for the applicability of the FCIR only once.

Goals or arity zero are trivially executable (line 7). Otherwise the applicability is deter-

mined by applicable/7 and the constraint is then enforced through apply fc/5. In the

case of non-applicability, we have to attach $fwd/3 metaterms to some arguments of the

goal. In �gure 46 we have an iterator and the predicate forward arg/3 for this purpose.

Constants and instantiated metaterms can be ignored (lines 11 and 12), free variables are

bound to a $fwd/3 metaterm (line 13). Uninstantiated metaterms are extended accord-

ing to the corresponding clauses in metametaunify/2 | except that no reconsiderations

are run (lines 15 to 20). The explicit equations are for readability only. In the actual

implementation they have been folded into the heads of the clauses. Note that this code

produces the same data structures as the earlier version if the FCIR is not yet applicable

to a goal. For a forward checkable goal the construction of this data structures is avoided

altogether. In �gure 47 we have a comparison of the two versions of forward/1 on some

examples from section 4

10

As the arities of the constraints involved are pretty small, the

merits of the optimization materialize at higher numbers of constraints only.

10

for those of you who have read ahead a few pages: for this comparison the �rst version for neq/2 from

section 5.4.1, page 40 was used.
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1 forward_args( N, N, _, _) :- !.

2 forward_args( N, A, G, Mg) :-

3 N1 is N+1,

4 arg( N1, G, Arg),

5 meta_deref( Arg, Tx, Dx, _),

6 forward_arg( Tx, Dx, Mg),

7 forward_args( N1, A, G, Mg).

8

9 :- syntactic_headunification( forward_arg/3).

10

11 forward_arg( 1, _, _).

12 forward_arg( 4, _, _).

13 forward_arg( 3, '$fwd'(_,[Mg|T],T), Mg).

14

15 forward_arg( 2, '$dom'(V,Dom), Mg) :-

16 V = '$dom$fwd'(_,Dom,[Mg|T],T).

17 forward_arg( 2, '$fwd'(V,Fgs,[Mg|T]), Mg) :-

18 V = '$fwd'(_,Fgs,T)

19 forward_arg( 2, '$dom$fwd'(V,Dom,Fgs,[Mg|T]), Mg) :-

20 V = '$dom$fwd'(_,Dom,Fgs,T).

Figure 46: Predicate forward arg/3

Benchmark a) First ver. b) Optimized ver. Ratio a=b Constraints

cube 2.71 2.62 1.03 7

el 7.37 7.07 1.04 11

zebra 13.53 11.09 1.22 54

tennis 6.59 5.21 1.26 91

Figure 47: Execution times in seconds for some benchmarks for the �rst and the optimized

version of forward/1
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5.4 Inequality

Although inequality constraints can be coded as forward checkable constraints, there are

some di�culties with this approach. Check the example in �gure 48:

1 [Clp] ?- forward( A \== B), A=B.

2

3 A = _24 <Constraint(s): [forward(_24\==_24)]>

4 B = _24 <Constraint(s): [forward(_24\==_24)]>

Figure 48: A shortcoming of the forward checking implementation of inequalities

Despite the fact that the variables `A' and `B' are constrained to be distinct, their

subsequent equation succeeds. This is because the FCIR is not yet applicable. As soon

as a domain or a constant is assigned to one of the two variables, the unsatisfyability

will be detected. This situation is somewhat contrary to the philosophy of making use

of constraints as early as possible, apart from the inconvenience for the user. In order to

compensate for this, we give an implementation of a simpli�ed version dif/2. The predicate

dif/2 asserts the inequality between its two arguments which are arbitrary Prolog terms.

Classical implementations of dif/2 have been described by [Boizumault 86, Carlsson 87],

[Neumerkel 90] gives an implementation of dif/2 through metaterms.

For our purposes we will ignore the complications that result from structured arguments

to dif/2 and the possible binding of variables that were arguments to dif/2 to structures.

This simpli�cation is compatible with the restriction for forward checkable constraints.

Our simpli�ed version of dif/2 will be called neq/2. Inequality will be implemented via

metaterms, the corresponding metaterm is $ne/2. The �rst argument of a $ne/2metaterm

is the conventional place holder for the �nal value. The second argument is a list of terms

11

from which the variable the metaterm stands for should be distinct. In �gure 49 and

�gure 50 we have the necessary de�nitions for this simple theory. Two variables are made

1 neq( A, B) :-

2 A = '$ne'(_,[B|_]),

3 B = '$ne'(_,[A|_]).

4

5 metatermunify( '$ne'(Term,Rivals1), Term) :-

6 no_such_var( Rivals1, Term, _).

7

8 metametaunify( '$ne'(NewMeta,Rivals1), '$ne'(NewMeta,Rivals2)) :-

9 no_such_var( Rivals1, NewMeta, Last),

10 no_such_var( Rivals2, NewMeta, _),

11 Last = Rivals2,

12 NewMeta = $ne(_,Rivals1).

Figure 49: Predicate neq/2 and corresponding metaterm uni�cations

11

variables, constants and metaterms to be exact
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unequal by unifying each of them with a metastructure that has the respective opposite

variable in the list of objects from which it should be distinct. If the arguments to neq/2

are free variables, the equations in lines 2 and 3 of �gure 49 simply bind the metaterms

to the variables. If on the other hand, one of the arguments is a constant, the equation

leads to a call to metatermunify/2. The metaterm is instantiated to the constant and the

predicate no such var/3 asserts that the constant is not among the objects from which

the metaterm should be distinct.

Uni�cations between two $ne/2metaterms are treated quite similarly. Through syntac-

tic uni�cation of their �rst arguments the two metaterms are made equal. This uni�cation

could lead to the situation where a metaterm is among it's own list of objects it should

be distinct of. The predicate no such var/3 in �gure 50 is used to verify this for both

metaterms. As a by-product, no such var/3 returns the open tail of the list of distinct

objects in case of success (if the new metaterm is not among its own list of objects it should

be distinct). Having the tail of one of the two lists, we can append them in constant time

(line 11 in �gure 49). The lists have to be scanned anyway, therefore an additional ar-

gument in the metaterm holding the tail of the list would be a waste of memory. A new

metaterm with the union

12

of distinct objects conceptually replaces the two old metaterms

that were just uni�ed. The dialog in �gure 51 exhibits the new intended behavior of neq/2

1 no_such_var( L, _, Last) :- var( L), !, Last = L.

2 no_such_var( [E|Rest], V, Last) :-

3 meta_deref( E, _, _, Ev),

4 Ev \== V,

5 no_such_var( Rest, V, Last).

Figure 50: Predicate no such var/3

in combination with equations.

1 | ?- neq( A, B).

2 A = $ne(_16,[_18|_17])

3 B = $ne(_18,[_16|_19])

4

5 | ?- neq( A, B), A=B.

6 no

Figure 51: Example: inequalities

In the next step we combine this theory for inequality with the theory for domains. As

usual, this is accomplished by additional clauses in metatermunify/2 and metametaunify/2

and the introduction of a new, combined metaterm. The code in �gure 52 allows us to

express constraints as in �gure 53. We succeeded allowing for a variable to have a domain

and associated inequality constraints simultaneously. But what happened if we instanti-

ated the variable `B' from our example to `2', say? The answer is simple: almost nothing.

12

Actually, we do not remove duplicates. This operation would be too expensive and duplicates have no

in
uence on the correctness of the theory
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1 metatermunify( '$dom$ne'(Term,Dom1,Rivals1), Term) :-

2 metatermunify( '$dom'(_,Dom1), Term),

3 metatermunify( '$ne'(_,Rivals1), Term).

4

5 metametaunify( '$dom'(NewMeta,Dom1), '$ne'(NewMeta,Rivals2)) :-

6 no_such_var( Rivals2, NewMeta, _),

7 NewMeta = '$dom$ne'(_,Dom1,Rivals2).

Figure 52: Uni�cation of $dom/2 metaterms with $ne/2 metaterms

1 | ?- domain(A,[1,2,3]), neq( A, B).

2

3 A = $dom$ne(_158,[1,2,3],[_154|_161])

4 B = $ne(_154,[_158|_155])

Figure 53: Combining domain variables and inequalities

In particular, the domain of `A' is not reduced by removing the element `2'. Nevertheless,

the fact that `A' is di�erent from `2' is kept in evidence. This knowledge applies when `A'

is eventually instantiated.

To obtain inequality constraints that behave actively in the presence of domain vari-

ables, we have to enhance the clause in metametaunify/2 that describes this very inter-

action. In �gure 54 we have the new version of the essential metauni�cations that lead to

active inequalities. The predicate no such var and cc/6 is used to split the list of inequal

1 metatermunify( '$ne'(Term,Rivals1), Term) :-

2 remove_constant( Rivals1, Term).

3

4 metametaunify( '$dom'(NewMeta,Dom1), '$ne'(NewMeta,Rivals2)) :-

5 no_such_var_and_cc( Rivals2, NewMeta, [], Consts, _, Nriv),

6 list_to_set( Consts, CS),

7 set_difference( Dom1, CS, NewDom),

8 newdom_plus_ne( NewDom, NewMeta, Nriv).

Figure 54: Active uni�cation of $dom/2 metaterms with $ne/2 metaterms

objects of the $ne/2metaterm into a list of constants and a list of variables and metaterms

when a $dom/2 metaterm is uni�ed with a $ne/2 metaterm (line 5 in �gure 54). Addi-

tionally, it applies the same check as no such var/3 from �gure 50. The constants are

removed from the domain via set difference/3. The predicate newdom plus ne/3 fails

for empty domains, leads to a metatermunify/2 call for singleton domains and creates a

$dom$ne/3 metaterm otherwise.

The predicate metatermunify/2 also needs a slight enhancement. When a $ne/2meta-

term gets instantiated, this very constant has to be removed from the domain variables

among the objects from which the $ne/2 metaterm is supposed to be di�erent. This is

the task of remove constant/2 (�gure 55) called from line 2 of �gure 54. Additionally, it



5 Implementation 40

applies the same check as no such var/3 (�gure 50).

1 remove_constant( X, _) :- var( X), !.

2 remove_constant( [X|Rest], Constant) :-

3 meta_deref( X, Tx, Dx, Ax),

4 remove_constant( Tx, Dx, Ax, Constant),

5 remove_constant( Rest, Constant).

6

7 remove_constant( 1, _, C1, C2) :- C1 \== C2.

8 remove_constant( 4, _, C1, C2) :- C1 \== C2.

9 remove_constant( 3, _, _, _).

10 remove_constant( 2, Meta, _, C) :-

11 set_valid_elem( C),

12 extract_domain_internal( 2, Meta, Dom),

13 !,

14 set_remove_elem( Dom, C, NewDom),

15 Meta = $dom(_,NewDom).

16 remove_constant( 2, _, _, _).

Figure 55: Predicate remove constant/2

The example in �gure 56 shows that the new inequality constraints are actively applied

to domain variables. After the instantiation of `B' to `2', this constant is removed from

the domain of `A'.

1 [Clp] ?- domain(A,[1,2,3]), neq( A, B), B=2.

2

3 A = _214 <Constraint(s): [domain(_214,[1,3])]>

4 B = 2

Figure 56: Combining domain variables and 'active' inequalities

5.4.1 An exercise in partial evaluation

In this section we are going to partially evaluate the de�nition of neq/2 with respect

to speci�cation of the implementation of semantic uni�cation ([Holzbaur 90]) and the

particular clauses for metametaunify/2 that have been developed above. Partial evaluation

does not change the semantics of programs. Therefore we cannot expect more than constant

improvements in terms of algorithmic complexity. On the other hand, when the number

of constraints grows with a polynomial of su�cient degree, we are grateful for any tiny

constant improvement in basic operations, as this simply stretches our mileage. In the

experiment below we compare three versions of neq/2:

1. Forward checking is used to implement neq/2:

neq( A, B) :- forward( A \== B).
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2. The de�nition from the last section is used:

neq( A, B) :-

A = '$ne'(_,[B|_]),

B = '$ne'(_,[A|_]).

3. A partially evaluated version of the de�nition from the last section is used.

These three versions of neq/2 are applied to the following examples:

1. Application of alldifferent/1 to lists of unbound variables of increasing length. The

number of inequality constraints is given by

n(n�1)

2

where n is the length of the list.

2. Application of alldifferent/1 to lists of domain variables of increasing length. The

number of inequality constraints is given by

n(n�1)

2

where n is the length of the list.

3. Computation of permutations of increasing numbers of objects via alldifferent/1 and

labeling/1. The number of inequality constraints is given by

n(n�1)

2

where n is the number

of objects. The number of solutions is n!. This benchmark is intended to measure how

quickly constants can be propagated across inequality constraints.

4. The Tennis puzzle from section 4.4.

The execution times for the three versions of neq/2 are summarized in �gure 57, together

with the number of neq/2 constraints and the number of domain variables and their domain

sizes. The table in �gure 57 shows that the implementation of neq/2 via forward/2 (version

Benchmark neq/2 ver. 1 neq/2 ver. 2 neq/2 ver. 3 neq/2 Constraints Domains/Size

alldi�erent 10 0.471 1.133 0.233 45 0/0

alldi�erent 20 2.058 8.950 1.050 190 0/0

alldi�erent 40 9.150 75.850 4.867 780 0/0

alldi�erent 80 42.333 - 22.433 3160 0/0

dom alldi�erent 10 0.688 1.721 0.267 45 10/10

dom alldi�erent 20 2.967 10.792 1.133 190 20/20

dom alldi�erent 40 13.050 77.050 5.150 780 40/40

dom alldi�erent 80 59.483 - 23.767 3160 80/80

neq labeling 3 0.429 0.158 0.154 3 3/3

neq labeling 4 2.325 0.883 0.875 6 4/4

neq labeling 5 13.067 5.517 5.510 10 5/5

tennis 5.212 3.533 1.727 91 18/6

Figure 57: Execution times in seconds for some neq/2 benchmarks

1) is about half as fast in collecting constraints as the third, partially evaluated version.

If the variables upon the the constraints are speci�ed are domain variables, there is some

overhead in version 1 due to the reconsiderations of the FCIR. The real di�erence comes

with labeling. The forward checking version (1) has to enumerate the elements from the
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domains and to �lter them. The specialized versions of neq/2 ( 2 and 3) use predicates

that operate directly on the representations of sets (e.g. set difference/3 in �gure 54).

Let us now turn to the derivation of the partially evaluated version of neq/2. From the

de�nition

neq( A, B) :-

A = '$ne'(_,[B|_]),

B = '$ne'(_,[A|_]).

we can deduce that metatermunify/2 or metametaunify/2 calls may result from the

equations between `A' and `B' and the $ne/2 metaterms. Given the speci�cation from

[Holzbaur 90], we can set up the calls to the metauni�cations ourselves. This explicit

treatment allows us to take advantage of some special cases. In �gure 58 we have the �rst

part of the unfolded version of neq/2. The �rst step is to dereference both arguments. The

1 neq( A, B) :-

2 meta_deref( A, Ta, Da, Aa),

3 meta_deref( B, Tb, Db, Ab),

4 neq( Ta, Tb, Da, Db, Aa, Ab).

5

6 neq( 1, 1, _, _, A, B) :- A \== B.

7 neq( 4, 4, _, _, A, B) :- A \== B.

8 neq( 1, 4, _, _, A, B) :- A \== B.

9 neq( 4, 1, _, _, A, B) :- A \== B.

Figure 58: Partially evaluated version of neq/2, part 1

predicate neq/6 dispatches on the pairs of types of the dereferenced arguments. If neq/2

was called with a pair of constants (type 4) or instantiated metaterms (type 1), we just

verify the inequality.

Derivation: As both arguments are constants or instantiated metaterms, this

would have led to metatermunify/2 calls in the original version. For example,

the call neq(1,2) would have led to the calls:

metatermunify( $ne(_,[2|_], 1),

metatermunify( $ne(_,[1|_], 2)

which reduce in turn to:

remove_constant( [2|_], 1),

remove_constant( [1|_], 2)

Applying the de�nition of remove constant/2 from �gure 55 we arrive at the

unfolded version from above. The symmetry of the inequality constraint allows

us to drop the second inequality with 
ipped arguments.

What did we gain through partial evaluation? The construction of intermediate metaterms

was avoided. As the length of the list of di�erent objects for both metaterms was known
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at partial evaluation time, the recursion for the traversal of this list could be unfolded. A

symmetry was uncovered and used to remove a redundant test. In �gure 59 we have the

clauses of neq/6 that deal with unbound variables (type 3).

Derivation: For the equation between the unbound variable and the $ne/2

metaterm we know from [Holzbaur 90] that the variable is just bound to the

metaterm. The equation between the constant and the second $ne/2metaterm

leads to a metatermuni�cation. As in the previous case, the length of the list of

di�erent objects is known. The only resulting inequality test can be dropped, as

a constant and a variable are always di�erent under the Prolog builtin inequality

predicate.

If the inequality relates two unbound variables (lines 6 to 9 in �gure 59), this

test has to be made, however.

1 neq( 3, 1, _, _, '$ne'(_,[C|_]), C).

2 neq( 3, 4, _, _, '$ne'(_,[C|_]), C).

3 neq( 1, 3, _, _, C, '$ne'(_,[C|_])).

4 neq( 4, 3, _, _, C, '$ne'(_,[C|_])).

5

6 neq( 3, 3, _, _, A, B) :-

7 A \== B,

8 A = '$ne'(_,[B|_]),

9 B = '$ne'(_,[A|_]).

Figure 59: Partially evaluated version of neq/2, part 2

Figure 60 treats inequalities between uninstantiated metaterms (type 2) and constants

(types 1 and 4). The constant is removed from metaterms that have an associated domain

(lines 8 to 12 and 15 to 19) if the constant is a possible set element

13

. If the metaterm is

a $ne/2 structure, the constant is added to the list of di�erent objects (lines 13 and 14).

The last clause of neq remove constant/2 is not to catch other metaterms, but to cover

the cases where the constant is not a representable set element.

Derivation: In a �rst step, neq remove constant/2 could be rewritten as:

neq_remove_constant( Meta, Const) :-

metatermunify( '$ne'(_,[M|_]), C),

M = '$ne'(_,[C|_]).

The �rst equation is guaranteed to provoke a metatermunify/2 call. For the

second equation we cannot tell at partial evaluation time whether it would lead

to a metatermunify/2 or a metametaunify/2 call, as this depends on what the

�rst equation does to the metaterm. In any case the second equation would not

13

if the set implementation would allow only integers as set elements, there would be no need (and

possibility) to remove symbols from such sets
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provide any new information to the metaterm | therefore it can be omitted.

In a second step, we use the de�nition of metatermunify/2. This results in the

case analysis of �gure 60.

1 neq( 2, 1, M, _, _, C) :- neq_remove_constant( M, C).

2 neq( 2, 4, M, _, _, C) :- neq_remove_constant( M, C).

3 neq( 1, 2, _, M, C, _) :- neq_remove_constant( M, C).

4 neq( 4, 2, _, M, C, _) :- neq_remove_constant( M, C).

5

6 :- syntactic_headunification( neq_remove_constant/2).

7

8 neq_remove_constant( '$dom'(V,Dom1), Const) :-

9 set_valid_elem( Const),

10 !,

11 set_remove_elem( Dom1, Const, NewDom),

12 newdom( NewDom, V).

13 neq_remove_constant( '$ne'(V,Rivals1), Const) :- !,

14 V = '$ne'(_,[Const|Rivals1]).

15 neq_remove_constant( '$dom$ne'(V,Dom1,Rivals1), Const) :-

16 set_valid_elem( Const),

17 !,

18 set_remove_elem( Dom1, Const, NewDom),

19 '$dom$ne'(V,Dom1,Rivals1) = '$dom'(_,NewDom).

20 neq_remove_constant( _, _).

Figure 60: Partially evaluated version of neq/2, part 3

In �gure 61 we have the cases that treat inequalities between free variables and unin-

stantiated metaterms and �nally, inequalities between uninstantiated metaterms. The code

1 neq( 2, 3, M, _, V1, V2) :-

2 V2 = '$ne'(_,[V1|_]),

3 neq_metoo( M, V2).

4 neq( 3, 2, _, M, V2, V1) :-

5 V2 = '$ne'(_,[V1|_]),

6 neq_metoo( M, V2).

7

8 neq( 2, 2, M1, M2, V1, V2) :-

9 V1 \== V2,

10 neq_metoo( M1, V2),

11 neq_metoo( M2, V1).

Figure 61: Partially evaluated version of neq/2, part 4

for neq metoo/2 is given in �gure 62. The explicit equations in lines 4, 6 and 8 are for

readability only. In the actual implementation they have been folded into the heads of the

clauses.
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1 :- syntactic_headunification( neq_metoo/2).

2

3 neq_metoo( '$dom'(V,Dom1), Other) :-

4 V = '$dom$ne'(_,Dom1,[Other|_]).

5 neq_metoo( '$ne'(V,Rivals1), Other) :-

6 V = '$ne'(_,[Other|Rivals1]).

7 neq_metoo( '$dom$ne'(V,Dom,Rivals1), Other) :-

8 V = '$dom$ne'(_,Dom,[Other|Rivals1]).

Figure 62: The predicate neq metoo/2

Derivation: In the case of an inequality between two uninstantiated meta-

terms we can rewrite

neq( 2, 2, '$ne'(V1n,R1), '$ne'(V2n,R2), _, _) :-

'$ne'(V1n,R1) = '$ne'(V3n,['$ne'(V2n,R2)|_]),

'$ne'(V2n,R2) = '$ne'(V4n,['$ne'(V1n,R1)|_]).

into:

1 V1n = V3n,

2 no_such_var( R1, V1n, Last1),

3 no_such_var( ['$ne'(V2n,R2)|_], V1n, _),

4 Last1 = ['$ne'(V2n,R2)|_],

5 V1n = '$ne'(_,['$ne'(V2n,R2)|R1]),

6 V2n = V4n,

7 no_such_var( R2, V2n, Last2),

8 no_such_var( ['$ne'(V1n,R1)|_], V2n, _),

9 Last2 = ['$ne'(V1n,R1)|_],

10 V2n = '$ne'(_,['$ne'(V1n,R1)|R2]).

Lines 1 to 5 are from the unfolded body of the metametaunify/2 (�gure 49)

call for the �rst equation, the remaining lines result from unfolding the second

equation. The statement in line 2 resolves into true if we apply the invariant

that a metaterm is kept di�erent from the objects it should di�er from

14

. The

same argument applies to line 3. The remaining code for line 3 is V1n \== V2n.

Line 4 would have appended the new $ne/2 metaterm to list `R1' by binding

it to the tail that would have been determined in line 2. This statement is

replaced by true | therefore we do not know the tail of `R1'. Luckily, the

append operation is commutative in our application. The tail of the other list

has not even to be searched for, it is known statically. We can therefore drop

line 4 with the result of the append operation given in line 5. The reduction of

the statements in lines 6 to 10 is analogous. Thus:

14

the metaterm cannot possibly be introduced in its own list of di�ering objects through the uni�cation

in line 1, because `V3n' is a fresh variable
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neq( 2, 2, '$ne'(V1n,R1), '$ne'(V2n,R2), _, _) :-

V1n \== V2n,

V1n = '$ne'(_,[V2n|R1]),

V2n = '$ne'(_,[V1n|R2]).

The derivation for an inequality between an unbound variable (type 2) and an uninstanti-

ated metaterm is quite similar. The derivations for the remaining metaterms ($dom/2 and

$dom$ne) lead us to the cases summarized in �gure 62.

5.5 The combination of the theories for forward checking and

inequality

So far we created the two theories for forward checking and inequalities in isolation. We

now have to combine the two theories so that forward checking and inequalities can act si-

multaneously on any variable. With the current de�nitions just taken together, the example

in �gure 63 would otherwise simply fail. We already had an example for the combination

1 [Clp] ?- neq( A, 1), forward( A < 3).

2

3 A = _32 <Constraint(s): [neq(_32,1),forward(_32<3)]>

Figure 63: Combining constraints

of semantic theories: the theory for inequalities was joined with the theory of domains.

In �gure 64 we have the metametaunify/2 clause that connects forward checking with

inequalities. The combination is rather passive. The new metaterm $fwd$ne/4 consists

of the �elds of its constituent metaterms. The introduction of this metaterm leads to a

further sort $dom$fwd$ne/5 which has a domain in addition. To deal with all the com-

bined metaterms we have to specify seven clauses for metatermunify/2 and 28 clauses for

metametaunify/2. The skeletons for these clauses were generated by a little program and

1 metametaunify( '$fwd'(NewMeta,Fgs1,FgsTail1),

2 '$ne'(NewMeta,Rivals2)) :-

3 no_such_var( Rivals2, NewMeta, _),

4 NewMeta = '$fwd$ne'(_,Fgs1,FgsTail1,Rivals2).

Figure 64: Joining forward checking with inequalities

some of the bodies of the clauses were taken from the basic cases such as �gure 64.

In general, the combination of n basic metatermsorts yields 2

n

�1 clauses for metatermunify/2.

This is just the cardinality of the powerset of the set of basic metaterms

15

. Each pair of

elements from the powerset has to be covered by clauses of metametaunify/2.

Number of metametaunify/2 clauses =

�

2

n

� 1

2

�

+ 2

n�1

= (2

n

� 1)2

n�1
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n mtuc mmuc

1 1 1

2 3 6

3 7 28

4 15 120

5 31 496

6 63 2016

7 127 8128

8 255 32640

9 511 130816

10 1023 523776

Figure 65: Number of metatermunify/2 clauses (mtuc) and metametaunify/2 clauses

(mmuc) for n metaterms

The numbers for some small n are in �gure 65. This clearly shows that it is not very

adequate to combine more than about four basic metaterm sorts. The parole for program-

ming with metaterms is therefore: `keep the number of metaterm sorts small'. This can be

achieved by using more general metaterms and introducing neutral elements for the �elds

of the general metaterm. In our current scenario this would amount to dropping all but

the $dom$fwd$ne/5 metaterm and using the universal domain and empty lists as neutral

elements.

15

excluding the empty set | therefore `�1'
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5.6 Labeling

By now the language extensions allow us to talk about domains and constraints. The

constraints will in general reduce the search space, but choices might still be left. Besides

choices in the execution state of the Prolog implementation, there might be remaining

choices for the values of domain variables that manifest themselves as non-singleton do-

mains. In order to compute ground solutions, values for these variables have to be selected.

We call this process labeling. Labeling could be coded with the predicates we already have

de�ned: domain/2 gives us the domain of a domain variable and member/2 can be used to

enumerate the elements in a nondeterministic way. Line 3 in �gure 66 looks quite harm-

less. The subtle point is that `X' is not just bound to elements from the domain | `X'

is a domain variable! Therefore, we have uni�cations between metaterms and constants.

In �gure 67 is a fragment of the execution trace of this example. Logically there is noth-

1 | ?- domain(X,[a,b,c]),

2 domain(X,Dom),

3 member(X,Dom).

4

5 X = a

6 Dom = [a,b,c] ;

7

8 X = b

9 Dom = [a,b,c] ;

10

11 X = c

12 Dom = [a,b,c]

Figure 66: Labeling example

ing wrong with this situation, i.e., these metauni�cations. From the computational point

of view it is somewhat annoying that the metauni�cations verify something we already

know: that the elements are valid members of the domain of the variable. For this reason,

(13) 1 Call: member( $dom(_137,[a,b,c]), [a,b,c])

(13) 1 Exit: member( $dom(_137,[a,b,c]), [a,b,c])

(14) 1 Call: metatermunify( $dom(_137, [a,b,c]), a)

% what happens here depends on the implementation of sets

(14) 1 Exit: metatermunify( a, a)

Figure 67: Labeling example trace

and to ease labeling for the user, we introduce the predicate indomain/1. This predicate

indomain/1 provides a little bit more than labeling as described above. It does not only

instantiate single domain variables, but accepts general terms that might contain domain

variables. These domain variables are instantiated nondeterministically one by one, result-

ing in term instances that are ground with respect to the domain variables. The application

of indomain/1 in �gure 68 generates all instances of the turtle/2 term.



5 Implementation 49

1 ?- domain( Direction, [north,east,south,west]),

2 domain( Distance, [5, 10, 100]),

3 X = turtle( turn(Direction), move(Distance)).

4

5 X = turtle(turn($dom(_227,[east,north,south,west])),

6 move($dom(_336,[5,10,100])))

7

8 ?- domain( Direction, [north,east,south,west]),

9 domain( Distance, [5, 10, 100]),

10 X = turtle( turn(Direction), move(Distance)),

11 indomain( X).

12

13 X = turtle(turn(east),move(5)) ;

14 X = turtle(turn(east),move(10)) ;

15 X = turtle(turn(east),move(100)) ;

16 X = turtle(turn(north),move(5)) ;

17 X = turtle(turn(north),move(10)) ;

18 ...

Figure 68: Predicate indomain/1 example

indomain/1 is de�ned in �gure 69. The argument is dereferenced and handed to

structure labeling/3. If the argument is an instantiated metaterm we recurse on its

value, which might be a structure containing domain variables (lines 7 to 9). The same

procedure applies to non-metaterms (lines 10 to 12). Unbound variables are not consid-

ered during labeling (line 18). The elements from variables with an associated domain are

enumerated via set enumerate/2. In �gure 69 we show only the most complex case for

$dom$fwd$ne/5 metaterms (lines 14 to 17). The code for lines 16 and 17 has been taken

from metatermunify/2 (�gure 30 and �gure 54). Uninstantiated metaterms that do not

have an associated domain are ignored during labeling (line 18). The iterator predicate for

structures is listed in �gure 70.

In many applications one has a list of domain variables that all have to be labeled. The

predicate labeling/1 can easily be formulated in terms of indomain/1 (�gure 71).
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1 indomain( X) :-

2 meta_deref( X, Tx, Dx, Ax),

3 structure_labeling( Tx, Dx, Ax).

4

5 :- syntactic_headunification( structure_labeling/3).

6

7 structure_labeling( 1, _, X) :- !,

8 functor( X, _, A),

9 structure_labeling_args( 0, A, X).

10 structure_labeling( 4, _, X) :- !,

11 functor( X, _, A),

12 structure_labeling_args( 0, A, X).

13 % some clauses removed

14 structure_labeling( 2, '$dom$fwd$ne'(V,Dom,Fds,_,Rivals), _) :- !,

15 set_enumerate( Dom, V),

16 remove_constant( Rivals, V),

17 reconsider( Fds).

18 structure_labeling( _, _, _).

Figure 69: Predicate indomain/1

1 structure_labeling_args( N, N, _) :- !.

2 structure_labeling_args( N, A, F) :-

3 N1 is N+1,

4 arg( N1, F, X),

5 meta_deref( X, Tx, Dx, Ax),

6 structure_labeling( Tx, Dx, Ax),

7 structure_labeling_args( N1, A, F).

Figure 70: Predicate indomain/1, continued

1 labeling([]).

2 labeling([V|Vs]) :-

3 indomain(V),

4 labeling(Vs).

Figure 71: Predicate labeling/1
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5.7 Set implementations

In the previous sections we gratuitously ignored the essential question of how to represent

sets. The basic decision to be made is, whether we ought to use a direct representation

of sets. In a direct representation, the set elements represent themselves and every Prolog

term is a possible set element. If we alternatively choose an indirect representation as

bitvectors, we have to provide a mapping between the elements of the sets to their bit-

positions. This mapping can be a global one that maps all constants from the Herbrand

model to integers. Finally, we can require set elements to be integers in the �rst place.

This relieves the implementor from managing a global mapping.

5.7.1 Direct representation of sets as ordered lists

In the direct representation, we can use ordinary lists to represent sets. The disadvantage

of this simple approach is, that the complexity of the computation of the intersection of

such sets is proportional to the product of the cardinalities. We can do better than that,

under the premise that the sets are kept sorted according to the order induced by the

built-in predicate compare/3

16

. The computation of intersections can then be done in

time proportional to the sum of the cardinalities of the sets.

The procedure for the computation of the intersection of two ordered sets is shown in

�gure 72. The predicate succeeds when the third argument is the ordered representation

of the intersection of the �rst and second argument, provided that the �rst two arguments

are themselves ordered sets. As it turns out, this de�nition is equivalent to a merge/3

1 set_intersection( _, [], []) :- !.

2 set_intersection( [], _, []) :- !.

3 set_intersection( [Head1|Tail1], [Head2|Tail2], Intersection) :-

4 compare( Order, Head1, Head2),

5 set_intersection( Order, Head1, Tail1, Head2, Tail2, Intersection).

6

7 set_intersection( =, Head, Tail1, _, Tail2, [Head|Intersection]) :-

8 set_intersection( Tail1, Tail2, Intersection).

9 set_intersection( <, _, Tail1, Head2, Tail2, Intersection) :-

10 set_intersection( Tail1, [Head2|Tail2], Intersection).

11 set_intersection( >, Head1, Tail1, _, Tail2, Intersection) :-

12 set_intersection( [Head1|Tail1], Tail2, Intersection).

Figure 72: Predicate set intersection/3

predicate that removes duplicates.

How do we create sets in the �rst place? This task is taken care of by domain/2 (�gure 25).

The de�nition of list to set/2 in �gure 73 utilizes the built-in predicate sort/2 to sort

the list of domain values and to get rid of duplicates.

16

this excludes variables as set elements as their instantiation might invalidate the ordering
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1 list_to_set( L, Set) :-

2 sort( L, Set).

Figure 73: Predicate list to set/2

The reverse conversion from sets to lists is accordingly simple. The predicate

set to list/2 is in �gure 74.

1 set_to_list( List, List).

Figure 74: Predicate set to list/2

The fact that every Prolog term can be an element of a set is expressed via

valid set elem/1 in �gure 75.

1 set_valid_elem( _).

Figure 75: Predicate valid set elem/1

The recognition of non-empty and singleton sets can be achieved by mere uni�cation, too

(�gure 76). Equality of sets can be tested via the built-in predicate ==/2, due to the fact

1 set_nonempty( [_|_]).

2 set_singleton( [El], El).

Figure 76: Predicates set nonempty/1 and set singleton/2

that they are sorted.

The de�nition of set test membership/2 is given in �gure 77. The predicate succeeds if

the �rst argument equals the �rst element of the second argument. If the �rst argument is

greater than the head of the second argument, we recurse on the tail of the latter. As the

list is sorted, an element which is smaller than the �rst element cannot be a member of the

tail { therefore the predicate set test membership/2 fails as there is no clause covering

this case.

1 set_test_membership( Elem, [Car|Cdr]) :-

2 compare( Order, Elem, Car),

3 set_test_membership( Order, Elem, Cdr).

4

5 set_test_membership(=, _, _).

6 set_test_membership(>, E, S) :- set_test_membership(E,S).

Figure 77: Predicate set test membership/2, �rst version
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This implementation of set test membership/2 thus also exploits the fact that our sets

are ordered. Nevertheless, the simpler version in �gure 78 is faster

17

despite the fact that

it makes no use of the ordering. Note that the two versions are not fully equivalent, as the

second version in �gure 78 succeeds if the �rst argument is a variable, even if the variable

is not a member of the list.

1 set_test_membership( E, [E|_]) :- !.

2 set_test_membership( E, [_|T]) :-

3 set_test_membership( E, T).

Figure 78: Predicate set test membership/2, second version

For the same reasons of performance, we prefer the second version of set remove elem/3

in �gure 80 to the version in �gure 79.

1 set_remove_elem( [], _, []).

2 set_remove_elem( [Car|Cdr], Elem, Res) :-

3 compare( Order, Elem, Car),

4 set_remove_elem( Order, Elem, Car, Cdr, Res).

5

6 set_remove_elem(=, _, _, Res, Res).

7 set_remove_elem(>, Elem, Car, Cdr, [Car|Res]) :-

8 set_remove_elem( Cdr, Elem, Res).

9 set_remove_elem(<, _, Car, Cdr, [Car|Cdr]).

Figure 79: Predicate set remove elem/3, �rst version

1 set_remove_elem( [], _, []).

2 set_remove_elem( [E|T], E, T) :- !.

3 set_remove_elem( [X|T], E, [X|Ts]) :-

4 set_remove_elem( T, E, Ts).

Figure 80: Predicate set remove elem/3, second version

The code for nondeterministic enumeration of elements from a set is in �gure 81.

1 set_enumerate( [El|_], El).

2 set_enumerate( [ _|T], El) :- set_enumerate( T, El).

Figure 81: Predicate set enumerate/2

The predicate for �ltering sets is set filter/4 (�gure 82). The arguments are: a set,

a surrogate variable, a goal and the resulting �ltered set. The predicate is derived from

bagof/3. The di�erence is that there is no need to check for free variables in the goal,

as the only free variable is the surrogate variable, according to the calling conventions of

this predicate. The surrogate variable is instantiated to successive set elements through
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set enumerate/2 in line 3 of �gure 82. An example for the application of set filter/4

is in �gure 83. The surrogate variable is bound to successive elements from the set in a

failure driven loop. Bindings that allow the goal Su < 3 to succeed are collected in the

database. Together they constitute the resulting set [1,2].

5.7.2 Indirect representation of small sets as integer numbers

In the introduction to this section we mentioned that one possible indirect set represen-

tation are bitvectors. Set elements are mapped to bit-positions and the corresponding

bit indicates the presence or absence of the element in the set. It would be convenient if

bitvectors were supported as a basic data type in Prolog implementations. Currently this

is still rare, so we restrict ourselves to small sets with a maximal cardinality of 29. The

magic number 29 comes from the fact that C-Prolog has that many bits available in its

representation of integer numbers. This leads to the de�nition of valid set elem/1 in

�gure 84.

Using to this representation, the computation of intersections is of constant complexity

(�gure 85).

On the other hand, the construction of a set from a list of elements is slightly more involved

(�gure 86). We start with an empty set in line 2 and add valid elements (line 8) by setting

the corresponding bit to one (line 12). If there is a non-representable element in the list,

the predicate list to set/2 fails.

A nonempty set has at least one bit set, i.e., the corresponding number is di�erent from

zero

18

(�gure 87).

Sets of a single element are enumerated by set singleton/2 (�gure 88), together with the

corresponding element.

Testing for membership and removing an element from a set are reduced to simple arith-

metic evaluations (�gure 89 and �gure 90).

The nondeterministic enumeration of elements from a set proceeds by testing corresponding

bits.

17

at least for our examples

18

in the current representation of integers in C-Prolog



5 Implementation 55

1 set_filter( Set, X, P, _) :-

2 recorda( '$bag', '$bag', _),

3 set_enumerate( Set, X),

4 call( P), % once( P)

5 recorda( '$bag', X, _),

6 fail.

7 set_filter( _, _, _, NewSet) :-

8 reap( [], NewSet).

9

10 reap( L0, L) :-

11 recorded( '$bag', X, Ref), erase( Ref), !,

12 reap1( X, L0, L).

13

14 reap1( '$bag', L0, L) :- !, L0 = L.

15 reap1( X, L0, L) :- reap( [X|L0], L).

Figure 82: Predicate set filter/4

1 | ?- set_filter( [1,2,3], Su, Su < 3, New).

2 Su = _8

3 New = [1,2]

Figure 83: Example for the use of set filter/4

1 set_valid_elem( X) :-

2 integer( X),

3 X >= 0,

4 X =< 28.

Figure 84: Predicate valid set elem/1

1 set_intersection( A, B, C) :- C is A /\ B.

Figure 85: Predicate set intersection/3

1 list_to_set( L, Set) :-

2 set_empty( S),

3 list_to_set( L, S, Set).

4

5 list_to_set( [], S, S).

6 list_to_set( [X|Xs], In, Out) :-

7 set_valid_elem( X),

8 set_add_elem( In, X, In1),

9 list_to_set( Xs, In1, Out).

10

11 set_add_elem( Set, Elem, NewSet) :-

12 NewSet is Set \/ 1 << Elem.

13

14 set_empty(0).

Figure 86: Predicate list to set/2
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1 set_nonempty( S) :- S =\= 0.

Figure 87: Predicate set nonempty/1

1 set_singleton( 2'00000000000000000000000000001, 0).

2 set_singleton( 2'00000000000000000000000000010, 1).

3 ...

4 set_singleton( 2'01000000000000000000000000000, 27).

5 set_singleton( 2'10000000000000000000000000000, 28).

Figure 88: Predicate set singleton/2

1 set_test_membership( Elem, Set) :-

2 0 =\= Set /\ 1 << Elem

Figure 89: Predicate set test membership/2

1 set_remove_elem( Set, Elem, NewSet) :-

2 NewSet is Set /\ \(1 << Elem).

Figure 90: Predicate set remove elem/3

1 set_enumerate( Set, El) :-

2 set_singleton( Mask, El),

3 0 =\= Set /\ Mask.

Figure 91: Predicate set enumerate/2
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The enumeration in �gure 92 shows that the integer 6 represents the set with the elements

1 and 2.

1 | ?- set_enumerate( 2'110, El).

2 El = 1 ;

3 El = 2

Figure 92: Enumeration example

The new set filter/4 predicate di�ers from the version of the last section in the way the

elements of the �ltered set are collected. At any time, only one entry of the database is used.

This entry represents the whole �ltered set. The advantage is that the space requirements

are constant. This solution is adequate, because the sets, i.e., integer numbers, are directly

represented by the Prolog implementation, as opposed to lists in the former case.

1 set_filter( _, _, _, _) :-

2 set_empty( S),

3 recorda( '$set', S, _),

4 fail.

5 set_filter( S, X, P, _) :-

6 set_enumerate( S, X),

7 call( P),

8 set_filter_add_solution( X),

9 fail.

10 set_filter( _, _, _, NewSet) :-

11 recorded( '$set', NewSet, Ref),

12 erase(Ref),

13 !.

14

15 set_filter_add_solution( X) :-

16 recorded( '$set', Set, Ref),

17 erase( Ref),

18 set_add_elem( Set, X, Set1),

19 recorda( '$set', Set1, _),

20 !.

Figure 93: Predicate set filter/4

A set filter/4 example equivalent to the one in �gure 83 is given in �gure 94. We see

that the integer 14 represents the set of numbers from 1 to 3. The �ltered set is represented

by the integer 6 (see �gure 92).
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1 | ?- list_to_set( [1,2,3], Set),

2 set_filter( Set, Su, Su < 3, New).

3

4 Set = 14

5 Su = _13

6 New = 6

Figure 94: Example for the use of set filter/4
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5.7.3 Indirect representation of large sets, realized as bitvectors

Currently, bitvectors are not frequently present as a basic data type in Prolog implemen-

tations. What one can do in the meantime is to implement larger sets from integers as

basic building blocks. Available data structures to this purpose are lists of integers, terms

of higher arity with integers as arguments, or trees with integer leaves. Lists do not allow

indexed access to the elements, access time is of O(n), space requirements for updates are

of O(n). Terms allow for indexed access via arg/3, therefore we have the favorable access

time of O(1), but still update space requirements of O(n). Logarithmic arrays

19

[Warren

83] have access costs of O(log n) and update space requirements of O(log n). In addition,

such arrays work reasonably well with sparse indices. The predicate in �gure 95 shows the

general pattern for operations with this realization of bitvectors. An index is split into a

bit-o�set within an integer and an index of the integer in the logarithmic array. Opera-

tions upon integers can be taken from the last section, everything else is provided by the

implementation of logarithmic arrays.

1 set_add_elem( Set, Elem, NewSet) :-

2 Bit is Elem mod 29,

3 Word is Elem // 29,

4 aref_zero( Word, Set, Theword),

5 New_word is Theword \/ 1 << Bit,

6 aset( Word, Set, New_word, NewSet).

Figure 95: Predicate set add elem/3 for bitvectors

19

a kind of radix tree, as this data structure could descend from a radix sorting algorithm[Knuth 75]
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5.7.4 Folding the set representation into programs

After having made a commitment for one particular set representation, we can fold this

representation into the programs that implement forward checking. For example, take the

implementation of sets via ordered lists and the code fragment from �gure 23. It can be

rewritten to what we have in �gure 96. Both clauses of newdom/2 reduce to unit clauses. Set

1 :- meta_functor( '$dom'/2).

2

3 metatermunify( '$dom'(Term,Dom), Term) :-

4 set_test_membership( Term, Dom).

5

6 metametaunify( '$dom'(V,Dom1), '$dom'(V,Dom2)) :-

7 set_intersection( Dom1, Dom2, Dom3),

8 newdom( Dom3, V).

9

10 newdom( [V], V ).

11 newdom( [E1,E2|Es], '$dom'(_,[E1,E2|Es])).

Figure 96: Domains in Metaprolog, unfolded set representation

properties such as singularity and non-emptyness are determined through mere uni�cation.

Two predicate calls and a cut are saved.
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5.8 Compilation

At the time of writing, Metaprolog is implemented in C-Prolog. For the purpose of

performance comparisons with a special purpose prototype implementation ([Hentenryck

and Dincbas 86, Hentenryck 89]) this is a very bad starting point as C-Prolog is `just' a

Prolog interpreter, whereas the prototype encodes domain operations in C. Although this

paper is primarily motivated by the software technological advantages of an executable

Prolog speci�cation for forward checking, we will not dismiss the reader without at least

giving an estimate of the achievable performance when employing an optimizing Prolog

compiler.

Our forward checking code does not contain any unusual Prolog constructs. Therefore

one can expect the common speedups from compilation. The other half of the story is

that the Prolog environment hosting the compiler has to be modi�ed as C-Prolog ac-

tually was, in order to provide the functionality of Metaprolog. There is an executable

speci�cation for this part, too ([Holzbaur 90]), but it is not meant and suited for direct

execution. The global idea for the provision of Metaprolog functionality is to take a decent

host Prolog implementation, apply the relatively small patches to allow for user de�ned

semantic uni�cation and stop hacking in C at this point. This is somewhat contrary to the

construction of a special purpose (prototype) interpreter from scratch. The problem with

high performance Prolog systems is that they are commercialized, i.e., the source code is

not available.

What will be presented in the sequel is an emulation of Metaprolog in compiled Quintus

Prolog Prolog. As it turns out, the operation of dereferencing metaterm chains, which

is a kernel functionality of Metaprolog, soon dominates the emulation. The costs for

dereferencing metaterm chains are of linear complexity. The implementation constants are

summarized in �gure 97. The di�erences between the C-Prolog Metaprolog kernel and

the emulation in Quintus Prolog stem from the fact that in Metaprolog meta deref/4

is a builtin predicate call which executes a tight loop, comparable to the loop that deref-

erences `ordinary' Prolog variables. In the emulation, however, every dereferencing step

necessitates a procedure call.



5 Implementation 62

0 500 Chain length 1500 2000

0

50

100

150

200

250

m

i

l

l

i

s

e

c

o

n

d

s

� Metaprolog in C-Prolog

+ Metaprolog emulation in

compiled Quintus Prolog

� experimental implementation of

Metaprolog with path

compression

�

�

�

�

�

.

.....
......
.....
......
......
.....
......
.....
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
.....
.....

+

+

+

+

..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.

�

�
�

�

............
..............................................................

.............................................................
..............................................................

..............................................................
.............................................................

..............................................................
..................................................

..............................................................
..............................................................

.............................................................
..............................................................

..............................................................
......

Figure 97: Dereference times in milliseconds vs. metaterm chain length
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Given this model for dereferencing costs, we can split the execution time of programs

into the portion spent in the kernel emulation (kernel time) and the remaining `pure'

Prolog execution, if we know how many dereference operations on chains of certain lengths

arise. This `deref pro�le' is characteristic for a program and independent from the kernel

implementation. The kernel execution time for one particular deref pro�le is computed as:

kernel time =

1

X

len=1

Calls

len

(klen + d)

The constants k and d are the parameters of the �rst order polynomials that describe the

linear relationships. They are summarized in �gure 98.

kernel time(Len)

C-Prolog im-

plementation

of Metaprolog

Metaprolog

with path

compression

Metaprolog emulation

with compiled

Quintus Prolog

kLen + d 0:0216Len + 0:0308 0:0023Len + 0:0599 0:1179Len + 0:0427

Figure 98: Kernel execution time model

In �gure 99 and �gure 100 we �nd the deref pro�les for the Tennis example and for

an application of alldifferent/1 (�gure 14) with version 2 of neq/2 from section 5.4.1

applied to a list of 40 domain variables (780 inequality constraints).

0 10 20 30 Length 50 60 70 80

1
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1000

5000
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a

l

l

s

Figure 99: Deref pro�le for the Tennis example

From this data we compute the results of �gure 101 and �gure 102. If we compare

the total execution times for the second example, we might get the impression that the

Quintus Prolog compiler is not worth the money. A second look reveals that kernel emu-

lation consumes as much as 85% of the execution time. If we compare the `pure' execution

times, have the usual average speedups con�rmed again. Even in the �rst example, which
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Figure 100: Deref pro�le for the dom alldifferent 40 example

is relatively `
at' in terms of metaterm chains, almost half of the time is spent in the kernel

emulation. The middle column, an implementation of Metaprolog that uses a path com-

pression algorithm [Aho et al. 83] to keep the chains short, is provided as another reference

point for this timing model. It also should give an idea of the achievable performance of

of Metaprolog with path compression in a compiling Prolog. The model con�rms that

it is bene�cial to compress metaterm chains in terms of kernel time. On the other hand,

path compression requires a modi�ed trailing mechanism, which slightly penalizes normal

Prolog execution | at least in the current implementation.

Runtime (msec.)

C-Prolog im-

plementation

of Metaprolog

Metaprolog

with path

compression

Metaprolog emulation

with compiled

Quintus Prolog

Total 1727.00 1733.00 300.00

Kernel 27.79 2% 16.25 1% 123.07 41%

Rest 1699.21 98% 1716.75 99% 176.93 59%

Figure 101: Execution time partition estimates for the Tennis example
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Runtime (msec.)

C-Prolog im-

plementation

of Metaprolog

Metaprolog

with path

compression

Metaprolog emulation

with compiled

Quintus Prolog

Total 75850.00 79966.00 55851.00

Kernel 9414.43 12% 2961.05 4% 47251.42 85%

Rest 66435.57 88% 77004.95 96% 8599.58 15%

Figure 102: Execution time partition estimates for the dom alldifferent 40 example
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6 Summary

Earlier works on the incorporation of forward checking and other consistency techniques

over �nite domains into Prolog resulted in C implementations of the extensions. Our

Prolog implementation of forward checking is based on semantic uni�cation, which has

proven useful as a powerful implementation technique for mechanisms that one would not

customarily associate with uni�cation. The paper was primarily motivated by the software

technological advantages of an executable Prolog speci�cation for forward checking.
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Glossary

bound variable:

An instantiated variable.

circular term:

An instance of a term containing a variable that is instantiated to the term it occurs in.

constant:

An atom or a number.

constraint:

A restriction in the form of a predicate that is enforced on one ore more variables. In the

context of domain variables a constraint usually limits the set of possible values of domain

variables.

dereferencing:

Following a chain of indirections.

domain variable:

A variable with an associated domain. The values to which the variable can possibly be

instantiated must be elements from the domain.

domain:

A set of terms.

FCIR:

Forward checking inference rule.

forward checking:

A technique to establish consistency across the assignments of (domain) variables which

are related by constraints.

free variable:

Uninstantiated variable.

functor:

The name of a Prolog structure with an associated arity.

ground term:

A term that contains no variables.

instance:

A term with partially instantiated variables.
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instantiated variable:

A variable bound to a value.

instantiation:

Binding of a free (possibly constrained) variable to a term.

interpreted terms:

Terms that are treated di�erently during uni�cation. The exact treatment of such terms

is described by the user-de�ned predicates metatermunify/2 and metametaunify.

label:

An element from a domain. Labeling is the process of assigning labels, i.e., values from

the domain, to domain variables.

metafunctor:

Alternative name for 'interpreted functor'.

metaterm:

Alternative name for 'interpreted term'.

mutual exclusion:

A control mechanism that prevents multiple events from taking place at the same instant.

shared variable:

A variable that appears more than once in a clause.

structure:

A term consisting of a functor and a corresponding number of arguments. The arguments

are terms.

surrogate:

Replacement, substitute, placeholder.

term:

A term is either a constant or a variable or a structure.

trigger:

An association between an event and a Prolog goal to be executed at an instance of the

event.

unbound variable:

A variable having no value yet.

uni�cation:

Computation of the substitutions for variables in two terms that makes them equal. We
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distinguish between syntactic and semantic uni�cation. Semantic uni�cation deals with

the equality of interpreted terms.

uninstantiated variable:

Opposite of instantiated, i.e., unbound. An uninstantiated interpreted term represents a

constraint over a variable.
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