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Abstract

Model-based reasoning about a system requires an ex-

plicit representation of the system's components and

their connections. Diagnosing such a system consists

of locating those components whose abnormal behav-

ior accounts for the faulty system behavior. In order

to increase the e�ciency of model-based diagnosis, we

propose a model representation at several levels of de-

tail, and de�ne three re�nement (abstraction) opera-

tors. We specify formal conditions that have to be sat-

is�ed by the hierarchical representation, and emphasize

that the multi-level scheme is independent of any par-

ticular single-level model representation. The hierar-

chical diagnostic algorithm which we de�ne turns out

to be very general. We show that it emulates the bisec-

tion method, and can be used for hierarchical constraint

satisfaction. We apply the hierarchical modeling prin-

ciple and diagnostic algorithm to a medium-scale medi-

cal problem. The performance of a four-level qualitative

model of the heart is compared to other representations

in terms of diagnostic e�ciency and space requirements.

The hierarchical model does not reach the time/space

performance of dedicated diagnostic rules, but it speeds

up the diagnostic e�ciency of a one-level model for a

factor of 20.

Introduction

The diagnosis of a system that behaves abnormally con-

sists of locating those subsystems whose abnormal be-

havior accounts for the observed behavior. For exam-

ple, a system being diagnosed might be a mechanical de-

vice exhibiting malfunction, or a human patient. There

are two fundamentally di�erent approaches to diagnos-

tic reasoning.

In the �rst, heuristic approach, one attempts to cod-

ify diagnostic rules of thumb and past experience of

human experts in a given domain. Representatives of

this approach are diagnostic expert systems of the �rst

generation, such as MYCIN

[

Shortli�e, 1976

]

. Here,

�
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diagnostic reasoning of human experts is being mod-

eled, and diagnostic accuracy depends on the success-

ful encoding of human experience. The structure of the

real-world system being diagnosed is not explicitly rep-

resented, nor is its behavior being modeled.

The second approach is often called diagnosis from

the �rst principles, or model-based diagnosis, where

one starts with a description (a model) of a real-

world system, e.g.

[

de Kleer, 1976, Genesereth, 1984,

Reiter, 1987

]

. A model explicitly represents the struc-

ture of the system, i.e., its constituent components and

their connections. The diagnostic problem arises when

an observation of the system's actual behavior con
icts

with the system's expected behavior. The diagnos-

tic task is to identify those system components which,

when assumed to function abnormally, will account for

the di�erence between the observed and expected sys-

tem behavior. To solve the problem, model-based di-

agnosis relies solely on the system description and ob-

servations of its behavior. In particular, it does not use

any heuristic information about the system failures.

This paper deals with model-based diagnosis only.

Originality of this research is based on the idea of rep-

resenting and e�ectively using a model of the system

at several levels of detail, or abstraction

[

Mozeti�c et

al., 1991

]

. The proposed multi-level scheme is indepen-

dent of any particular single-level model representation.

However, certain model design principles have to be fol-

lowed, and adjacent abstraction levels of the model have

to satisfy formal consistency requirements.

In section 2 we relate our approach to model-based

diagnosis to other model-based approaches. Usually,

diagnostic reasoning is regarded as a form of non-

monotonic

[

Reiter, 1987

]

or abductive reasoning

[

Cox

and Pietrzykowski, 1987

]

. A model entails assumptions

about normal states of components, and possible di-

agnoses are those minimal sets of assumptions which,

if removed, render the model behavior consistent with

the observed behavior. In our approach, we treat every

component's state as a variable, and the model as de�n-

ing a mapping from any state (normal or abnormal) to

corresponding observations. The diagnostic problem is

then to �nd the inverse mapping, from given observa-

tions to possible states.
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In section 3 we propose a solution to the reformulated

diagnostic problem by representing a model at several

levels of detail. Three re�nement (abstraction) opera-

tors which can be used in the top-down or bottom-up

model development are de�ned, and related to abstrac-

tions used in theorem proving

[

Giunchiglia and Walsh,

1989, Plaisted, 1981

]

and planning

[

Sacerdoti, 1974

]

.

We state formal conditions that must be satis�ed by

any pair of adjacent abstraction levels in the model

representation. These conditions lead to the formu-

lation of the hierarchical diagnostic algorithm, which

exploits the hierarchical model representation. With

the appropriate hierarchical model representation, the

time complexity of the diagnostic algorithm is O(logn),

as opposed to O(n) for the generate-and-test method,

where n is the number of possible states of the model.

A similar reduction of complexity, from linear to loga-

rithmic, when using abstraction hierarchies in planning,

was reported by Korf

[

1987

]

.

It turns out that the algorithm is very general since

it can be applied to both, qualitative and numeric mod-

els, and can be used to solve a variety of problems. In

section 4 we show how the algorithm emulates the well-

known bisection method for numerical equation solving,

and how the search space in a typical constraint satis-

faction problem (the eight queens) can be reduced. Fi-

nally, we apply the hierarchical modeling principle and

diagnostic algorithm to a nontrivial medical problem,

originating from the KARDIO project

[

Bratko et al.,

1989

]

. A qualitative model of the heart that simulates

its electrical activity is represented at four levels of de-

tail. The diagnostic algorithm is then used to e�ciently

solve the ECG interpretation problem, i.e., to locate

possible heart failures based on symbolic description of

electrocardiographic (ECG) data. The most detailed

heart model relates 943 heart failures (both single and

multiple) to 5,240 ECG descriptions altogether.

Experiments and results are described in section 5.

First, we outline several attempts at solving the ECG

interpretation problem in KARDIO. The detailed level

model of the heart was automatically transformed into

di�erent types of representation, using deductive and

inductive inference techniques. We compare diagnostic

e�ciency and space requirements of di�erent represen-

tations. Four-level hierarchical model falls short of be-

ing the best on the time/space tradeo� scale, but the

diagnostic e�ciency over one-level model is improved by

a factor of 20. The hierarchical model also achieves sat-

isfactory performance from the practical point of view,

with the average diagnostic time below 3 seconds. Its

performance is very close to the compressed diagnostic

rules which appear to be the optimal representation for

the ECG interpretation task. Furthermore, hierarchical

model representation allows for a focused explanation,

and enables a tradeo� between diagnostic certainty and

speci�city when reasoning under time constraints.

We conclude the paper in section 6 by giving some

guidelines for multi-level model representation in order

to improve the diagnostic e�ciency. Possible directions

of further research are also discussed.

Model-based diagnosis

In order to relate our approach to model-based diag-

nosis to the work of others, we start this section with

an example. Throughout the paper, we de�ne models

and algorithms by logic programs. We use standard

Edinburgh Prolog syntax (e.g.,

[

Bratko, 1986

]

), where

variables start with capital letters or underscores, and

constants start with lowercase letters. All variables are

implicitly universally quanti�ed.

Example | a binary adder

Figure 1 depicts a binary adder, taken from Reiter

[

1987

]

and originally used by Genesereth

[

1984

]

as an

example. The example is used to illustrate the rela-

tional representation of models which we use. Our rep-

resentation allows for e�cient model interpretation by

a logic program interpreter; it enables natural extension

to solving constraints over real arithmetic terms

[

Ja�ar

and Michaylov, 1987

]

, and formalization due to clear

semantics.

X1
X2

A2

O1
A1

Out1

Out2

In3

In2

In1
A

B

C

Figure 1: A full binary adder. X1 and X2 denote

exclusive-or gates, A1 and A2 are and gates, and O1

is an or gate.

In our approach a model relates any state (normal

or abnormal) to corresponding input-output observa-

tions. The model is speci�ed by its structure (a set of

components and their connections) and functions of its

components. In the case of a binary adder, its com-

ponents are and, exclusive-or and or gates, and their

functions are de�ned by Boolean algebra over f0, 1g.

In a logic program, the model structure can be de�ned

by a single clause. The head of the clause relates the

state of the model to its input and output. Atoms in

the body represent constituent components, and shared

variables denote connections between components. The

following clause de�nes the structure of the adder from

Figure 1:

adder( state(X1,X2,A1,A2,O1), in(In1,In2,In3),

out(Out1,Out2) )  

xorg( X1, In1, In2, A ),

xorg( X2, In3, A, Out1 ),

andg( A1, In1, In2, B ),

andg( A2, In3, A, C ),
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org( O1, B, C, Out2 ).

Normal behavior of the gates is de�ned by the corre-

sponding Boolean functions:

xorg( ok, In1,In2,Out)  xor(In1,In2,Out).

andg( ok, In1,In2,Out)  and(In1,In2,Out).

org( ok, In1,In2,Out)  or(In1,In2,Out).

xor( 1, 1, 0 ).

xor( 1, 0, 1 ).

xor( 0, 1, 1 ).

xor( 0, 0, 0 ).

and( 1, 1, 1 ).

and( 1, 0, 0 ).

and( 0, 1, 0 ).

and( 0, 0, 0 ).

or( 1, 1, 1 ).

or( 1, 0, 1 ).

or( 0, 1, 1 ).

or( 0, 0, 0 ).

However, in our approach abnormal behavior (a fault

model) has to be de�ned as well. In a general case, we

may specify as abnormal any behavior that is not nor-

mal:

xorg( ab, In1,In2,Out)  :xor(In1,In2,Out).

andg( ab, In1,In2,Out)  :and(In1,In2,Out).

org( ab, In1,In2,Out)  :or(In1,In2,Out).

Here, : denotes the negation-as-failure operator. We

will assume that the logic program interpreter correctly

handles negation-as-failure, either by delaying negative

goals until they are ground, or by making them ground

immediately using the information about the types of

variables. Note that in our example, the latter can al-

ways be done, since all variables are binary valued.

This is not the weakest fault model one can use, since

in general a component which behaves normally may

actually contain several faulty subcomponents. There-

fore, a component's state ok denotes its normal behav-

ior in a particular instance and not it being faultless in

general. In many domains, especially in medicine, it is

interesting and helpful to distinguish between di�erent

kinds of abnormal behavior. In our case we may de�ne

a more speci�c fault model, for example, a faulty gate

as either open (the output is always 0), or shorted (the

output is 1 for any nonzero input):

xorg( open, 1, 0, 0 ).

xorg( open, 0, 1, 0 ).

xorg( shorted, 1, 1, 1 ).

andg( open, 1, 1, 0 ).

andg( shorted, 1, 0, 1 ).

andg( shorted, 0, 1, 1 ).

org( open, 1, 1, 0 ).

org( open, 1, 0, 0 ).

org( open, 0, 1, 0 ).

The above speci�cation, in contrast to the original

one, does not account for all possible behaviors. In par-

ticular, there is no gate state that produces the output

Out=1 for the inputs In1=0, In2=0. In medicine, this

would correspond to a physiologically impossible state

of a patient that does not need to be considered as a

possible diagnosis.

Now, going back to the original speci�cation, suppose

that a real adder is given the inputs In1=1, In2=0,

In3=1, and it produces the outputs Out1=1, Out2=0

in response. Since both outputs are wrong (correct out-

puts are Out1=0, Out2=1), this observation indicates

that the adder is faulty. The diagnostic task is to lo-

cate components in the adder which, when assumed to

behave abnormally, produce the observed outputs. To

solve the problem, the model of the adder is used by

submitting the following query to the interpreter:

 adder( State, in(1, 0, 1), out(1, 0) ).

The query asks whether there exists a state of the

adder (de�ned by states of its components) that pro-

duces the given input-output observation. Since several

such states exist, the interpreter returns (through back-

tracking) the following set of answers:

State = state(ok, ab, ok, ok, ab) ;

State = state(ok, ab, ok, ab, ok) ;

State = state(ok, ab, ab, ok, ab) ;

State = state(ok, ab, ab, ab, ab) ;

State = state(ab, ok, ok, ok, ok) ;

State = state(ab, ok, ok, ab, ab) ;

State = state(ab, ok, ab, ok, ab) ;

State = state(ab, ok, ab, ab, ab)

The query, with any of the above answer substitu-

tions is a logical consequence of the model de�nition,

and any answer is considered a possible diagnosis.

Approaches to diagnosis

Reiter

[

1987

]

de�nes a system (a model in our terminol-

ogy) as a pair (sd, components), where sd is the sys-

tem description, and components, the system compo-

nents, is a �nite set of constants. A system description

is a set of �rst-order sentences de�ning how the sys-

tem components are connected and how they normally

behave. A distinguished unary predicate ab whose in-

tended meaning is `abnormal' is used in a system de-

scription. An observation obs of a system is a �nite set

of �rst-order sentences. A diagnosis � for (sd, com-

ponents, obs) is a minimal subset � 2 components

such that

sd [ obs [ f ab(c) j c 2 � g [

f :ab(c) j c 2 components �� g

is consistent. A direct generate-and-test mechanism

which systematically generates subsets of compo-

nents, with minimal cardinality �rst, is too ine�cient

for systems with large numbers of components. Instead,

Reiter

[

1987

]

proposes a diagnostic method based on

the concept of a con
ict set, originally due to de Kleer

[

1976

]

.

Corresponding to Reiter's de�nition, there are three

diagnoses for the faulty adder: fX1g, fX2, O1g, fX2,
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A2g. In our notation, the last diagnosis fX2, A2g cor-

responds to the following state of the adder: state(ok,

ab, ok, ab, ok). In our representation, a diagnosis is a

term, while in Reiter's representation, a diagnosis is a

conjunctive statement of the form: ab(X2) ^ ab(A2).

More importantly, his system description models only

normal behavior of the components, while we require

both, a model of normal and abnormal behavior. A

�nal distinction concerns the de�nition of a diagnosis.

According to Reiter, a diagnosis is a conjecture that

some minimal set of components are faulty, such that

the consistency of sd and obs is restored. By our de�-

nition a diagnosis is any correct answer substitution for

the state of the model which is a logical consequence of

the model de�nition, given input-output observations.

Notice, for example, that a conjecture where all gates

are simultaneously abnormal fX1, X2, A1, A2, O1g

always restores the consistency to sd and obs (but is

not minimal) in Reiter's approach. The correspond-

ing state(ab, ab, ab, ab, ab), however, is not a logical

consequence of our model de�nition for the given input-

output observation.

Cox and Pietrzykowski

[

1987

]

regard diagnostic rea-

soning as a form of abductive inference. They extend

the notion of diagnoses to causes, and de�ne a cause

as fundamental i� it is minimal, acceptable, nontriv-

ial, and basic. The minimality criterion eliminates

overly general causes, acceptability eliminates causes

unrelated to the observation, non-triviality eliminates

causes which directly imply the observation, and basic-

ness eliminates intermediate causes. They show that for

closed diagnostic problems where all gate connections

and observations are uniquely speci�ed, their causes

are equivalent to Reiter's diagnoses. However, for ex-

tended problems in which some gate inputs or identities

of some gates are unknown, their causes contain more

useful information than Reiter's diagnoses. Consider,

for example, a single and gate A, with only one speci-

�ed input In1=1 and the output Out=0. There are two

fundamental causes: In2=0 and ab(A) ^ In2=1. In Re-

iter's terms, however, the diagnosis is empty. Our def-

inition also yields as possible corresponding diagnoses

andg(ok,1,0,0) and andg(ab,1,1,0), since they both log-

ically follow from the and gate speci�cation. However,

we do not address the problem of �nding fundamental

causes. We are satis�ed, instead, with any logical con-

sequence of the model that satis�es the input-output

requirements.

Ge�ner and Pearl

[

1987

]

present an improved

constraint-propagation algorithm for diagnosis, based

on a probabilistic approach. They propose a diagnos-

tic scheme where every component's state is treated as

a variable. As a consequence, normal and abnormal

behavior are considered on the same basis, and predic-

tions for any possible behavior of the system can be

generated. We take a non-probabilistic approach, but

similarly require that the model entails both normal

and abnormal (or di�erent kinds of abnormal) behav-

ior. Since we do not make any distinction between what

is normal and abnormal, it also does not make sense to

de�ne a diagnosis as a minimal or fundamental with

respect to abnormal states of components. Treatment

of normal and abnormal behavior on the same basis is

common in medicine, for example, since a behavior that

is considered abnormal under some conditions may be

a normal reaction of the body under di�erent, unusual

conditions.

Hierarchical diagnostic algorithm

In this section we de�ne the diagnostic problem and

propose a solution by representing a model at several

levels of detail. Three re�nement or abstraction oper-

ators that can be used in the model development are

de�ned, and a formal condition that must be satis�ed

by the hierarchical model representation is formulated.

Finally, we specify a general purpose hierarchical diag-

nostic algorithm.

Diagnostic problem

Many approaches to model-based diagnosis rely on

a model of the system which describes only normal

behavior of its components, e.g.

[

de Kleer, 1976,

Genesereth, 1984, Reiter, 1987

]

. One may regard such

a model as de�ning a mapping from the input to the

output, under the assumption that the system is in a

normal state:

normal: in 7! out

In contrast, we consider normal and abnormal states

of the system on the same basis, and require that the

model describes behavior of the system for any state:

state

1

: in 7! out

� � �

state

n

: in 7! out

Consequently, such a model can be regarded as de�n-

ing a mapping from any state of the system to corre-

sponding input-output observations:

model: state

i

7! hin, out i 1 � i � n

Notice that there is no speci�c requirements for the

model representation. We just assume that a model m

is de�ned by a set of axioms which map a tuple of in-

dependent variables x (x denotes states) into a tuple of

dependent variables y (y denotes input-output observa-

tions):

m: x 7! y

When a system exhibits deterministic behavior (e.g.,

a binary adder), its model is de�ned by a many-to-one

mapping, i.e., a function. In general, however, a system

may behave nondeterministically, and consequently, its

model must be de�ned by a many-to-many mapping.

In both cases, to denote a model, we will use either

relational notation m(x,y), or functional notation y =

m(x) when we want to emphasize the directionality of

the mapping.

Given a model m that maps any state x to the corre-
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sponding input-output observations y = hin, out i, we

may formulate three di�erent tasks to be solved by the

model:

� Prediction task: given x and in, �nd out.

� Control task: given x and out, �nd in.

� Diagnostic task: given y = hin, out i, �nd x.

The diagnostic problem, which is the topic of the pa-

per, is thus e�ectively reformulated: given mapping

y = m(x), �nd the inverse mapping x = m

�1

(y) for

given values of y.

In order to appreciate the problem and its formula-

tion, consider three cases of general interest:

1. Equation solving, where m is a real-valued function.

For example, given is a function y = f(x) = x +

tan(x) where the inverse function x = f

�1

(y) =?

does not exist in analytical form. The task, to �nd

an x for a given y, is usually solved by numerical

methods.

2. Constraint satisfaction, where m is a boolean func-

tion over discrete variables. Given constraints, the

problem is to �nd an assignment of values to a tuple

of variables x such that the constraints are satis�ed,

i.e., x is mapped to y = true. E�cient solutions

are typically based on a generate-and-test approach,

where testing is incorporated into the early phases of

generation and dependency directed backtracking is

used.

3. Model-based diagnosis, where m is a nondetermin-

istic simulation model. In technical domains, simu-

lation models describing the behavior of physical or

biological systems often exist. Such a model can be

readily applied for prediction, since it maps the initial

state of the system x (causes) to its �nal state y (man-

ifestations). However, in general, it is not possible to

interpret equations or run simulations `backwards' in

order to infer causes from their manifestations, be-

cause causal knowledge often maps di�erent causes

onto the same manifestations.

A direct generate-and-test method to diagnosis is not

applicable if the domain of x is in�nite, as it is in the

case (1). Even if the domain of x is �nite, the method

may be too ine�cient for systems with large number

of components, or large number of di�erent states of

components (especially when multiple faults are con-

sidered), since the domain of x is too large.

To solve the diagnostic problem more e�ciently, we

propose to represent a model at several levels of detail,

and to use a diagnostic algorithm that exploits the hi-

erarchical representation. The idea behind the method

is to �rst solve the diagnostic problem at an abstract

level, where the model is simpler and the search space

smaller. The abstract, coarse solutions are then used

to guide the search at more detailed levels, where the

model is more complex and the search space larger.

Three re�nement/abstraction operators

In Figure 2, the representation of a model at two adja-

cent levels of detail is outlined. Recall that any model

de�nition, say m

1

or m

2

, may introduce some interme-

diate variables. However, notice that models m

1

and

m

2

in Figure 2 are connected only through the hierar-

chical relation h between the variables x and y.

Abstract level

Detailed level

x1

2 y2

y1

h(x  ,x  ) h(y  ,y  )

m  (x  ,y  )

m  (x  ,y  )

1

2

1

2

1 21 2

x

1

2

Figure 2: Hierarchical model representation. m denotes

a mapping from any state x to input-output observa-

tions y, and h a relation between the abstract and de-

tailed level states (left column) and input-output pairs

(right column).

Below we de�ne three re�nement or abstraction op-

erators that can be used in a multi-level model repre-

sentation. The operators can be applied either when

one re�nes a model in a top-down fashion (from ab-

stract to detailed), or in a bottom-up model abstraction

(from detailed to abstract). Each operator is de�ned

in terms of di�erences it induces between the abstract

and detailed level model, and named with respect to the

top-down/bottom-up method of model development:

1. Re�nement/collapse of values

The relation h between individual (non-tuple) vari-

ables x

1

and x

2

is de�ned through relations between

elements of their domains (values). For example, a

variable x

2

can take some values v

21

; : : : ; v

2i

which all

collapse to an abstract value v

1

of x

1

. Such hierar-

chical relations can be de�ned by a set of clauses:

h(v

1

, v

21

). : : : h(v

1

, v

2i

).

Hierarchies of values are not restricted to �nite do-

mains (an intensional de�nition can be used) or to

tree-structures, but must be acyclic.

2. Introduction/deletion of variables

Let x

1

be an abstract level tuple of variables, and x

2

a detailed level tuple:

x

1

= hx

11

, : : : , x

1n

i

x

2

= hx

21

, : : : , x

2n

, x

2n+1

, : : : , x

2m

i, n � m

Each abstract level variable x

1i

must have a detailed

level counterpart x

2i

, 1 � i � n. However, new vari-

ables x

2n+1

; : : : ; x

2m

that are not relevant at the ab-
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stract level may be introduced at the detailed level.

The relation h between tuples of variables x

1

and x

2

can be de�ned by the following clause:

h(x

1

, x

2

)  h(x

11

, x

21

), : : : , h(x

1n

, x

2n

).

3. Elaboration/simpli�cation of mapping

The abstract level model m

1

(x

1

,y

1

) can be de�ned

by a simpler mapping than the detailed model

m

2

(x

2

,y

2

), denoted by:

m

2

; m

1

In the case of a component-based model representa-

tion, a function of each component c

11

; : : : ; c

1n

is also

de�ned by a mapping. The abstract modelm

1

is then

de�ned by a composition of mappings:

m

1

(x

1

, y

1

)  

c

11

(x

1

, z

11

), : : : , c

1n

(z

1n�1

, y

1

).

where z

11

; : : : ; z

1n�1

are intermediate variables. On

the detailed level, one can expand the model struc-

ture by introducing new components c

2n+1

, ..., c

2m

,

and consequently de�ne more elaborate mappingm

2

:

m

2

(x

2

, y

2

)  

c

21

(x

2

, z

21

), : : : , c

2n

(z

2n�1

, z

2n

),

c

2n+1

(z

2n

, z

2n+1

), : : : , c

2m

(z

2m�1

, y

2

).

Further, a function of each individual detailed level

component can be de�ned by a more elaborate map-

ping than the abstract level component:

c

2i

; c

1i

, 1 � i � n

Example | an OR gate

The following example illustrates all three re�nement

and abstraction operators, and shows that our represen-

tation is not restricted to qualitative (�nite) domains.

We re�ne the or gate speci�cation by introducing its

subcomponents (transistors and resistors) and real val-

ued variables (voltages and currents). Figure 3 depicts

a possible hardware realization of an or gate.

The abstract speci�cation of a normal or gate (org1)

behavior is structure-less:

org1( 1, 1, 1 ).

org1( 1, 0, 1 ).

org1( 0, 1, 1 ).

org1( 0, 0, 0 ).

On the other hand, the detailed speci�cation (org2)

consists of an explicit set of components and their con-

nections:

org2(vi(Vin1,Iin1),vi(Vin2,Iin2),vi(Vout,Iout))  

Vcc = 5, Ve = 0,

resistor( Vin1, Vb1, Iin1, 4700 ),

transistor( Vb1, Vc, Ve, Iin1, Ic1, Ie1 ),

resistor( Vin2, Vb2, Iin2, 4700 ),

transistor( Vb2, Vc, Ve, Iin2, Ic2, Ie2 ),

resistor( Vcc, Vc, Icc1, 470 ),

Icc1 = Ic1 + Ic2 + Ib3,

Ib3Vc
Vout

Iout

Ic3

Vb3
4700

Ic2Ic1

470470

Icc2Icc1

Vcc=+5Vcc=+5

Ve=0

Ve=0

4700

4700

Vb2

Vb1

Vin2  Iin2

Vin1  Iin1

Figure 3: An or gate realized by three npn transistors.

resistor( Vc, Vb3, Ib3, 4700 ),

transistor( Vb3, Vout, Ve, Ib3, Ic3, Ie3 ),

resistor( Vcc, Vout, Icc2, 470 ),

Icc2 = Ic3 + Iout,

0 � Iout, Iout � 0.006.

The detailed model and functions of its components

are speci�ed in a Constraint Logic Programming lan-

guage CLP(<)

[

Ja�ar and Michaylov, 1987

]

where uni-

�cation is replaced by solving constraints in the do-

main of uninterpreted functors over real arithmetic

terms. The following description of an npn transistor

is adapted from

[

Heintze et al., 1987

]

. The transistor

operates in three modes: active, saturated, and cuto�.

In digital circuits we are interested only in the satu-

rated and cuto� modes, while the active mode, inter-

esting in ampli�er circuits, is speci�ed just for com-

pleteness. Vx and Ix denote the voltages and currents

for the base, collector and emmiter, respectively. Con-

stants Vbe, Beta, and Vcesat are device parameters.

transistor( Vb, Vc, Ve, Ib, Ic, Ie )  % active

Vb = Ve+0.7, % Vbe=0.7

Vc � Vb,

Ic = 100�Ib, % Beta=100

Ib � 0,

Ie = Ic+Ib.

transistor( Vb, Vc, Ve, Ib, Ic, Ie )  % saturated

Vb = Ve+0.7, % Vbe=0.7

Vc = Ve+0.3, % Vcesat=0.3

Ib � 0,

Ic � 0,

Ie = Ic+Ib.

transistor( Vb, Vc, Ve, Ib, Ic, Ie )  % cuto�

Vb < Ve+0.7, % Vbe=0.7

Ib = 0,

Ic = 0,

Ie = 0.

resistor( V1, V2, I, R )  

R > 0,

V1{V2 = I�R.
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A hierarchical relation between individual inputs and

outputs is speci�ed by the following two clauses:

h( 0, vi(V,I) )  0 � V, V < 0.7.

h( 1, vi(V,I) )  2 � V, V � 5.

In transformation from the detailed to the abstract

speci�cation of an or gate, all three abstraction opera-

tors are used:

1. real values of the voltage V are collapsed into 0 (low)

and 1 (high),

2. the variable I (denoting current) is deleted, and

3. the mapping org from two independent inputs to the

output is simpli�ed.

One way of automatically deriving an abstract map-

ping is to specify it in terms of a detailed mapping and

hierarchical relations, e.g.:

org1( In1, In2, Out )  

h( In1, VIin1 ),

h( In2, VIin2 ),

h( Out, VIout ),

org2( VIin1, VIin2, VIout ).

and then partially evaluate it, thus eliminating all un-

interesting predicates. In our example, an evaluation of

the h and org2 predicates yields the above abstract level

mapping org1

[

Mozeti�c and Holzbaur, 1991

]

. However,

not all abstractions can be derived by partial evalua-

tion.

Formal requirements for hierarchical

representation

The three model development operators allow for a

number of ways to re�ne or abstract the model, thus

hopefully covering a large number of real-world situ-

ations. However, in order to exploit possible compu-

tational advantages of hierarchical representation over

a one-level representation, di�erent levels of the model

have to be mutually consistent. In particular, any pair

of adjacent levels in the model representation has to

satisfy the following consistency condition:

CC : 8x

2

; y

2

m

2

(x

2

; y

2

) ^ (9x

0

1

h(x

0

1

; x

2

)) )

9x

1

; y

1

m

1

(x

1

; y

1

) ^ h(x

1

; x

2

) ^ h(y

1

; y

2

)

The rather complicated consistency condition can be

decomposed into two conditions (C1 and C2) which

have a simple intuitive interpretation.

First, notice that not all detailed level entities are

necessarily mapped to the abstract level | an ab-

straction is a partial and not necessarily a total map-

ping. For example, the detailed or gate behavior

org2(vi(�2; 0); vi(10; 0:002); vi(2:65; 0:005)) has no ab-

stract level counterpart since voltages �2 and 10 do

not have any abstraction. In such a case we say that

the abstract level model is incomplete with respect to

the detailed level model. The �rst condition restricts

the incompleteness introduced by the abstraction oper-

ators:

C1 : 8x

2

; y

2

m

2

(x

2

; y

2

) )

:9x

1

h(x

1

; x

2

) _ 9y

1

h(y

1

; y

2

)

Given a detailed level mapping m

2

the condition C1

prohibits cases where an x

2

with an abstraction is

mapped to a y

2

without an abstraction. In the case

of our or gate example, x denotes both independent in-

puts, and y the output. For any input x

2

, the output

y

2

is either vi(0:3; ) or vi(2:18:::5; ) which correspond

to low and high voltages, respectively. Any y

2

has an

abstraction and therefore the condition C1 is satis�ed.

The second condition ensures that, when there are

abstractions, the mapping from the independent vari-

able x to the dependent y is preserved across the ab-

straction:

C2 : 8x

2

; y

2

(9x

0

1

; y

0

1

m

2

(x

2

; y

2

) ^ h(x

0

1

; x

2

) ^ h(y

0

1

; y

2

))

) 9x

1

; y

1

m

1

(x

1

; y

1

) ^ h(x

1

; x

2

) ^ h(y

1

; y

2

)

When m

1

is de�ned in terms of m

2

and a hierarchical

relation h (as is the case in the or gate example) the

requirement C2 is obviously satis�ed. There are also

other syntactic abstractions | used in theorem proving

and planning | which guarantee that the condition

C2 is satis�ed. Before we turn to other approaches to

abstraction let us examine the role of both conditions

C1 and C2 in diagnostic reasoning.

The condition C2 enables a major reduction of the

search space in diagnostic reasoning. It basically says

that diagnoses which are impossible at the abstract level

(where the search space is smaller) are impossible at the

detailed level as well. The abstract level model there-

fore acts as a falsity-preserving �lter which can be used

early in order to eliminate a number of impossible diag-

noses. However, this does not ensure that diagnoses not

eliminated by the abstract model are all actually possi-

ble at the detailed level. Therefore, a diagnostic algo-

rithm has to explicitly verify if an individual x

2

actually

maps to y

2

. Further, in the case of the incompleteness

(restricted by C1), the abstract level model cannot al-

ways be used as a falsity-preserving �lter. Speci�cally,

all x

2

which have no abstraction have to be veri�ed if

they map to a given y

2

. This e�ectively means that the

diagnostic algorithm cannot take any advantage of the

hierarchical model representation for the parts of the

model that do not have any abstractions.

Approaches to abstraction

Giunchiglia and Walsh

[

1989

]

formalize abstractions in

the context of theorem proving. An abstraction is a

total function which maps one formal system into an-

other where a formal system consists of a language, set

of axioms, and deductive machinery. They de�ne sev-

eral types of abstraction; of special interest for us are TI

(theorem increasing) and NTI (non-theorem increasing)

abstractions. An abstraction is TI i� for any detailed

level theorem there exists a corresponding abstract level

theorem. An abstraction is NTI i� for any non-theorem

(which, when added to the detailed level axioms yields

an inconsistency) its abstraction added to the abstract

system yields an inconsistency. If negation is preserved

across the abstraction mapping then any TI abstraction

is also NTI, and any NTI is a TI abstraction.
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An abstraction in our de�nition is not a total, but a

partial mapping, and therefore completeness is not nec-

essarily preserved, only C1 must be satis�ed. However,

for the part of the space which is abstracted (where C2

applies) our abstractions are TI/NTI. The approach by

Giunchiglia and Walsh is more theoretic and general

than ours, since they do not restrict axioms to Horn

clauses and deductive machinery to resolution. How-

ever, their abstractions are de�ned in terms of derive-

ability and they do not make any attempt at providing

a comprehensive set of syntactic operators for abstrac-

tions.

Plaisted

[

1981

]

restricts abstractions to resolution

systems, and uses them for theorem proving. His ab-

stractions are inconsistency preserving, and thus NTI,

but he does not capture all NTI abstractions. He

gives several instances of both, syntactic and seman-

tic abstractions. Syntactic abstractions include renam-

ing predicates, functors, and constants (typically not

one-to-one), deleting arguments of predicates and func-

tors, instantiating clauses, changing signs of literals and

permuting arguments. These syntactic abstractions are

applied globally, to the whole set of axioms and ensure

that inconsistency is preserved. Renaming constants is

captured by our abstraction operator (1), and deleting

arguments of functors or predicates is captured by the

abstraction operator (2). However, they are applied

only locally, to variables denoting states and observa-

tions of the model. If they are applied globally, to the

whole model de�nition, this guarantees that the condi-

tion C2 is satis�ed.

Hobbs

[

1985

]

presents a theory of granularity where

an abstraction is de�ned as a mapping from a complex

theory to a simpler `coarse-grained' theory. He de�nes

the indistinguishability relation �:

(9x; y x � y), (8p 2 R p(x), p(y))

where R is a set of relevant predicates to the situation

at hand. The intended meaning is that x and y are

indistinguishable if no relevant predicate distinguishes

between them. This is a special case of Plaisted's ab-

stractions, where constants are renamed in a systematic

(but not necessary one-to-one) way. In our approach,

this corresponds to the abstraction operator (1), where

the hierarchical relation h is speci�ed by the following

clause:

8x

2

h(v

1

; x

2

) where v

1

= �(v

2

) = fx

2

j x

2

� v

2

g

Here v

1

represents the equivalence class � of all con-

stants indistinguishable from v

2

.

Abstrips

[

Sacerdoti, 1974

]

is an early application of

abstraction to planning, where preconditions of oper-

ators were abstracted according to their criticality. A

precondition precond of an operator op can be de�ned

as a mapping from a state of the world s to true or

false, depending on all primitive conditions cond

i

being

satis�ed or not:

precond

2

( op, s )  

cond

1

(c

1

; s); :::;cond

i

(c

i

; s); :::;cond

n

(c

n

; s):

Each primitive condition cond

i

is (automatically) as-

signed a criticality c

i

. In the abstract space, all condi-

tions cond

i

with criticality c

i

< � are deleted from the

precondition de�nition:

precond

1

( op, s )  

cond

1

(c

1

; s); :::;cond

i�1

(c

i�1

; s);

cond

i+1

(c

i+1

; s); :::;cond

n

(c

n

; s):

This corresponds to our abstraction principle (3), where

some model components are ignored. Note that in the

abstract space more operators are applicable, but those

that achieve details are never selected as relevant. In

Abstrips there is no abstraction of the world descrip-

tion which would correspond to our operators (1) and

(2). The hierarchical relation h is therefore identity,

and the consistency condition (CC) is obviously satis-

�ed. Sacerdoti claims that there is no need to delete

unimportant details from the world description since

they can be simply ignored. In contrast, Korf

[

1987

]

proposes abstraction of both, operators and state de-

scriptions in planning, but does not provide any speci�c

abstraction operators.

Tenenberg

[

1987

]

de�nes an abstraction as a pred-

icate mapping (not necessary one-to-one), which is a

special case of Plaisted's abstractions. However, TI and

NTI abstractions may map a consistent theory into an

inconsistent one. This is known as the `false proof'

problem

[

Plaisted, 1981

]

since there may be a proof

in the abstract space that does not correspond to any

proof in the detailed space. The aim of Tenenberg's

work is to ensure that consistency is preserved. He

places restrictions to the abstraction mappings which

preserve consistency, but has to sacri�ce completeness.

In this respect his approach is related to ours, since we

also allow for the abstract level model to be incomplete,

but the incompleteness is restricted by the condition

C1.

Diagnostic algorithm

Suppose that an ordered list of models m

1

; : : : ;m

L

sat-

isfying the consistency condition is given, and hierarchi-

cal relations between adjacent levels, states, and input-

output observations are speci�ed by a binary predicate

h. The hierarchical diagnostic algorithm is de�ned by

a logic program which implements a depth-�rst, back-

tracking search through the space of possible states (di-

agnoses). The top level predicate diagnose(L,Y,X) re-

lates an input-output observation Y to the correspond-

ing state X of the model, at the level of detail L. L0, Y0

and X0 denote more abstract level, input-output obser-

vation, and state, respectively:

diagnose( L, Y, X )  

abstract( L, L0 ),

abstract( Y, Y0 ),

diagnose( L0, Y0, X0 ),

detailed( X0, X ),

verify( L, X, Y ).
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Level 3

Level 2

Level 1

X YX X1 2 3

Figure 4: Search space reduction in hierarchical diagnosis. Only �lled nodes are checked for possible mappings from

states to observations. Solid arcs denote mappings while dashed arcs denote non-mappings.

diagnose( L, Y, X )  

no abstract( L, X ),

verify( L, X, Y ).

Normally, the procedure is invoked with a given Y at

the detailed level L, and X unknown. The �rst clause

deals with the case when there exists a more abstract

model at level L0, and the observation Y has an ab-

stractionY0. The procedure recursively searches for the

corresponding abstract state X0, and, if found, veri�es

if a re�nement X of X0 actually maps to the given Y.

The intended meaning of the predicates abstract(X,X0)

and detailed(X0,X) is that X0 is an abstraction of X:

abstract( X, X0 )  h( X0, X ).

detailed( X0, X )  h( X0, X ).

The second clause deals with the diagnosis at the top

level when there is no more abstract model, and with

instances of states that do not have any correspond-

ing abstractions. It is assumed that at each level L, all

states X without any abstraction X0 are the intended

meaning of the predicate no abstract(L,X):

no abstract( L, X )  :(9 X0) h( X0, X ).

According to the consistency condition, if there is

no abstraction for the given Y it su�ces to check only

those Xwithout any abstraction. Further, allX without

any abstraction have to be always veri�ed as potentially

possible diagnoses. The predicate verify(L,X,Y) checks

if the model m

L

at the level L actually maps X to Y:

verify( L, X, Y )  m

L

( X, Y ).

Provided that the consistency condition is satis�ed, it

can be shown that the algorithm is correct and complete

with respect to the model de�nition. The algorithm is

obviously correct since all pairs state-observation are

explicitly veri�ed by the model itself. The algorithm

is also complete since it �nds all possible pairs state-

observation that have a mapping according to the model

de�nition. Suppose there is a state-observation map-

ping for which neither the body of the �rst nor the

second clause can be satis�ed. It is straightforward to

show that such assumption is either contradictory or

that it violates the consistency condition.

The reduction of the search space in hierarchical di-

agnosis is illustrated in Figure 4.

Given a Y at the detailed level 3, the algorithm

�rst climbs the hierarchies of input-output observations

(�lled circles on the right-hand side of Figure 4). The

algorithm uses the abstract (level 1) model to verify

if any abstract state maps to the abstract observation.

Veri�cations are denoted by arcs, where solid arcs de-

note mappings while dashed arcs denote non-mappings.

At the more detailed levels (2 and 3), only states that

are re�nements of possible abstract states, and states

without abstractions are considered (�lled circles on the

left-hand side of Figure 4). Eventually, all three de-

tailed states that do map to Y are found through back-

tracking: X

1

; X

2

; X

3

. Now suppose that at the detailed

level 3 a Y is given which does not have any abstraction,

e.g., the rightmost circle in Figure 4. In this case the

algorithm checks for possible mappings only the states

without abstractions, i.e., in Figure 4 only the leftmost

state would be veri�ed.

Suppose a model is de�ned by a one-to-one (i.e., a

strictly monotonic function) or one-to-many mapping,

and the state values hierarchy has the form of a tree.

If there are n distinct states at the detailed level, the

time complexity of the hierarchical diagnostic algorithm

is O(logn), a considerable improvement over the O(n)

complexity of the generate-and-test method

[

Mozeti�c,

1990

]

. The same reduction of complexity applies even

if the model is de�ned by a k-to-many mapping, where

k is an upper bound of possible diagnoses at each level,

�xed in advance and independent of n.

Three case studies

In this section we show applications of hierarchical

model representation and the diagnostic algorithm to

three domains of general interest: equation solving, con-

straint satisfaction, and qualitative modeling.
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Numerical equation solving:

the bisection method

Suppose there is a continuous function y = f(x) which

does not have the inverse function f

�1

in analytical

form. To solve the equation y = f(x) means to �nd an

x for a given y

0

. Suppose the initial interval [x

l

, x

r

],

f(x

l

) � y

0

� f(x

r

) where f is monotonic is given. For a

given error tolerance ", the task is to narrow the interval

[x

l

, x

r

] until j x

l

� x

r

j < ".

The hierarchical diagnostic algorithm can be readily

applied to emulate the well-known bisection method.

The independent, state variable X is a pair [Xl, Xr],

representing the interval [x

l

, x

r

]. The dependent vari-

able Y is a real-valued variable y, and the mapping is

de�ned by the function f. The mapping and the values

of Y do not change across the hierarchical levels, while

the values of X are de�ned by a binary tree. Notice

that only the re�nement/collapse of values | operator

(1) | is used in this hierarchical model speci�cation.

Since there are no hierarchies for Y, the diagnostic

algorithm can be slightly simpli�ed:

diagnose( L, Y, X )  

abstract( L, L0 ),

diagnose( L0, Y, X0 ),

detailed( X0, X ),

verify( X, Y ).

diagnose( L, Y, X )  

no abstract( L, X ),

verify( X, Y ).

Lets denote abstraction levels by integers 1, : : :,

L, and assume that the value for the most abstract

X is the initial interval, de�ned by the predicate

init solution(X):

abstract( L, L0 )  L > 1, L0 = L{1.

no abstract( 1, X )  init solution( X ).

The binary tree-structured hierarchies for X are de-

�ned by the following two clauses, where Xm is the

midpoint between the interval boundaries Xl and Xr:

detailed( [Xl, Xr], [Xl, Xm] )  Xm = (Xl+Xr)/2.

detailed( [Xl, Xr], [Xm, Xr] )  Xm = (Xl+Xr)/2.

The model, unchanged across levels, just veri�es if

the given value of Y is within the interval [f(Xl), f(Xr)]

at the current level of detail:

verify( [Xl, Xr], Y )  

function( Xl, Yl ),

function( Xr, Yr ),

Yl � Y, Y � Yr.

Now suppose that one wants to solve the equation

x+ tan(x) = 1. Function f and the initial interval are

speci�ed by the following two clauses:

function( X, Y )  Y = X + tan(X).

init solution( [0, 1] ).

Given the error tolerance " = 0.00001, and by suc-

cessively increasing the level of detail until L = 18, the

query:

 diagnose( 18, 1, X ).

returns the solution X = [0.479729, 0.479736].

Hierarchical constraint satisfaction:

the eight queens problem

Given constraints over variables, the constraint satis-

faction problem is to �nd an assignment of values to

variables such that the constraints are satis�ed. Due

to a deductive nature of the problem, in principle,

straightforward backtracking techniques can be used

to solve it. To improve the e�ciency and eliminate

redundancies exploited by a simple-minded backtrack-

ing, a number of intelligent backtracking techniques was

proposed, e.g.

[

Bruynooghe and Pereira, 1984

]

. Al-

ternatively, Bibel

[

1988

]

proposes a general bottom-up,

lazy-evaluation method which transforms a constraint

satisfaction problem into the problem of evaluating a

database expression. In our approach, we do not ad-

dress the backtracking redundancies, but rather reduce

the search by �rst satisfying more abstract constraints

over smaller search space.

a b c d

a b c d e f g h

1

2

3

4

5

6

7

8

1

2

3

4 Q Q

Q Q

Q Q

Q Q

Q

Q

Q

Q

Q

Q

Q

Q

Figure 5: An abstract and a detailed solution to the

eight queens problem.
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Queens per Positions checked by constraints Queens per

Board column row one-level hierarchical diagonal Solutions

4� 4 2 2 90 N/A 3 73

90 N/A 45

8� 8 1 1 40,320 18,688 1 92

3,544 2,796 92

Table 1: Number of board con�gurations checked by, and satisfying one-level and hierarchical constraints. Line 2

corresponds to stronger constraints at the 4� 4 level, and line 4 to an early test incorporation at the 8� 8 level.

A typical constraint satisfaction problem is to place

eight queens on an empty chessboard so that no queen

attacks any other queen, e.g.

[

Bratko, 1986

]

. A sample

solution on an abstract 4�4, and a detailed 8�8 board

is given in Figure 5.

In the diagnostic framework, the eight queens prob-

lem can be formulated as follows: The independent vari-

able X is an 8-tuple Board = hQ

1

, : : :, Q

8

i of discrete

valued variables, representing a position of each queen

on the board. The dependent variable Y is binary-

valued ftrue, falseg. The mapping m(Q

1

,: : :,Q

8

) =

ftrue, falseg is a boolean function that maps Board

to true if constraints are satis�ed, and to false other-

wise. There are two levels of abstraction, correspond-

ing to the board dimensions 4�4 and 8�8. Hierarchies

for the values of X are tree structured, while values

of Y are the same at both levels. The mapping m

4�4

(i.e., constraints) at the abstract level is di�erent from

the mapping m

8�8

at the detailed level. Notice that

in this hierarchical model de�nition, only the re�ne-

ment/abstraction operators (1) and (3) are used.

We are interested only in solutions where constraints

are satis�ed, i.e., when Board maps to Y = true. There-

fore, we can omit the dependent variable Y from the

algorithm de�nition:

diagnose( L, Board )  

abstract( L, L0 ),

diagnose( L0, Board0 ),

detailed( Board0, Board ),

verify( L, Board ).

diagnose( L, Board )  

no abstract( L, Board ),

verify( L, Board ).

The model has only two levels of abstraction:

abstract( 8�8, 4�4 ).

At the abstract 4�4 level, all board positions are with-

out abstraction:

no abstract( 4�4, Board )  

( 8i, 1�i�8) Q

i

= C�R,

C 2 fa,b,c,dg, R 2 f1,2,3,4g.

For each square on the 4�4 board, there are four cor-

responding squares on the 8�8 board, e.g., c2 has re-

�nements e3, e4, f3, f4. Constraints at the 8�8 board

allow to place at most one queen in each row, column

and diagonal, while at the 4�4 board they allow up to

two queens in the same row or column, and up to three

queens in the same diagonal:

verify( 4�4, Board )  

max row( Board, 2 ),

max col( Board, 2 ),

max diag( Board, 3 ).

verify( 8�8, Board )  

max row( Board, 1 ),

max col( Board, 1 ),

max diag( Board, 1 ).

It is obvious that such hierarchical model de�nition

satis�es the consistency condition, since all con�gura-

tions of eight nonattacking queens also satisfy the ab-

stract constraints. The computational advantage of this

representation stems from the fact that con�gurations

not satisfying the abstract constraints do not need to

be considered at all at the detailed level, and that the

number of possible con�gurations on the 4�4 board

is smaller than on the 8�8 board. A comparison be-

tween the one-level (8�8) and hierarchical (both 4�4

and 8�8) constraints is given in Table 1.

In an e�cient implementation of the eight queens

problem, the pigeonhole principle can be used: since

there are eight columns and rows, and eight queens to

be placed on the board, it follows that in every one of

the columns and rows there must be exactly one queen.

There are 8! = 40,320 distinct positions that satisfy

this one-level 8�8 constraint (see column 4, line 3 in

table 1). A similar principle can be used when re�ning

73 abstract level solutions (column 7, line 1), yielding

73�2

4

�2

4

= 18,688 distinct positions at the detailed

level (column 5, line 3). As a consequence, the hier-

archical constraints reduce the number of positions to

be checked for a diagonal attack by more than a fac-

tor of two. A further improvement can be achieved

by an early test incorporation. Instead of checking if

any two queens are on the same diagonal only after all

queens are on the board, we may check for the diago-

nal attack immediately after placing each queen on the

board. This reduces the number of positions considered

by one-level constraints to 3,544 (column 4, line 4), and

to 2,796 for hierarchical constraints (column 5, line 4).

In this case, constraints at the abstract level were also

stronger, limiting the maximum number of queens on

adjacent diagonals, and thus yielding only 45 abstract

solutions (column 7, line 2).
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Hierarchical qualitative modeling:

the heart

The underlying motivation of the KARDIO project

[

Bratko et al., 1989

]

was to solve the ECG interpre-

tation problem: given a symbolic description of the

ECG data, �nd all possible heart failures (cardiac ar-

rhythmias). Several qualitative models which simulate

the electrical activity of the heart were developed to

solve the problem. In this subsection we concentrate

on the hierarchical model, represented at four levels

of detail, and the application of hierarchical diagnostic

algorithm to e�ciently solve the ECG interpretation

problem. The model at the most detailed level maps

943 heart failures (both single and multiple) to 5,240

ECG descriptions altogether.

In the diagnostic framework, the independent vari-

able X denotes the qualitative state of the heart Arr,

and the dependent variableY the output from the heart

ECG; there is no input. Each state Arr is de�ned as a

tuple of states of the heart components (each compo-

nent state in turn denotes an isolated arrhythmia A),

and corresponds to a single or multiple cardiac arrhyth-

mia. The ECG is de�ned as a tuple of individual ECG

features E. There are four levels of detail, 1, 2, 3, 4,

and at each level some new variables are introduced.

Speci�cally:

Arr

1

= hA

1

i

Arr

2

= hA

1

, : : :, A

3

i

Arr

3

= hA

1

, : : :, A

6

i

Arr

4

= hA

1

, : : :, A

7

i

ECG

1

= hE

1

i

ECG

2

= hE

1

, : : :, E

4

i

ECG

3

= hE

1

, : : :, E

7

i

ECG

4

= hE

1

, : : :, E

10

i

In the hierarchical model development, all three re-

�nement/abstraction operators were used. Apart to the

introduction of new variables, values of the variables are

re�ned at each level of detail. The model also de�nes

di�erent mappings m

1

; : : : ;m

4

from Arr to ECG by in-

troducing new components at each level.

The abstract heart models are usually incomplete

with respect to their detailed counterparts, due to

the introduction of new variables. The incomplete-

ness prevents the search space reduction at an abstract

level, and the algorithm has to resort to the ine�cient

generate-and-test method for the states Arrwithout ab-

stractions. In order to avoid the repetitive use of the

generate-and-test method, a set of all pairs hArr,ECGi

for all Arr without abstractions was generated in ad-

vance from the model at each level L. This renders a

slightly modi�ed diagnostic algorithm, where the sec-

ond clause resorts to the predicate surface(L,Arr,ECG)

de�ning hArr,ECGi pairs in the extensional form:

diagnose( L, ECG, Arr )  

abstract( L, L0 ),

abstract( ECG, ECG0 ),

diagnose( L0, ECG0, Arr0 ),

detailed( Arr0, Arr ),

verify( L, Arr, ECG ).

diagnose( L, ECG, Arr )  

no abstract( L, Arr ),

surface( L, Arr, ECG ).

The veri�cation whether an individual heart disor-

der Arr can actually cause a given ECG consists of

two steps. First, the disorder is checked against con-

straints which eliminate physiologically impossible and

medically uninteresting heart states. Then, the model

simulates the heart activity for the disorder:

verify( L, Arr, ECG )  

constraints( L, Arr ),

heart( L, Arr, ECG ).

At each level L, the simulation model maps a heart

disorder Arr to one or more ECG descriptions. The

model is de�ned by its structure (a set of components

and their connections) and functions of the constituent

components:

heart( L, Arr, ECG )  

generator( A

STATE

, Imp

OUT

), : : :

conductor( A

STATE

, Imp

IN

, Imp

OUT

), : : :

summator( Imp

IN

, Imp

IN

, Imp

OUT

), : : :

projector( Imp

IN

, E

OUT

), : : :

A model component, in general, relates its qualitative

state to the input and output. In the heart, the state of

a component corresponds to an isolated arrhythmia A,

the input is an electrical impulse Imp, and the output

is either an electrical impulse or an individual ECG

feature E. There are four types of components in the

heart model: impulse generators, conductors of im-

pulses, summators of impulses, and projectors of im-

pulses to the ECG.

Experiments and results

In this section, we emphasize the importance of appli-

cation and experimental evaluation of the multi-level

representation and hierarchical diagnosis to a non-toy

problem. First we outline transformations between dif-

ferent representations of diagnostic knowledge in KAR-

DIO, with the goal to e�ciently solve the ECG interpre-

tation problem. Then we compare diagnostic e�ciency

and space requirements between di�erent representa-

tions and the four-level hierarchical model of the heart.

Finally, we illustrate hierarchical relations in the heart

by an example of hierarchical explanation.

Knowledge transformations in KARDIO

In KARDIO the ECG interpretation problem is formu-

lated as follows: given a symbolic description of the

ECG data, �nd all possible heart disorders (cardiac ar-

rhythmias). There are both single and multiple disor-

ders in the heart, and in the medical literature there is

no systematic description of ECG features which corre-

spond to complicated multiple disorders. Further, there

is no simple rule yielding ECG features of multiple dis-

orders, given ECG features of the constituent single
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disorders. These were the two main problems we en-

countered when attempting to construct the diagnostic

knowledge base.

In order to solve the problem of multiple disorders,

we took the reverse approach. Instead of constructing

diagnostic rules directly, we rather developed a sim-

ulation model of the heart. The model is qualitative

in the sense that it does not deal with electrical sig-

nals represented numerically as functions of time, but

rather by symbolic descriptions. Subsequently, using

deductive and inductive inference techniques, the qual-

itative model (1) was automatically transformed into a

set of surface if-then rules (2), and compressed diag-

nostic rules (3), both representations more suitable for

diagnosis.

The original model of the heart in KARDIO related

over 2,400 heart disorders to over 140,000 ECG descrip-

tion. In this paper, however, all experiments described

were conducted by a subset of the original model, here

referred to as the detailed, one-level model, relating 943

heart failures to 5,240 ECG descriptions. A set of rules

which reconstruct the original model from the subset is

speci�ed in

[

Bratko et al., 1989

]

.

(1) Qualitative model of the heart

The one-level model of the heart simulates its electrical

activity. Speci�cally, the model maps any arrhythmia

(a single or multiple disorder) to all corresponding ECG

descriptions. An arrhythmia Arr is de�ned as a 7-tuple

of isolated arrhythmias A, and an ECG as a 10-tuple of

individual ECG features E:

Arr = hA

1

, : : :, A

7

i

ECG = hE

1

, : : :, E

10

i

The model is de�ned by a many-to-many mapping,

since each arrhythmiaArrmay have more than one cor-

responding ECG, and several arrhythmias may map to

the same ECG description. However, due to the sim-

ulation nature of the model m, its application in the

`forward' direction can be carried out e�ciently, resort-

ing only to shallow backtracking when deriving all ECG

descriptions for a given Arr:

m(A

1

, : : :, A

7

) = hE

1

, : : :, E

10

i

Since the modelm is speci�ed by a logic program which

de�nes a relation between Arr and ECG, it can be used

in the `backward' direction as well:

m

�1

(E

1

, : : :, E

10

) = hA

1

, : : :, A

7

i

However, the reasoning from ECG to Arr involves deep

backtracking where a large number of fruitless paths are

explored, and therefore renders the `backward' applica-

tion ine�cient. The main source of fruitless branch-

ing is the model component summator(X, Y, Z) which,

when applied, requires that for a given impulse Z, a

pair of impulses X and Y is to be found, such that their

`sum' yields Z. Usually, there is a number of possible

decompositions of Z, only few of which are consistent

with other constraints in the model, and further, those

inconsistencies may be found only in late stages of the

model application.

(2) Surface if-then rules

Despite the fact that the model cannot be used for e�-

cient diagnosis directly, it can be used indirectly. Since

the model m relates any Arr to all corresponding ECG

descriptions, one can generate an exhaustive set of pairs

hArr, ECGi:

m(Arr, ECG) = hA

1

, : : :, A

7

, E

1

, : : :, E

10

i

Such a table of pairs, properly organized and simpli-

�ed, can be interpreted as a set of surface if-then rules,

directly relating heart disorders to ECG observations.

Prediction rules of the form:

if A

1

, : : :, A

7

then E

1

, : : :, E

10

can be used to predict possible ECG-s for a given heart

disorder, and diagnostic rules of the form:

if E

1

, : : :, E

10

then A

1

, : : :, A

7

can be used for e�cient diagnosis.

A problem with such an exhaustive set of if-then rules

is a large storage space which may be required, thus

rendering it impractical for diagnostic purposes. In the

KARDIO project, for example, the original model of

the heart was used to generate a set of rules occupying

over 5 Mb when stored as a text �le. In many practical

applications it might not even be feasible to generate

all pairs disorder-observation, but only a small subset.

Some inductive generalization techniques must then be

applied to the subset in order to extend the coverage to

the whole diagnostic space (or at least most of it).

(3) Compressed diagnostic rules

In inductive learning

[

Michalski, 1983

]

, one is given a set

of learning examples and some background knowledge,

and the goal is to �nd a concept description which is

consistent and complete with respect to the examples.

A learning example e is usually represented as a tuple of

variable values, where one designated variable denotes

a class c, and the remaining values v

1

, : : :, v

n

are fea-

tures of the object belonging to the class c:

e( v

1

, : : :, v

n

, c )

The induced concept description is usually in the form

of if-then rules:

if c then v

1

, : : :, v

n

or if v

1

, : : :, v

n

then c

where c denotes an instance of the concept, and v

1

, : : :,

v

n

is a logical expression, as simple as possible, but suf-

�cient to discriminate between the class c and all other

classes. Note that in general, an if-then rule is not a

logical implication, but rather a relationship, merely

indicating the direction of inference. Consequently, de-

pending on the problem solving strategy, the left and

right-hand sides can be interchanged.

The inductive learning techniques were applied to the

exhaustive set of pairs hArr, ECGi. First, ten sets of

learning examples were prepared, in each a di�erent
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ECG feature E

i

representing the class variable:

e

1

( A

1

, : : :, A

7

, E

1

)

� � �

e

10

( A

1

, : : :, A

7

, E

10

)

An algorithm for learning from examples was then used,

and ten sets of compressed diagnostic rules were in-

duced:

if E

1

then A

1

, : : :, A

7

� � �

if E

10

then A

1

, : : :, A

7

Each rule relates an individual ECG feature E

i

to a min-

imal description of corresponding arrhythmias A

1

, : : :,

A

7

which is still su�cient to discriminate between the

E

i

and other ECG features. Since the set of learning ex-

amples was exhaustive and some additional conditions

were satis�ed, no generalization occurred in the pro-

cess, and consequently the compressed diagnostic rules

are logically equivalent to the original exhaustive set of

if-then rules. The compressed rules are compact and

can be e�ciently used for diagnosis. However, their in-

duction required 40 hours of (user) CPU time on SUN 2

[

Mozeti�c, 1986

]

.

The same approach of constructing a qualitative

model, exhaustive simulation, and induction of com-

pressed diagnostic rules was taken by Pearce

[

1988

]

to

automatically construct a fault diagnosis system of a

satellite power supply. Similarly, Buchanan, Sullivan,

Cheng and Clearwater

[

1988

]

show the advantage of

using a classical simulation model to generate a (non-

exhaustive) set of learning and testing examples, which

is then used to induce rules for location of errors in

particle beam lines used in high energy physics.

Time/space trade-o�

The four-level hierarchical model of the heart was de-

veloped in two stages. First, the three-level model was

constructed in a top-down fashion, using QuMAS, a

semiautomatic Qualitative Model Acquisition System

[

Mozeti�c, 1987

]

. The fourth, most detailed level was

then added manually, by rewriting the original KAR-

DIO heart model (which required a special interpreter)

into a logic program which can be interpreted directly.

Table 2 outlines the complexity of the hierarchical

model of the heart at each level of detail. The lower part

of the table indicates the incompleteness of abstract

levels, where the number of entities without abstraction

for each adjacent detailed level is given. Notice that the

levels 1 and 2 are incomplete with respect to the levels

2 and 3, respectively, and the level 3 is complete with

respect to the level 4.

Recall that in the cases of incompleteness, the hier-

archical diagnostic algorithm has to resort to the naive

generate-and-test method, thus potentially decreasing

the e�ciency of diagnosis. First experiments with the

three-level model of the heart

[

Mozeti�c et al., 1991

]

showed no considerable advantage of hierarchical diag-

nosis over the generate-and-test method, due precisely

Level of

detail Arr ECG hArr, ECGi

1 3 3 3

2 18 12 23 hierarchical

3 175 263 333 model

4 943 3,096 5,240

1 3 3 3 entities

2 3 0 5 without

3 26 6 79 abstraction

4 0 0 0

Table 2: Number of distinct entities in the hierarchi-

cal heart model at di�erent levels of detail (top), and

corresponding model incompleteness (bottom).

to the high level of incompleteness in the model. In

the experiments described here, we slightly modi�ed

the heart model at the level 2 to decrease its incom-

pleteness. Further, a set of surface if-then rules for all

pairs hArr, ECGi without abstractions was generated

in advance in order to avoid the repetitive application

of generate-and-test.

We compared space requirements and diagnostic ef-

�ciency of the three types of diagnostic knowledge (de-

scribed in the previous subsection) to the hierarchical

model of the heart. In all cases, knowledge bases and di-

agnostic algorithms are implemented as logic programs

and compiled by Quintus Prolog on SUN 2. We mea-

sured space required by each representation together

with the corresponding algorithm, when both stored as

text �les. Diagnostic e�ciency is the time needed to

�nd all possible diagnoses for a given ECG, and was

measured on all 3096 distinct ECG descriptions at the

detailed level. Results in Table 3 are the average times

over 3096 ECG-s.

Type of knowledge Space (Kb) Time (s)

(1) One-level model 15 50.35

(used `backwards') 66.30

(2) Surface rules 750 0.22

(3) Compressed rules 25 0.55

(4) Hierarchical model 45 2.67

Table 3: Space requirements for di�erent representa-

tions and times spent to �nd all possible diagnoses for

a given ECG description, averaged over all 3096 distinct

ECGs.

Notice the very high directionality bias of the one-

level heart model in Table 3. When the model is used

in the `forward' direction, the average time to derive an

ECG for a given Arr is only 0.063 seconds (this is con-

sistent with the 50.35 seconds for the generate-and-test,

where the model is applied 943 times in the `forward'

direction, once for each distinct Arr). In contrast, the

average `backwards' application (for diagnosis) requires

as much as 66.30 seconds. As a consequence, even the
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naive generate-and-test method turns out to be more

e�cient than the model used in the `backwards' direc-

tion.

Surface if-then rules are the most time e�cient since

only simple memory retrieval is required, but, on the

other hand, they are very space demanding. Com-

pressed diagnostic rules are optimal in terms of space

and time e�ciency and appear to be the best rep-

resentation for the ECG interpretation. Finally, the

four-level model is obviously outperformed by the com-

pressed diagnostic rules, but achieves satisfactory per-

formance from the practical point of view. More impor-

tantly, it is 20 times more e�cient than the one-level

model, and requires only three times as much space (out

of 45 Kb, 11 Kb are for surface if-then rules without ab-

stractions).

The relation between di�erent representations of di-

agnostic knowledge is better illustrated on a time/space

trade-o� scale in Figure 6. Recall that representations

(2) and (3) were automatically derived from (1), while

(4) was constructed semi-automatically on top of (1).
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Figure 6: A tradeo� between the average diagnostic

time and space requirements for di�erent representa-

tion: (1) one-level model, (2) surface if-then rules, (3)

compressed diagnostic rules, and (4) hierarchical four-

level model.

In contrast to dedicated diagnostic rules, model-

based reasoning o�ers better explanation facilities

which can be even tuned to the desired level of detail

[

Mozeti�c et al., 1991

]

. Further, the hierarchical diagnos-

tic algorithm can be easily modi�ed to accommodate di-

agnostic reasoning under time constraints, and to o�er

a tradeo� between diagnostic speci�city and certainty.

The current algorithm implements a depth-�rst search,

favoring speci�city (more detailed diagnoses) over cer-

tainty. In a breadth-�rst search implementation, cer-

tainty (a proportion of possible diagnoses at a given

level of detail) would be favored over speci�city.

Hierarchical explanation

In this subsection we give an example of diagnostic rea-

soning based on the heart model represented at four

levels of detail. Instead of pure relational notation we

use the attribute-value notation in order to improve the

readability. Each element of a relational tuple is aug-

mented by the attribute which corresponds to the ele-

ment position in the tuple.

Suppose the following detailed ECG description at

the fourth level of detail is given:

ECG

4

= hRhythm = regular,

P wave = abnormal,

Rate of P = between 100 250,

Relation P QRS = after P always QRS,

PR interval = shortened,

QRS complex = normal,

Rate of QRS = between 100 250,

Ectopic P = abnormal,

Ectopic PR = after QRS is P,

Ectopic QRS = normali

The hierarchical diagnostic algorithm �rst uses hierar-

chies of observations to �nd more abstract ECG de-

scriptions. At the third level, the last three variables

Ectopic P, Ectopic PR, and Ectopic QRS are deleted:

ECG

3

= hRhythm = regular,

P wave = abnormal,

Rate of P = between 100 250,

Relation P QRS = after P always QRS,

PR interval = shortened,

QRS complex = normal,

Rate of QRS = between 100 250i

At the second level of detail, variables Rhythm,

Rate of P, and PR interval are deleted. Values of

P wave = abnormal and QRS complex = normal are

both abstracted to the value present, and Rate of QRS

= between 100 250 is abstracted to over 100:

ECG

2

= hP wave = present,

Relation P QRS = after P always QRS,

QRS complex = present,

Rate of QRS = over 100i

At the most abstract level, all variables but

Rate of QRS are deleted:

ECG

1

= hRate of QRS=over 100i

The model of the heart at the �rst level is then used

to �nd a possible diagnosis:

heart( 1, Arr, ECG )  

generator( Arr, Impulse ),

projector( Impulse, ECG ).

generator( brady, form(under 60) ).

generator( rhythm, form(between 60 100) ).

generator( tachy, form(over 100) ).

projector( form(Rate), Rate ).
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Given the abstract ECG, the only possible diagnosis at

this extremely simple level is tachy - a tachycardia in

medical terminology. Now the algorithm resorts to hi-

erarchies of diagnoses to re�ne this abstract diagnosis,

and uses more detailed heart models to verify which

re�nements can actually produce the given ECG obser-

vations.

Arr

1

= hArr i

�

�

�

�

�

�

�

�

�

�

�

a

a

a

a

a

Arr

2

= hSV, AV, IV i







J

J

�

�

�

�

%

%

Q

Q

Q

Arr

3

= hSA, AF, AV, JF, BB, VF i







J

J

Arr

4

= hSA, AF, AV, JF, BB, VF, VEF i

Figure 7: Representation of arrhythmias at di�erent

levels of detail. At each level new variables are intro-

duced, and dependencies between the abstract and de-

tailed level values are de�ned.

Hierarchies of diagnoses are more complicated than

hierarchies of ECG descriptions. At each level new

variables are introduced, and typically a value of an

abstract level variable depends on values of tuples of

detailed level variables and not only on individual de-

tailed level variables (as is the case with ECG descrip-

tions). Recall (section 4.3) that individual variables

correspond to heart components and that their values

denote isolated arrhythmias. Arrhythmias (diagnoses)

are tuples of isolated arrhythmias. Figure 7 de�nes hi-

erarchies of tuples and dependencies between individual

variables. SV corresponds to a supra-ventricular focus,

AV is the atrio-ventricular conduction, IV denotes an

intra-ventricular focus, SA is the sino-atrial node, AF

is an atrial focus, JF is a junctional focus, BB denotes

the bundle branches, VF is a regular ventricular focus,

and VEF is an ectopic ventricular focus.

Figure 8 gives some examples of hierarchical relations

between values of individual variables and tuples of vari-

ables. When a variable has no value assignment in a

tuple it can take any possible value. Abbreviations for

isolated arrhythmias used at the fourth level of detail

correspond to the following medical terms: st is sinus

tachycardia, aeb are atrial ectopic beats, at is atrial

tachycardia, mat is multi-focal atrial tachycardia, lgl is

the LGL syndrome, wpw is the WPW syndrome, avb1

is the AV block, �rst degree, wen is the AV block of

type Wenckebach, mob2 is the AV block, type Mobitz

2, avb3 is the AV block, third degree, jt is junctional

tachycardia, jeb are junctional ectopic beats, vt is ven-

tricular tachycardia, lbbb is left bundle branch block,

rbbb is right bundle branch block, and veb are ventric-

ular ectopic beats.

In our example, hierarchies in Figure 8 are used by

the diagnostic algorithm to re�ne the abstract level di-

agnosis tachy. The following dialog with the system

illustrates the depth-�rst search for diagnoses through

abstraction spaces. The user responses are in italics and

each diagnosis is followed by the corresponding medical

term:

A possible diagnosis:

i Arr

1

= tachy

Tachycardia

More detailed diagnosis? yes

ii Arr

2

= hSV=sv tachy, AV=no block,

IV=quiet i

Supra-ventricular tachycardia

More detailed diagnosis? yes

iii Arr

3

= hSA=quiet, AF=at, AV=normal,

JF=quiet, BB=normal, VF=quiet i

Atrial tachycardia

More detailed diagnosis? yes

iiii Arr

4

= hSA=quiet, AF=at, AV=normal,

JF=jeb, BB=normal, VF=quiet,

VEF=quiet i

Atrial tachycardia with junctional ectopic

beats

Alternative diagnosis? yes

iii Arr

3

= hSA=quiet, AF=at, AV=lgl,

JF=quiet, BB=normal, VF=quiet i

Atrial tachycardia with the LGL syndrome

More detailed diagnosis? yes

iiii Arr

4

= hSA=quiet, AF=at, AV=lgl, JF=jeb,

JF=jeb, BB=normal, VF=quiet,

VEF=quiet i

Atrial tachycardia with the LGL syndrome

and junctional ectopic beats

Alternative diagnosis? yes

ii Arr

2

= hSV=quiet, AV=no block,

IV=iv tachy i

Intra-ventricular tachycardia

More detailed diagnosis? yes

iii Arr

3

= hSA=quiet, AF=quiet, AV=normal,

JF=jt, BB=normal, VF=quiet i

Junctional tachycardia

More detailed diagnosis? yes

iiii No consistent re�nement !

iiii No more alternatives !

For the given detailed ECG, there are two possible

diagnoses: atrial tachycardia with junctional ectopic

beats, and atrial tachycardia with the LGL syndrome

and junctional ectopic beats. The �rst diagnosis ap-

pear to be more general than the second one, but for a

physician it is important to be aware of both possibili-

ties, since the second diagnosis is potentially more dan-

gerous and might require a di�erent treatment. Note

that a diagnosis possible at the third level, junctional

tachycardia, has several re�nements at the fourth level,

but none of them actually maps to the given ECG de-

scription.
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Figure 8: Examples of hierarchical relations between isolated abstract arrhythmias and tuples of detailed arrhythmias.

An example of explanation of the heart behavior at

each individual level would require a detailed descrip-

tion of the heart model which is beyond the scope of this

paper. Some examples can be found in the KARDIO

monograph

[

Bratko et al., 1989

]

.

Conclusion

In the paper, we proposed a model representation at

several levels of detail with the goal to increase the ef-

�ciency of model-based diagnosis. We de�ned the con-

sistency condition which has to be satis�ed by the hier-

archical representation, and we speci�ed the diagnostic

algorithm. The algorithm turns out to be general, and

is independent of the choice of the model representa-

tion at any single level. Further, the model is always

used only in the `forward' direction which is preferred

and often the only feasible option in the case of a nu-

meric model. In particular, we envision the possibility

of taking an existing simulation model, adding a few

more abstract levels to it, and then using it for e�cient

diagnosis.

The e�ciency improvement is due to the smaller

search spaces at more abstract levels and the reduced

search at the detailed level. The improvement depends

on the branching factor of hierarchical relations and

on the degree of incompleteness. In particular, it is

known that in numerical equation solving, the bisec-

tion method is more e�cient than the k-section, k > 2.

A hierarchy in the form of a binary tree is therefore pre-

ferred over a k-ary tree or a non-tree structured hier-

archy. As a consequence, to improve the e�ciency, one

should introduce new, intermediate levels in the hierar-
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chical representation. For example, in the eight queens

problem, it seems to be advantageous to introduce an

intermediate, 4�8 board. It is domain dependent, how-

ever, when such intermediate levels are meaningful, and

if corresponding mappings can be easily formulated.

There is another possibility of improving diagnostic

e�ciency, when a component-oriented model represen-

tation is used. Instead of specifying only hierarchical re-

lations between di�erent level models, one could specify

hierarchical relations between their constituent compo-

nents as well. In this case, the veri�cation if a detailed

level model behaves consistently with the abstract level

can be terminated as soon as an inconsistent behavior of

a component (or a set of components) is encountered.

The idea of using hierarchical relations between com-

ponents was already successfully applied in QuMAS,

where a model is constructed semi-automatically, in a

top-down fashion, through cycles of learning, interpre-

tation, and debugging

[

Mozeti�c, 1987

]

.

Another interesting direction of further research con-

cerns automatic construction of abstract level models

on top of an existing detailed level model. Given a class

of problems to be solved by a model, it may well turn

out that the existing model is unnecessarily detailed,

and that a more abstract model is su�cient and even

more e�cient at problem solving. Such goal-oriented

reasoning may help in identifying useful abstractions

and simpli�cations to be carried out automatically.
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