
Integration of Extended Uni�cation into a Prolog

Interpreter

Christian Holzbaur

(email: christian@ai-vie.uucp)

Department of Medical Cybernetics and AI

University of Vienna, and

Austrian Research Institute for Arti�cial Intelligence

Freyung 6, A-1010 Vienna, Austria

�

TR-90-09

Abstract

This paper reports on the practical experiences collected during the implemen-

tation of constraint logic programming techniques via metaterms and extended uni-

�cation. During the actual implementation of extended uni�cation in a concrete

PROLOG implementation some minor re�nements to a speci�cation proposed ear-

lier [3] had to be taken care of. Further, a convention related to the interpretation

of the meaning of metaterms has been moved into the speci�cation. This paper is

also thought as a supplement to the C-Prolog manual [7], describing the additional

predicates and conventions for the implementation of extended uni�cation.

1 Introduction

The incorporation of semantic uni�cation into PROLOG was inspired by the work of Ko-

rnfeld [5]. His early paper provoked some clari�cations in [2]. In Kornfeld's outline a failed

syntactic uni�cation was patched by trying to prove the equality of the two terms in the

extended theory. This gave rise to some problems which can be avoided altogether through

the introduction of a new data type which receives special treatment during uni�cation.

This special treatment is user-de�ned. The user provides the semantic theory in form

of PROLOG predicates. The approach is completely general, i.e., the semantic theory

might be nondeterministic

1

or even refer to the extended theory itself. The implementa-

tion (�g. 1) of freeze/2 [1] requires this generality. Although the approach allows the

�

Thanks for feedback are due to Igor Mozetic who uses this code in the course he teaches

1

interesting in commutative, associative theories for example

1

2 IMPLEMENTATION OF EXTENDED UNIFICATION 2

1 :- meta_functor($frozen/2).

2

3 metatermunify($frozen(Value,Goals),Value) :- call(Goals).

4

5 metametaunify($frozen(V,G1),$frozen(V,G2)) :-

6 V = $frozen(_,(G1,G2)).

7

8 freeze($frozen(_,G),G).

Figure 1: Implementation of freeze/2

speci�cation of such control related matters, it seems to the author, that their presence

indicates the lack of a sound semantic theory in most cases. Delay mechanisms stretch the

operationality only practically, in theory nothing is gained. The aim of this paper is not to

give implementations of extended uni�cation theories, but to present a common basis for

their realization. The term 'theory' is used rather sloppy in this context { some uni�cation

extensions don't deserve this naming. Purists should read 'method' instead of 'theory' in

the sequel.

Section 2 speci�es the incorporation of extended uni�cation through a metainterpreter.

Later we show how this speci�cation can be implemented directly. In section 3 some

empiric evidence is given for the claim that the extensions incur virtually no overhead to

programs that do not use them. Section 4 describes the predicates and conventions that

are needed to implement a particular extended uni�cation theory from the users point of

view.

2 Implementation of extended uni�cation

We present the incorporation of extended uni�cation through a PROLOG metainterpreter

in order to facilitate the transparency and the portability of the approach. Note that the

following speci�cation does not describe any particular extended uni�cation theory. It gives

an account of how such extensions can be incorporated, i.e., made operational.

2.1 Speci�cation

The realization of extended uni�cation is outlined through a PROLOG metainterpreter

that makes the uni�cation explicit. Although this is an elegant and precise means [8], it

should be stressed that the actual implementation does not use this metainterpreter as

such. In general we can get rid of the additional level of interpretation that is introduced

by a metainterpreter through partial evaluation [6]. In this particular case we would end

up with copies of the extended uni�cation algorithm in every predicate. Even if we limit

the depth up to which the extended uni�cation algorithm is unfolded, the increase in code-

size is unbearable. Therefore we propose a realization of the speci�cation that is more

2 IMPLEMENTATION OF EXTENDED UNIFICATION 3

direct. As the interesting part of the operation of the metainterpreter is limited to the

uni�cation, we can expect a certain locality of necessary changes that have to be applied

to the kernel of a PROLOG implementation, to achieve the desired behaviour directly. On

this implementation level the incorporation of extended uni�cation is quite similar to the

implementation of delay/2

2

. Therefore many techniques presented in [1] can be applied

more or less directly later when we get rid of the metainterpreter.

A simple metainterpreter that makes the uni�cation explicit is given in �gure 2. It handles

just pure PROLOG. Control primitives as cut and if-then-else and metalogical predicates

as setof/3 are out of its scope. As the incorporation of extended uni�cation does not need

any changes in the control structure, we can inherit the corresponding functionality from

PROLOG. Lines 3 to 7 in �gure 2 take care of the interesting part of the computation.

If a goal G is to be resolved with a predicate, the goal and the head of a clause of the

matching predicate have to be uni�ed. Matching predicate candidates are found by hashing

based on the functor of the goal and its arity. The predicate headunification/5 takes

explicit care of the uni�cation of the actual arguments of G with the formal arguments

of candidate clauses. If the uni�cation succeeds, the interpreter proceeds with the body

of the selected clause of the selected predicate recursively (line 7 in �gure 2). In order

to prevent in�nite regress to the extended uni�cation theory during the implementation

of the extended uni�cation theory, one needs to refer to the syntactic uni�cation of the

host PROLOG implementation. This could be done through special built-in predicates. It

turned out to be more convenient to have declarations that lead to syntactic headuni�cation

for certain predicates. The set of all predicates is split into three categories:

category 0: Extended, semantic headuni�cation. This is the default.

category 1: Syntactic headuni�cation. This is typically used for the implementation of

the extended uni�cation theory that has to refer to the components of metaterms.

category 2: Symmetric syntactic headuni�cation. This is also used for the implementa-

tion of the extended uni�cation theory. If more than one sort of metaterms is used

to implement the extended theory, one has to specify how all possible pairs of them

are to be uni�ed via the user-de�ned predicate metametaunify/2. If a predicate is

de�ned to be symmetric, the number of de�ning clauses is cut into half.

The predicate headunification category/2 returns the uni�cation category for any func-

tor. The predicate headunification/5 in �gure 3 dispatches on the uni�cation category.

Lines 1 to 4 treat extended uni�cation. A most general copy of the goal G

3

is used to look

for candidate clauses via clause/2. The most general copy contains just free variables as

arguments. Therefore no signi�cant uni�cations take place | we take care of them in line

4 of �gure 3 by a call to metaunify/2. Syntactic headuni�cations are done directly by

clause/2 in lines 6 and 7 of �gure 3. Symmetric, syntactic headuni�cation is de�ned for

predicates of arity two only. It might succeed in lines 9 and 10 or with switched arguments

2

a primitive function in [1] to implement freeze/2

3

the most general copy of member(2,[2,3]) is: member(,)

2 IMPLEMENTATION OF EXTENDED UNIFICATION 4

1 solve(true) :- !.

2 solve((A,B)) :- !, solve(A), solve(B).

3 solve(G) :-

4 functor(G,Name,Arity),

5 headunification_category(G,Cat),

6 headunification(Cat,G,Name,Arity,Body), % Fig. 3

7 solve(Body).

Figure 2: Metainterpreter

1 headunification(0,G,N,A,Body) :- % semantic

2 functor(Gn,N,A),

3 clause(Gn,Body),

4 metaunify(Gn,G). % Fig. 5

5

6 headunification(1,G,_,_,Body) :- % syntactic

7 clause(G,Body).

8

9 headunification(2,G,N,2,Body) :- % syntactic , symmetric

10 clause(G,Body).

11 headunification(2,G,N,2,Body) :-

12 functor(Gn,N,2),

13 arg(1,G,A1), arg(2,Gn,A1),

14 arg(2,G,A2), arg(1,Gn,A2),

15 clause(Gn,Body).

Figure 3: Headuni�cation

in lines 11 to 15 in �gure 3. The speci�cation for the syntactic, symmetric case is just

an approximation. In the actual implementation there is a kind of cut after a successful

headuni�cation. We don't get multiple solutions because of symmetric headuni�cation.

This could be made explicit in the speci�cation by using the de�nition of clause/2.

Extended uni�cation is oriented along the types of objects that are subject to the uni�ca-

tion. Before we go into the details of how to unify each pair of these types we have to make

a little deviation that is made necessary by the way how many extended theories work:

A logical (PROLOG) variable gets assigned a value once and only once.

There is no way to change this value as in imperative languages. Many extended

theories conceptually change the value of variables after they got a �rst value.

As an example take a theory called 'forward checking' [4] where a variable

has an associated domain which is narrowed subsequently. This narrowing is

re
ected by 'reassignments' of the new domains.

2 IMPLEMENTATION OF EXTENDED UNIFICATION 5

As our extended theories are implemented in PROLOG, there is no way to

actually reassign values to logical variables. The escape from this problem is the

concept of 'open' datastructures. Instead of representing the value of a variable

directly, we package it into a structure. The special property of this structure

is that it can be extended, i.e., updated with subsequent values. A familiar

example of this technique are open tailed lists [8]. Such lists can be extended

inde�nitely by appending any number of open tailed lists. If we assume the

convention that the last element of such a list represents its 'value' we have

a mechanism for nondestructive (re)assignments. Of course, the datastructure

does not have to be a list | any structure that is extended by a value and an

unbound variable for subsequent updates works. The process of scanning such

a datastructure to �nd its 'value' is called 'dereferencing'.

In our extended uni�cation theories we often need this functionality. There-

fore there are two types of metafunctors: derefable metafunctors and other

metafunctors. The �rst argument

4

of a derefable metafunctor might be a dere-

fable metafunctor | we proceed the scan for its value recursively in analogy

to the open tailed lists. If the �rst argument is an unbound variable the value

of the metaterm is undetermined. Any other object in the �rst argument po-

sition of a derefable metafunctor represents the value of this metaterm. As a

result of this coding scheme a very frequent operation in extended theories is

dereferencing such chains of metaterms, as all operations usually apply to the

current value of an object, which is found at the end of the chain.

Dereferencing of metaterms could be left to be coded by the author of the

extended uni�cation theory, but the pattern is so frequent that dereferencing

has been made part of the speci�cation and the kernel.

The predicate meta deref/4 in �gure 4 lines 1 to 5 takes any object as its �rst argument

and returns its type, the last element of the chain of metafunctors and the �rst argument

of the last derefable metafunctor in the chain. There are �ve basic types of objects that

can result when an arbitrary object is dereferenced:

type 1: There was a nonempty chain of derefable metafunctors. The last metafunctor in

the chain has its �rst argument bound to something other than a metafunctor. We

call such a metafunctor instantiated. Example:

5

| ?- X=meta(const), meta_deref(X,T,D,A).

X = meta(const)

T = 1

D = meta(const)

A = const

4

this is just another convention | it could be any argument

5

assume that meta/1 is de�ned as a derefable metafunctor and +/2 as a non-derefable metafunctor

2 IMPLEMENTATION OF EXTENDED UNIFICATION 6

type 2: There was a nonempty chain of derefable metafunctors. The last metafunctor in

the chain has its �rst argument unbound. The 'value' of the metafunctor is not yet

completely determined. Example:

| ?- X=meta(Y), Y=meta(Z), meta_deref(X,T,D,A).

X = meta(meta(_9))

Y = meta(_9)

Z = _9

T = 2

D = meta(_9)

A = _9

type 3: The �rst argument to meta deref/4 was an unbound variable. An unbound

variable has of course no �rst argument. Therefore the third and fourth argument

are equal to the �rst argument. Example:

| ?- meta_deref(X,T,D,A).

X = _0

T = 3

D = _0

A = _0

type 4: The �rst argument to meta deref/4 was no metafunctor and no variable. As in

the previous case the third and the fourth argument are equal to the �rst argument.

Example:

| ?- meta_deref(const,T,D,A).

T = 4

D = const

A = const

type 5: After skipping an arbitrary number (including zero) of derefable metafunctors a

non-derefable metafunctor was encountered. Example:

| ?- X=meta(Y), Y=meta(Z), Z=I+K, meta_deref(X,T,D,A).

X = meta(meta(_17+_18))

Y = meta(_17+_18)

Z = _17+_18

I = _17

2 IMPLEMENTATION OF EXTENDED UNIFICATION 7

1 meta_deref(Term, Type, Last, Arg) :-

2 meta_deref(Term, Term, T, L, A),

3 Type = T,

4 Last = L,

5 Arg = A.

6

7 meta_deref(Last, Arg, 3, Last, Arg) :- var(Arg), !.

8 meta_deref(A0, A1, T, Last, Arg) :-

9 derefable_meta(A1), !, % builtin

10 arg(1,A1,A2),

11 meta_deref(A1,A2,Ta,Last,Arg),

12 map_type(Ta,T).

13 meta_deref(Last, Arg, 5, Last, Arg) :- ismeta(Arg), !. % builtin

14 meta_deref(Last, Arg, 4, Last, Arg).

15

16 map_type(1,1).

17 map_type(2,2).

18 map_type(3,2).

19 map_type(4,1).

20 map_type(5,5).

Figure 4: meta deref/4

K = _18

T = 5

D = meta(_17+_18)

A = _17+_18

Lines 2 to 5 in �gure 4 ensure the appropriate
owpattern for meta deref/5. The builtin

predicates derefable meta/1 and ismeta/1 succeed if the functor with which they are

called has the corresponding attribute. Lines 7, 13 and 14 in �gure 4 treat the base-cases.

Skipping of metafunctor chains takes place in lines 8 to 12. As the recursive branch shares

the code of the base-cases, the types returned from them have to be �xed in order to re
ect

the situation that a nonempty chain of derefable metafunctors has been skipped.

Now we are in the position to specify how each pair of objects of certain types should be

uni�ed. The predicate metaunify/2 (lines 1 to 5 in �gure 5) determines the types of its

arguments via meta deref/4 and hands them together with the dereferenced arguments to

metaunify/6 i� they are not equal already (line 4 in �gure 5). The given realization of the

equality test via ==/2 is just an approximation. In the actual implementation only pointer

equality is checked. If one of the two arguments to metaunify/2 was an unbound variable

(type 3), this argument is bound to the other argument (lines 7 and 8 in �gure 5). Lines

10, 11, 20 and 21 deal with the uni�cation of 'constants', i.e., non-metaterms. The pred-

icate metaunify rec/2 in �gure 6 recursively applies metaunify/2 to the corresponding

2 IMPLEMENTATION OF EXTENDED UNIFICATION 8

1 metaunify(X,Y) :-

2 meta_deref(X,Tx,Dx,Ax), % Fig. 4

3 meta_deref(Y,Ty,Dy,Ay),

4 (Ax == Ay ->

5 true ; metaunify(Tx,Ty,Dx,Dy,Ax,Ay)).

6

7 metaunify(3,_, Dx, Dy, _, _) :- Dx = Dy.

8 metaunify(_,3, Dx, Dy, _, _) :- Dx = Dy.

9

10 metaunify(1,1, _, _, Ax, Ay) :- metaunify_rec(Ax,Ay). % Fig. 6

11 metaunify(1,4, _, _, Ax, Ay) :- metaunify_rec(Ax,Ay).

12 metaunify(1,2, _, Dy, Ax, _) :- metatermunify(Dy,Ax).

13 metaunify(1,5, _, Dy, Ax, _) :- metatermunify(Dy,Ax).

14

15 metaunify(2,1, Dx, _, _, Ay) :- metatermunify(Dx,Ay).

16 metaunify(2,4, Dx, _, _, Ay) :- metatermunify(Dx,Ay).

17 metaunify(2,2, Dx, Dy, Ax, Ay) :- metametaunify(Dx,Dy).

18 metaunify(2,5, Dx, Dy, _, _) :- metametaunify(Dx,Dy).

19

20 metaunify(4,1, _, _, Ax, Ay) :- metaunify_rec(Ax,Ay). % Fig. 6

21 metaunify(4,4, _, _, Ax, Ay) :- metaunify_rec(Ax,Ay).

22 metaunify(4,2, _, Dy, Ax, _) :- metatermunify(Dy,Ax).

23 metaunify(4,5, _, Dy, Ax, _) :- metatermunify(Dy,Ax).

24

25 metaunify(5,1, Dx, _, _, Ay) :- metatermunify(Dx,Ay).

26 metaunify(5,4, Dx, _, _, Ay) :- metatermunify(Dx,Ay).

27 metaunify(5,2, Dx, Dy, _, _) :- metametaunify(Dx,Dy).

28 metaunify(5,5, Dx, Dy, _, _) :- metametaunify(Dx,Dy).

Figure 5: Extended uni�cation

arguments of two structures, given that the name and arities of the functors match. The

clauses in lines 12-16 and 22-26 in �gure 5 unify metaterms with ordinary terms through

calls to metatermunify/2, a user-de�ned predicate that implements one part of the ex-

tended uni�cation theory. The second part of the de�nition of the extended theory is called

from the remaining clauses in �gure 5.

2 IMPLEMENTATION OF EXTENDED UNIFICATION 9

1 metaunify_rec(X,Y) :-

2 functor(X,N,A),

3 functor(Y,N,A),

4 metaunify_args(0,A,X,Y).

5

6 metaunify_args(N,N,_,_) :- !.

7 metaunify_args(N,A,X,Y) :-

8 N1 is N+1,

9 arg(N1,X,Xa),

10 arg(N1,Y,Ya),

11 metaunify(Xa,Ya),

12 metaunify_args(N1,A,X,Y).

Figure 6: Extended uni�cation (continued)

2 IMPLEMENTATION OF EXTENDED UNIFICATION 10

2.2 Realization

As mentioned above, the speci�cation in the form of a metainterpreter cannot be used

directly for space and e�ciency reasons. This section deals with the necessary modi�cations

in a PROLOG implementation that allow the direct implementation of the speci�cation.

We applied the necessary changes to a widespread PROLOG interpreter: C-Prolog [7] |

the resulting extended interpreter is called MetaProlog.

2.2.1 Uni�cation

Metastructures are PROLOG terms with an arity > 0, quite similar to susp/2 in [1].

The standard uni�cation algorithm has to be modi�ed in order to take the new data

type 'metafunctor' into account. If the host PROLOG system does its type dispatching

based on tags, we can provide metafunctors with a special tag. In systems that do type

recognition by signed pointer comparisons we need an additional test in the branches that

treat structures. Terms are tagged at their creation time | during read/1 and through

explicit calls to functor/3 and =../2. The following table sketches the implementation

of the extended uni�cation algorithm:

unify(X,Y) constant variable functor metafunctor

constant compare bind fail metatermunify/2

variable bind bind bind bind

functor fail bind compare, recurse metatermunify/2

metafunctor metatermunify/2 bind metatermunify/2 metametaunify/2

Once the uni�cation algorithm 'knows' that at least one of its two arguments is a metaterm,

it conceptually calls one of the user-de�ned handlers metametaunify/2or metatermunify/2.

Of course, no implementor would like to spoil his high-performance uni�cation algorithm

by suspending it and by calling a user-de�ned predicate with the remaining uni�cation as

continuation

6

. If we consider syntactic uni�cation as an atomic operation and just col-

lect calls to metauni�cations and proceed for the moment as if they would succeed, the

uni�cation algorithm remains deterministic

7

.

As in [1], we need a new machine register W to hold the pending metauni�cations. The

arguments to the pending uni�cations are stored on the heap. If the W register already

contains a pending uni�cation, we allocate a conjunction over pending uni�cations on the

heap and assign it to W in turn. The W register needs not to be preserved across failures,

i.e., the size of the choicepoint data structure remains the same. A typical fragment from

the C code that implements uni�cation is shown in �gure 7.

6

pending computation

7

In the case of deterministic uni�cation extensions it is possible to execute the extensions inside the

uni�cation algorithm

2 IMPLEMENTATION OF EXTENDED UNIFICATION 11

1 if (IsAtomic(b)) {

2 if (IsMeta(SkelP(a)->

3 push_metaunify(pa,b)

4 continue;

5 }

6 goto fail;

7 }

Figure 7: Fragment of uni�cation code

2.2.2 Execution of pending metauni�cations

The contents of the W register is executed at each inference step by calling the appropriate

user-de�ned handlers | in our case metametaunify/2 and/or metatermunify/2. On

systems with an event handling mechanism the check for a nonempty W register imposes

no additional overhead [1]. To wait with the semantic uni�cations until after success of the

syntactic uni�cation not only makes the implementation of nondeterministic uni�cation

possible, but can also lead to the detection of failure during syntactic uni�cation, making

semantic uni�cation(s) super
uous. Further, variables inside metaterms might get bound

by syntactic uni�cation, providing more information to the semantic uni�cation which is

to follow.

As metauni�cations are just collected during syntactic uni�cation, they might mutate into

ordinary uni�cations through later bindings. Example (assume that meta/1 is a derefable

metaterm):

f(1, 2) = f(meta(X), X).

The uni�cation of the number 1 with meta(X) is collected as a metauni�cation to be

executed at the next inference step. The uni�cation between the number 2 and X turns

meta(X) into an instantiated metaterm. This has to lead to a uni�cation between the

numbers 1 and 2 | according to the speci�cation in �gure 5. In analogy, metametaunify/2

calls can mutate into metatermunify/2 calls. Therefore the main computation takes place

when the pending metauni�cations are executed based on the speci�cation in �gure 5

and not during collection. A fragment of this code is shown in �gure 8. Now a further

reason for making dereferencing a part of the speci�cation becomes evident: The realization

of the speci�cation can be moved into the low level implementation, where it can be

implemented more e�ciently as opposed to the case when dereferencing is an explicit part

of the extended uni�cation theory. The C-code counterpart to meta deref/4 from �gure 4

is in �gure 9. It is reproduced for the interested reader who is familiar with C. The weak

correspondence between the PROLOG speci�cation and the C-code should be obvious. A

detailed description of the C-code would require a lengthy interpretation of the internal

C-Prolog datastructures.

2 IMPLEMENTATION OF EXTENDED UNIFICATION 12

1 t1 = meta_deref(a,x1,Addr(SkelP(g)->Arg1), &a,&ag,&ap, &aa,&aag,&aap);

2 t2 = meta_deref(b,x1,Addr(SkelP(g)->Arg2), &b,&bg,&bp, &ba,&bag,&bap);

3

4 switch (t1) {

5 case 1: switch (t2) {

6 case 1:

7 case 4:

8 TRY(unify(aa,x,aag,ba,x,bag));

9 case 2:

10 case 5:

11 env = v1; GrowGlobal(2);

12 *env = bp;

13 *(env+1) = IsAtomic(aa) ? aa : aap;

14 ConsMol(Addr(FunctorP(MetaTerm)->gtoffe),env,pg);

15 goto icall;

16 } break;

Figure 8: Fragment of code setting up a call to metatermunify/2

2 IMPLEMENTATION OF EXTENDED UNIFICATION 13

1 int

2 meta_deref(t,tg,tp, lt,ltg,ltp, la,lag,lap)

3 register PTR t;

4 PTR tg,tp, *lt,*ltg,*ltp,*la,*lag,*lap;

5 { register PTR a; PTR ag, ap;

6 int depth = 0;

7

8 t = *tp;

9 if (IsVar(t)) {

10 tp = FrameVar(IsLocalVar(t) ? x : tg, VarNo(t));

11 deref_macro(t,tp);

12 if (Undef(t)) {

13 t = tp;

14 }

15 else if (IsComp(t)) {

16 tg = MolP(tp)->Env;

17 t = MolP(tp)->Sk;

18 }

19 }

20 a = t; ag = tg; ap = tp;

21 while (IsComp(a) && !Undef(*a) &&

22 IsMeta(SkelP(a)->Fn) && !NoDeref(SkelP(a)->Fn)) {

23 depth++;

24 t = a; tg = ag; tp = ap;

25 ap = Addr(SkelP(a)->Arg1); a = *ap;

26 if (IsVar(a)) {

27 ap = FrameVar(IsLocalVar(a) ? x : ag, VarNo(a));

28 deref_macro(a,ap);

29 if (Undef(a)) {

30 a = ap;

31 break;

32 }

33 if (IsComp(a)) {

34 ag = MolP(ap)->Env;

35 a = MolP(ap)->Sk;

36 }

37 }

38 }

39 *lt = t; *ltg = tg; *ltp = tp;

40 *la = a; *lag = ag; *lap = ap;

41 if (IsRef(a) && Undef(*a)) return depth ? 2 : 3;

42 if (IsComp(a) && IsMeta(SkelP(a)->Fn)) return 5;

43 return depth ? 1 : 4;

44 }

Figure 9: C-code counterpart to meta deref/4

3 BENCHMARKS 14

3 Benchmarks

This section reports on two experiments conducted in order to provide a reference point for

any further evaluation of the merits of semantic uni�cation based on this implementation.

It also gives some empiric evidence to the claim made in [3], namely that the provision of

semantic uni�cation is incurring virtually no overhead.

3.1 AI Expert June 1987

These benchmarks were written by Fernando Pereira of SRI to test di�erent aspects of a

PROLOG implementation. The benchmarks concentrate on 'basic execution' performance

and do not perform any input/output or other operating system interface functions. The

benchmarks were used for a comparison of di�erent PC and MAC PROLOGs in the June

1987 issue of AI Expert magazine (published by Miller Freeman, 500 Howard st, San

Francisco, CA 94105). AI Expert has also made versions available on various bulletin

boards. The following table gives the name of the test

8

and the ratio

MetaProlog

C�Prolog

. The

execution times were typically averaged over 2000 iterations per test.

Test

MetaProlog

C�Prolog

medium unify 1.54

deep unify 1.53

args(16) 1.19

args(8) 1.18

args(4) 1.17

args(2) 1.15

walk term 1.13

walk list 1.12

walk term rec 1.10

walk list rec 1.10

args(1) 1.10

assert unit 1.00

choice point 0.99

tail call atom atom 0.98

setof 0.98

pair setof 0.98

double setof 0.98

Test

MetaProlog

C�Prolog

cons term 0.98

cons list 0.98

binary call atom atom 0.98

arg(1) 0.98

trail variables 0.97

slow access unit 0.97

integer add 0.97

oating add 0.97

bagof 0.96

arg(8) 0.96

arg(4) 0.96

arg(2) 0.96

arg(16) 0.96

access unit 0.96

index 0.95

deep backtracking 0.95

shallow backtracking 0.93

3.1.1 Summary

The ratio

MetaProlog

C�Prolog

ranges from 1:54 to 0:93, i.e., the provision for semantic uni�cation

costs as much as 54% overhead in execution time in extreme cases. As C-Prolog imple-

ments type recognition by signed pointer comparisons, one needs an additional test in some

places of the uni�cation algorithm. If a benchmark would test these branches exclusively,

the ratio

MetaProlog

C�Prolog

would be � 2. For some tests MetaProlog is even slightly faster than

8

if you are curious what each one does, please refer to the original literature

3 BENCHMARKS 15

C-Prolog. Partially this can be attributed to noisy measurements, but the real cause is

that some test sequences in the original uni�cation algorithm had to be rearranged in order

to accommodate for the new tests for metafunctors | as an unintended side e�ect this

gave us some percents of performance gain in some cases.

3.2 Chat

CHAT-80 [9] is a classic PROLOG program developed as a part of a research project at

the University of Edinburgh by Fernando C.N. Pereira and David H.D. Warren. CHAT-80

is a good medium-size PROLOG program that does something interesting and can be used

for demonstrations and performance measurements. It has been taken as an example for

a 'realistic' PROLOG program, as opposed to the previous benchmark set (section 3.1),

which tests very speci�c parts of a PROLOG implementation in isolation.

The following table gives the number of the query, the ratio

MetaProlog

C�Prolog

for the execution

times for various subtasks, and the ratio for the total query evaluation times.

Test Parse Semantics Planning Reply Total

1 1.00 1.00 0.80 1.02 1.00

2 0.93 0.94 0.75 1.00 0.92

3 1.03 0.93 1.00 1.33 1.00

4 1.03 0.94 0.97 0.99 0.99

5 1.04 1.00 1.00 0.94 0.95

6 1.03 0.96 1.00 1.00 1.00

7 1.06 0.97 0.93 0.95 0.95

8 1.10 0.97 0.95 0.94 0.96

9 1.01 0.98 1.04 0.94 0.96

10 1.00 0.94 0.96 0.95 0.96

11 1.02 0.96 0.95 0.96 0.97

12 1.05 0.91 1.00 0.95 1.00

13 1.00 1.11 0.98 0.95 0.98

14 1.02 0.94 0.98 0.94 0.94

15 1.03 0.95 0.97 0.95 0.95

16 1.00 0.92 0.95 0.92 0.95

17 1.02 0.96 1.00 0.96 0.99

18 1.00 1.12 1.00 0.94 0.96

19 0.96 1.08 0.96 0.91 0.92

20 1.00 0.96 1.00 0.91 0.92

21 1.00 0.96 0.93 0.91 0.94

22 1.02 0.98 0.96 0.99 0.99

23 1.04 0.96 1.00 0.94 0.95

Total 1.02 0.98 0.96 0.97 0.96

3.3 Summary

Averaged over all queries, subtasks and totals MetaProlog and C-Prolog can be considered

equal on this benchmark.

4 USAGE - EXTENSIONS TO C-PROLOG 16

For all realistic PROLOG programs operational at our site, we found that uni�cation does

not seem to dominate the 'composition' of these programs, as they executed in MetaProlog

with the same speed as in C-Prolog.

4 Usage - extensions to C-Prolog

The principal di�erence between MetaProlog and standard C-Prolog is that an extended

uni�cation algorithm works in place of the standard one. After some functors are de�ned

as metafunctors and instances of them have to be considered during uni�cation, the system

needs to refer to the de�nition of the extended uni�cation theory. This reference is made

via two user-de�ned predicates. If their de�nitions are missing, all metauni�cations will

fail.

4.1 Additional builtin predicates

The following predicates allow for

� the de�nition of metaterms

� to check for presence of metaterms

� the explicit removal of redundant metastructures

� syntactic uni�cation, i.e., considering metaterms as ordinary terms during uni�cation.

This allows us to construct metaterms and to take them apart.

4.1.1 meta functor/1 (essential)

This predicate is used to de�ne derefable metafunctors. Its single argument is of the form

N/A, where N is an atom and A > 0 the arity of the functor. The e�ect of this predicate

is dynamic. It does not matter if instances of this functor already exist or if this de�nition

comes �rst. Use ordinary functor/1 to remove the property of being a metafunctor from

any functor.

Example:

:- meta_functor(meta/2).

4.1.2 nonderefable meta functor/1 (rarely needed)

This predicate is used to de�ne non-derefable metafunctors. Its single argument is of the

form N/A, where N is an atom and A > 0 the arity of the functor. The e�ect of this

predicate is dynamic. It does not matter if instances of this functor already exist or if

this de�nition comes �rst. Use ordinary functor/1 to remove the property of being a

metafunctor from any functor.

4 USAGE - EXTENSIONS TO C-PROLOG 17

Example:

:- nonderefable_meta_functor((+)/2).

4.1.3 ordinary functor/1 (rarely needed)

This predicate is used to remove the property of being a metafunctor from any functor.

You will rarely need it. Its single argument is of the form N/A, where N is an atom and

A > 0 the arity of the functor. The e�ect of this predicate is dynamic. It does not matter if

instances of this functor already exist or if this de�nition comes �rst. Use meta functor/1

to de�ne metafunctors.

Example:

:- ordinary_functor(meta/2).

4.1.4 syntactic headunification/1 (essential)

This predicate tells the system that calls to the speci�ed (user-de�ned) predicate have to

take place with syntactic headuni�cation in force. The possibility of refering to syntactic

uni�cation is a strict necessity for the implementation of an extended uni�cation the-

ory. Otherwise uni�cations involving metaterms would just rise further metauni�cations

which could never be executed. The single argument of syntactic headunification/1

is of the form N/A, where N is an atom and A > 0 the arity of the predicate to be

called with syntactic headuni�cation. The e�ect of this declaration is dynamic. It does

not matter if the predicate is already de�ned or if this de�nition comes �rst. Note that

the bodygoals of the predicate get executed with semantic headuni�cation in force. Use

semantic headunification/1 to restore the default behaviour of any user-de�ned predi-

cate.

Example:

:- syntactic_headunification(metatermunify/2),

syntactic_headunification(metametamunify/2).

4.1.5 symmetric syntactic headunification/1 (essential)

This predicate tells the system that calls to the speci�ed user-de�ned predicate have to

take place with syntactic headuni�cation in force and that the predicate is symmetric, i.e.,

f(A;B) = f(B;A). This is very convenient if the semantic uni�cation theory operates on

many sorts of metafunctors. The de�nition of metametamunify/2 has to cover all possible

(n(n� 1)=2) pairs of metafunctors. If metametamunify/2 is de�ned to be symmetric, the

number of de�ning clauses is cut into half. The single argument of the declaration is of

the form N/A, where N is an atom and A = 2 the arity of the predicate to be called

with symmetric, syntactic headuni�cation. The e�ect of this declaration is dynamic. It

does not matter if the predicate is already de�ned or if this de�nition comes �rst. Note

that the bodygoals of the predicate get executed with semantic headuni�cation in force.

4 USAGE - EXTENSIONS TO C-PROLOG 18

Use semantic headunification/1 to restore the default behaviour of any user-de�ned

predicate.

Example:

:- symmetric_syntactic_headunification(metametamunify/2).

4.1.6 semantic headunification/1 (rarely needed)

This declaration restores the default, i.e. semantic headuni�cation, for any predicate. It

reverts the e�ects of syntactic headunification/1 and

symmetric syntactic headunification/1. You will rarely need this declaration. The

single argument of the declaration is of the form N/A, where N is an atom and A > 0 the

arity of the predicate to be called with symmetric, syntactic headuni�cation. The e�ect of

this declaration is dynamic. It does not matter if the predicate is already de�ned or if this

de�nition comes �rst.

Example:

:- semantic_headunification(metametamunify/2).

4.1.7 headunification category/2 (rarely needed)

Uni�es the second argument with the headuni�cation category of the �rst argument that

must be a functor.

Example:

| ?- headunification_category(metametaunify(_,_),Category).

Category = 2

| ?- headunification_category(Var,Category).

no

4.1.8 ===/2 (essential)

This predicate functions exactly like the original C-Prolog =/2 predicate, i.e., it tries to

unify the two arguments syntactically. It is the predicate of choice to construct metaterms

and to take them apart. Note that =/2 operates with semantic uni�cation in force. Through

the use of syntactic headunification/1 any predicate can be made operating with syn-

tactic headuni�cation, but we recommend the use of ===/2. It is de�ned as:

:- op(700,xfx,===), syntactic_headunification('==='/2).

A === A.

4 USAGE - EXTENSIONS TO C-PROLOG 19

4.1.9 ismeta/1 (rarely needed)

Succeeds if its single argument is a metafunctor. Note that this predicate does not skip

redundant levels of metastructure and that it recognizes instantiated metaterms with a

bound �rst argument still as metaterms. A predicate that is more powerful in this respect

is meta deref/4.

Example:

| ?- ismeta(X).

no

| ?- meta_functor(f/2),ismeta(f(1,1)).

yes

| ?- meta_functor(f/2),ismeta(f(_,1)).

yes

4.1.10 derefable meta/1 (rarely needed)

Succeeds if its single argument is a derefable metafunctor. Note that this predicate does

not skip redundant levels of metastructure and that it recognizes instantiated metaterms

with a bound �rst argument still as metaterms. A predicate that is more powerful in this

respect is meta deref/4.

4.1.11 meta deref/4 (essential)

The predicate meta deref/4 takes any object as its �rst argument and returns its type, the

last element of the chain of metafunctors and the �rst argument of the last metafunctor in

the chain. It operates with syntactic headuni�cation in force. The PROLOG speci�cation

of meta deref/4 is in �gure 4, the resulting types are described in section 2.1, page 5.

4.1.12 current reader var/2 (rarely needed)

This is a very low-level predicate, and it should not be expected to be portable. Is was

needed for the implementation of an alternative toplevel function (see section 4.4.2). Pretty

printing of cyclic metaterms relies on the use of names to cut the loops. One could invent

arbitrary names, of course. For some potential cut-points we have names already: the

names used for the variables in the goal given to the PROLOG interpreter. Unfortunately,

the correspondence between variables and their names is kept in the guts of C-Prolog

only

9

. The predicate current reader var/2 is the interface to this representation. It

nondeterministically returns the variables and their names seen by the previous invocation

of read/1.

9

Some PROLOG implementations provide a read/2 predicate that returns a list of variable-name pairs

as second argument.

4 USAGE - EXTENSIONS TO C-PROLOG 20

4.1.13 Relational predicates

The C-Prolog predicates </2, =</2, >/2 and >=/2 have been made rede�nable. If they

are not rede�ned they behave exactly as in C-Prolog. In the original C-Prolog implemen-

tation they were protected against rede�nition. Their protected versions are now called

lt/2, le/2, gt/2 and ge/2. The unprotected versions have been made necessary by the

implementation of a particular semantic theory.

4.2 Builtin predicates inherited from C-Prolog

The rule is that they don't 'know' anything about metaterms, i.e., they treat them as or-

dinary terms. Nevertheless they operate with semantic headuni�cation in force. Inherited

builtins are treated in this way because any extended uni�cation theory induces a new

meaning to all builtin predicates. As we cannot take care of any possible semantic theory

in advance, we move the responsibility of proper builtin predicate applications to the de-

signer of the extended uni�cation theory. In practice this usually amounts to dereferencing

metaterms prior to builtin applications. As most of the inherited builtin predicates are not

prepared to cope with cyclic terms, this may lead to some additional e�ort. The builtin

predicate write/1 is an exception to this rule (see section 4.4).

4.3 Additional user-de�ned predicates

In order to implement an extended uni�cation theory one has to de�ne the following two

predicates. They are always called with all redundant levels of metastructure removed

(dereferenced). Please refer to �gure 5 which speci�es the circumstances that lead to calls

to metatermunify/2 and metametamunify/2.

4.3.1 metatermunify/2 (essential)

This predicate is used to specify how a metaterm and an ordinary term should be uni�ed

under the extended uni�cation theory. The �rst argument is the dereferenced metaterm,

the second argument is any PROLOG term except a variable and except a metaterm. The

�rst argument of the metaterm is guaranteed to be an unbound variable if the metaterm

is derefable. The predicate is called with syntactic headuni�cation in force by default.

Example:

metatermunify($frozen(Value,Goals),Value) :- call(Goals).

4.3.2 metametamunify/2 (essential)

This predicate is used to specify how two metaterms should be uni�ed under the extended

uni�cation theory. The predicate is called with syntactic headuni�cation in force by de-

fault. Both arguments are dereferenced metaterms. The �rst argument of any of the two

metaterms is guaranteed to be an unbound variable if the metaterm is derefable.

4 USAGE - EXTENSIONS TO C-PROLOG 21

Example:

metametaunify($frozen(V,G1),$frozen(V,G2)) :-

V = $frozen(_,(G1,G2)).

4.4 Printing of metaterms

The builtin function write/1 does not do much about metaterms:

� Derefable metafunctors are dereferenced and the end of this chain is printed via

write/1. As metatermsmight be cyclic, a depth bound on printing metaterms inside

other metaterms is enforced. The default value for this bound is 1. It might be set

when C-Prolog is started from the unix command line (see section 4.4.1). If printing a

metafunctor would exceed the depth bound, it is not printed as functor(arg1, ... argN),

but just as arg1. Operator de�nitions for metafunctors are ignored during printing.

Metafunctors print in standard parenthesised pre�x notation.

� Non-derefable metafunctors behave as ordinary functors during printing. Operator

de�nitions for such a functor are honored. Printing of non-derefable metafunctors is

never suppressed by the depth bound for metaterms, nor does it increase the current

depth.

Metastructures are often complex or even cyclic structures | therefore they have to be

printed with some care in order to be useful. You might want to use portray/1 for fancy

printing. Note that output from trace is produced by write/1.

4.4.1 Additional command line parameter to C-Prolog

The new command line switch -m N speci�es the depth up to which nested metaterms are

printed. The default for N is 1. If you set it to 0, uninstantiated derefable metafunctors

print like unbound variables. Example:

% -m 0

| ?- freeze(X,write(X)).

X = _8

% -m 1

| ?- freeze(X,write(X)).

X = $frozen(_8,write(_8))

% -m 2

| ?- freeze(X,write(X)).

X = $frozen(_8,write($frozen(_8,write(_8))))

REFERENCES 22

4.4.2 New toplevel

The ordinary C-Prolog toplevel uses write/1 to show the bindings of goalvariables. The

new toplevel uses print/1 instead. This leads to calls of portray/1, which gives us

the possibility to represent metaterms

10

more meaningful and readable. The new toplevel

catches errors, but an abort throws you back to the standard toplevel. To re-enter it, just

type toplevel. Inside a break the original toplevel is executed. This is convenient if you

have to have a look at your metastructures without having them grinded by portray/1.

If you decide to use the new toplevel, your de�nition of portray/1 has to take care of

cyclic metaterms. In particular that means, that if no clauses for portray/1 are de�ned,

and if there are cyclic metaterms, print/1 will loop.

References

[1] Carlsson M.: Freeze, Indexing, and Other Implementation Issues in the WAM, in

Lassez J.(ed.), Logic Programming - Proceedings of the 4th International Conference

- Volume 1, MIT Press, Cambridge, MA, 1987.

[2] Elcock E.W., Hoddinott O.: Comments on Kornfeld's "Equality for Prolog": E-

uni�cation as a Mechanism for Augmenting the Prolog Search Strategy, in Proceedings

of the Fifth National Conference on Arti�cial Intelligence (AAAI-86), Morgan Kauf-

mann, Los Altos, CA, 1986.

[3] Holzbaur C.: Metastructures as a Basis for the Implementation of Constraint Logic

Programming Techniques, Austrian Research Institute for Arti�cial Intelligence, Vi-

enna, TR-90-2, 1990.

[4] Holzbaur C.: Realization of Forward Checking in Logic Programming through Extended

Uni�cation, Austrian Research Institute for Arti�cial Intelligence, Vienna, TR-90-11,

1990.

[5] Kornfeld W.A.: Equality for Prolog, in Proceedings of the 8th International Joint

Conference on Arti�cial Intelligence, Morgan Kaufmann, Los Altos, CA, 1983.

[6] Neumann G.: Metaprogrammierung und Prolog, Addison-Wesley, Reading, MA, 1988.

[7] Pereira F.: C-Prolog 1.5 Users Manual, SRI International, Menlo Park, CA, 1982.

[8] Sterling L., Shapiro E.: The Art of Prolog, MIT Press, Cambridge, MA, 1986.

[9] Warren D.H.D., Pereira F.C.N.: An E�cient Easily Adaptable System for Interpreting

Natural Language Queries, American Journal of Computational Linguistics, 8(3-4),

1982.

10

and of course, ordinary ones too!

