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Abstract—This paper tries to bring the problem of technical
algorithmic bias to the attention of the high-dimensional data
mining community. A system suffering from algorithmic bias
results in systematic unfair treatment of certain users or data,
with technical algorithmic bias arising specifically from technical
constraints. We illustrate this problem, which so far has been
neglected in high-dimensional data mining, for a real world
music recommendation system. Due to a problem of measuring
distances in high dimensional spaces, songs closer to the center
of all data are recommended over and over again, while songs
far from the center are not recommended at all. We show
that these so-called hub songs do not carry a specific semantic
meaning and that deleting them from the data base promotes
other songs to hub songs being recommended disturbingly often
as a consequence. We argue that it is the ethical responsibility
of data mining researchers to care about the fairness of their
algorithms in high-dimensional spaces.

Index Terms—hubness, technical algorithmic bias, algorithmic
fairness, ethical responsibility

I. INTRODUCTION

Learning and data mining in high-dimensional spaces is

challenging due to a number of phenomena that are commonly

referred to as curse of dimensionality [5]. In this paper

we want to show that high-dimensional data mining can

cause problems of algorithmic fairness, or more specifically

a problem of technical algorithmic bias. We will do this by

analyzing and discussing a specific aspect of the curse of

dimensionality, so-called hubness, in the context of automatic

music recommendation where it causes unfair treatment of

certain songs.

Hubness was first noted as a problem in music informa-

tion retrieval (MIR), which is the interdisciplinary science

of retrieving information from music. An analysis [3] of a

music recommendation system showed that hub songs were

recommended conspicuously often in nearest neighbor-based

playlists, while other songs acting as anti-hubs were never rec-

ommended. Hubness is now understood as a general problem

of learning and data-mining in high-dimensional spaces [36],

[43]. Hubness is related to the phenomenon of concentration

of distances, where all pairwise distances are approximately

the same for dimensionality approaching infinity [20], casting

doubts whether distances in high dimensions are meaningful

at all [6], [28].
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The term algorithmic bias [21] is used to describe systematic

and repeatable errors that create unfair outcomes in computer

experiments, i.e. generating one result for certain users or

certain data and a different result for others. With machine

learning now being at the heart of many advanced technologies

pervading the lives of millions of people, such unfair treatment

by algorithms could have a negative impact on a society-wide

level. In this paper we want to raise awareness for another

problem of algorithm fairness, that of technical algorithmic

bias arising specifically from technical constraints [21] in

high dimensions. Let us give an example by imagining a

hypothetical music recommendation system, which for every

query song recommends five random songs belonging to

the same genre, with the genre label being given as meta-

information. Imagine the algorithm choosing the five random

songs using a flawed random number generator favoring data

objects at the end of the alphabetically ordered song data base.

The result would be recommendation of pre-dominantly artists

with names starting with letters at the end of the alphabet,

resulting in unfair treatment due to technical algorithmic bias.

In this paper we will analyze technical algorithmic bias

in high dimensions in a real-life content-based music rec-

ommendation system. Due to a problem of learning in high

dimensional spaces, in this system some data objects act as

‘hubs’, which means that they are abnormally close to many

other data objects and thus some songs are recommended over

and over while others are never recommended. We first present

related work in Section II, data from the music recommenda-

tion system in Section III, methods of signal processing and

machine learning in Section IV, results in Section V, before

we discuss and conclude in Sections VI and VII.

II. RELATED WORK

In our section on related work, we first review results

concerning hubness including those from the field of music

information retrieval (MIR), where hubness has first been

discovered, before we review work on algorithmic bias. MIR

is the interdisciplinary science of retrieving information from

music. It is a direct response to the need for entirely new

methods for analyzing, describing, distributing, and presenting

music due to the rapidly growing amount of music available

in digital form, see [32], [39], [47] for the most recent

comprehensive surveys of the field. Automatic music recom-

mendation [10] based on some notion of music similarity, for



which the music recommender we will introduce in Section III

is an example, is an important goal of MIR.

Hubness was first noted as a problem in audio-based mu-

sic recommendation [3], more specifically that certain hub

songs are being recommended conspicuously often in nearest

neighbor-based playlists, while other songs acting as anti-

hubs are never recommended. Hubness is an aspect of the

curse of dimensionality and a general problem of learning in

high-dimensional spaces [36], [43]. Hubness is related to the

phenomenon of concentration of distances, where all pairwise

distances are approximately the same for dimensionality ap-

proaching infinity [20]. In [36] it has been argued, that in

the high-dimensional but still finite case, some points are

expected to be closer to the center than other points and

are at the same time closer, on average, to all other points.

This phenomenon is known as spatial centrality [36] and it is

amplified by high dimensionality. Points closer to the center

have a high probability of being hubs, i.e. of appearing in

nearest neighbor lists of many other points. Points which

are further away from the center have a high probability of

being ’anti-hubs’, i.e. points that never appear in any nearest

neighbor list. For unimodal data, hubs are close to the global

data center. Real-world data sets are often better described as

a mixture of distributions, for which hubs tend to be close to

the means of individual distributions. Since the exact mixture

of distributions in real-world data is often unknown, k-means

clusters [36] and local neighborhoods [25] have previously

been used to describe spatial centrality in multimodal data.

On the other hand, anti-hubs are typically far from centers

and can be considered distance-based outliers [36].

It is important to note that the degree of concentration

and hubness is linked to the intrinsic rather than extrinsic

dimension of the data space. While extrinsic dimension is

simply the actual length of the data vectors of interest, the

intrinsic dimension [9] is the, often much smaller, number of

dimensions necessary to represent a feature space without loss

of information. Previous research [43] demonstrated that real

world data with extrinsic dimensionality as small as 34 can

already exhibit the negative effects of hubness.

For the real world music recommendation system which we

will describe in Section III and analyze in this paper, it has

been shown [19] that only two-thirds of the music catalogue

is recommended and reachable at all, while only about a

third of the songs are likely to being listened to. Based on a

random walk analysis simulating potential users, it was found

that the situation is even more severe, since almost 60% of

simulated listening time is spent listening to less than 4% of

the whole catalogue. Hub objects are also often responsible

for misclassification, i.e. the class labels of hub objects and

the objects they are nearest neighbors to do not match [43].

Apart from music recommendation, hubness has already

been shown to have a negative impact on many more tasks

including classification [11], [36], [48], clustering [41], [52],

visualization [15] and outlier detection [13], [14], [37]. The

connection between hubness and the notion of hub vertices

in graphs has also already been explored [1], [2], [19],

[36]. There also exist a number of methods to reduce the

negative effects of hubness, essentially re-scaling [43], [51]

the distance space, centering the data [25], or using alternative

distances [16] (see [12] for a comprehensive review and

comparison).

The term algorithmic bias or, more generally, bias in com-

puter systems is used to describe systematic and repeatable

errors that create unfair outcomes in computer experiments,

i.e. generating one result for certain users or certain data and

different results for others in a reproducible way [21]. This bias

is usually divided into pre-existing, emergent and technical

bias.

When computer systems embody biases that exist indepen-

dently and often prior to creation of a computer system, one

speaks of pre-existing bias. Such bias can enter a system as

a conscious decision but more often implicitly and uncon-

sciously. Very often pre-existing bias is due to the choice of

training data enforcing existing prejudice and discrimination. It

has e.g. been shown [8] that application of machine learning

to ordinary human language results in human-like semantic

biases. The text corpora used for training contain certain

imprints of historic societal biases, like e.g. prejudice toward

race or gender [7], which are then replicated by the computer

systems. For the field of MIR, the CompMusic project has

broached a related issue, stating that most “research is being

carried out with a western centered approach and as a result,

most of our data models, cognition models, user models,

interaction models, ontologies, etc., are culturally biased” [45].

Emergent bias becomes visible when real users are interact-

ing with computer systems, most often because user interfaces

are used by populations different from those intended by

the interface designers. Examples from MIR are populations

with different expertise or cultural backgrounds, as has also

been discussed within the CompMusic project where different

interfaces to MIR systems for different cultures have been

advocated [45].

Technical algorithmic bias on the other hand arises from

specifically technical constraints, which may be due to hard-

ware, software or even peripherals. Technical bias may arise

from rather trivial problems like the combination of imperfect

random numbers and alphabetical order in a database as

mentioned in Section I. It can also be much harder to grasp,

e.g. in a legal expert system weighing data points to determine

whether a defendant should accept a plea bargain. In such

cases information which is hard to formalize, like the impact

of emotion on a jury, is ignored or misrepresented in the

expert system’s weighing algorithm [21]. The concept of

technical algorithmic bias, as well as computer bias in general,

is closely related to a recent drive in data mining to give

prospective users and stakeholders the right to an explanation

for algorithmic output [23], allowing to better understand why

a certain decision has been made.

In the research field of data mining, basically two solutions

to the problem of algorithmic bias have been proposed: (i)

discrimination discovery from data bases [33]; (ii) discrimi-

nation prevention via fairness-aware data mining [24]. To the



best of our knowledge, the problem of technical algorithmic

bias due to high dimensionality has not been discussed within

the data mining community so far. The hubness problem

itself has been researched and documented within the MIR

community to a considerable extent [3], [17], [18], [29], [42],

[43], but has not been understood as a problem of technical

algorithmic bias. In the final report [47] of the most recent

substantial re-evaluation of the research compass of the field of

MIR (‘Roadmap for Music Information ReSearch (MIReS)’),

biases in training data are mentioned but not those related to

algorithms. In a very recent overview article [26] on ethical

dimensions of MIR technology, algorithmic bias is discussed

for a hypothetical music recommender where “a large number

of artists is never recommended [...] due to a lack of user

data or other artifacts that are not completely understood”.

This paper aims at understanding such failures of music

recommendation systems as a problem of technical algorithmic

bias due to high dimensionality.

A question which still remains unanswered is what makes

a specific piece of music act as a hub or anti-hub within a

certain MIR system. The respective theory [36] suggests that

hub objects are closer to the center of all data, but there exists

no in-depth investigation how this relates to what is being

observed in music data. It seems clear that given a certain

representation, different songs will act as hubs, e.g. a time-

frequency based music representation and one based on the

raw audio temporal signal will result in very different data

distributions and hence in very different hub songs. Previous

research has already shown that the choice of how songs are

modeled is an important factor as to whether the overall MIR

system is prone to hubness or not [18].

This interplay of hubness, representation and algorithmic

bias will be the topic of the rest of this paper.

III. DATA

For our analysis, we use data from a real-world music

discovery system1, where artists can upload and present their

music free of charge. Website visitors can listen to and

download all the music at no cost, with most recent uploads

being displayed at the top of the website. To allow a more

appealing access to the full database regardless of the song’s

publication date, a recommendation system using a content-

based music similarity measure was implemented [22]. This

similarity measure is based on timbre information computed

from the audio. For our experiments we use a development

data base of 16583 songs which is organized in a coarse

genre taxonomy. The artists themselves choose which of the

six genre labels ‘Hip Hop, Reggae, Funk, Electronic, Pop and

Rock’ best describe their music. The distribution of genres is

quite unbalanced with ‘Electronic’ and ‘Rock’ being the most

prominent genres. This is representative of the full data base.

IV. METHODS

The user interface of the music recommender has been

implemented as a visualization of a knn graph showing the

1http://fm4.orf.at/soundpark

k = 5 most similar songs to the currently selected track.

We describe the feature processing used to model the timbre

of a song in Section IV-A and how the distance DKL(p, q)
between two songs p and q is computed in Section IV-B. The

5 songs with minimum distance DKL to a query song are

being recommended.

A. Signal processing

From the 22050Hz mono audio signals two minutes from

the center of each song are used for further analysis. We divide

the raw audio data into overlapping frames of short duration

and use Mel Frequency Cepstrum Coefficients (MFCC) to rep-

resent the spectrum of each frame. MFCCs are a perceptually

meaningful and spectrally smoothed representation of audio

signals. MFCCs are a standard technique for computation

of spectral similarity in music analysis (see e.g. [30]). The

following steps compute the MFCCs:

1) divide signal into short overlapping segments with frame

size 46.4ms (1024 samples) and a hopsize of 23.2ms

(512 samples)

2) apply a Hann window to each segment

3) compute power spectrum matrix using a Fast Fourier

Transformation

4) transform the power spectrum to the mel-scale using a

filter bank consisting of triangular filters

5) convert to decibel by taking the logarithm

6) apply discrete cosine transform to compress and smooth

the mel power spectrum to 20 MFCCs

B. Computing similarity of songs

We now describe the approach to computing music similar-

ity based on spectral similarity. For a given music collection

of songs, it consists of the following steps:

1) for each song, compute MFCCs for short overlapping

frames as described in Section IV-A

2) train a single Gaussian (G1) to model each of the songs

3) compute a distance matrix between all songs using

the Kullback-Leibler divergence between respective G1

models

Single Gaussian (G1) with full covariance are used to

represent the MFCCs of each song [31]. For single Gaussians,

p(x) = N (x;µp, σp) and q(x) = N (x;µq, σq), there is a

closed form of the Kullback-Leibler divergence [34]:

KLN (p‖q) = 0.5 log

(

det (Σp)

det (Σq)

)

+ 0.5Tr
(

Σ−1

p Σq

)

+ 0.5 (µp − µq)
′

Σ−1

p (µq − µp)−
d

2

(1)

where Tr(M) denotes the trace of the matrix M , Tr(M) =
Σi=1..nmi,i. Dropping constants and symmetrizing the diver-

gence yields the following approximation [40]:

DKL(p, q) = Tr
(

Σ−1

p Σq

)

+ Tr
(

Σ−1

q Σp

)

+ Tr
((

Σ−1

p +Σ−1

q

)

(µp − µq) (µq − µp)
′
)

(2)

http://fm4.orf.at/soundpark


# mean std min max

hub 653 51.63 4.55 44.10 76.36

normal 9977 68.60 67.01 46.49 2171.6

anti 5953 76.22 44.67 48.56 1784.9

TABLE I
THE NUMBER (#) OF HUB, NORMAL AND ANTI-HUB OBJECTS AND THEIR

MEAN DISTANCE TO THE CENTER OF THE DATA, PLUS THE STANDARD

DEVIATION AND MAX AND MIN DISTANCES.

Please note that this approximation is symmetric, i.e.

DKL(p, q) = DKL(q, p), and that the self-similarity is

non-zero, i.e. DKL(p, p) 6= 0. Actually, DKL(p, p) = 2d with

d being the dimensionality of the data vectors (20 MFCCs in

our case).

V. RESULTS

The major evaluation measure to characterize hubness in the

data is the k-occurrence Ok. It is the number of times a song

occurs in the first k nearest neighbors of all the other songs in

the database (see e.g. [3]). The mean Ok across all songs in a

database is equal to k. Any k-occurrence significantly bigger

than k therefore indicates existence of a hub. We select k = 5
because our music recommender always shows the five most

similar songs. As has been done before [43], we define that

any song with Ok > 5k = 25 is a hub, any song with Ok = 0
is an anti-hub, any song with Ok > 0 ∧ Ok ≤ 5k = 25
is a so-called normal object. We compute the maximum k-

occurrence, maxhub (i.e. the biggest hub), the number of songs

of which the k-occurrence is more than five times k (#hub),

and for which it is equal to zero indicating an anti-hub (#anti).

These statistics are given in Table I, with the number of hubs

being 653 and the number of anti-hubs 5953, which means that

more than a third of the data are never being recommended.

The largest hub maxhub appears in the recommendation lists

of 620 other songs. The 653 hub songs cover 40.11% of all

the recommendation lists, although they themselves constitute

only about 4% of the data base.

A. What makes a song a hub song?

We first try to verify the theoretical result (see Section II)

that hub objects are close to the center of the full data set. To

compute the center of the data set we use kmeans-clustering

based on the weighted symmetrized Kullback-Leibler cen-

troid [4], [44] with the number of clusters set to one.

In Figure 1 we plot the k-occurrence Ok versus the distance

(KL divergence as in Equation 2) to the data center. As can

be seen, the hub songs (blue dots) show the smallest distance

and of course largest Ok. Normal songs (green dots) and

anti-hub songs (red dots) do not come as close to the data

center and show large variance of distances. This becomes

more apparent when looking at the mean distances and their

standard deviation in Table I. The average KL divergence of

hub songs to the center is 51.63, that of normal songs 68.60
and that of anti-hubs already 76.22. From looking at Figure 1

and at the standard deviations, as well as at minimum and

maximum KL divergences given in Table I, it is also clear
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Fig. 1. Ok (y-axis) occurrences versus KL divergence (x-axis, log scaled) to
the center of all data. Hub songs are depicted in blue, normal songs in green
and anti-hub songs in red.

that there is a considerable overlap of the distances to the

center for hubs, normal and anti-hub data. The Spearman

rank correlation between the k-occurrences Ok and the KL

divergences is −0.48, indicating a moderate negative relation

with k-occurrences being larger for smaller KL divergences.

Next we try to answer the question, whether hub songs have

a specific sound, i.e. whether they have a specific semantic

meaning. In Figure 2 we plot the FFT power spectra for 10

seconds of the largest hub song, a normal and an anti-hub

song. To allow better comparability of plots all three songs

are from the ‘Electronic’ genre and contain vocals, just as the

largest hub song. As can be seen from the plots, there are no

distinctive features that would enable differentiation between

the hub, normal or anti-hub song. Also listening to these

examples2, as well as many other randomly chosen songs,

does not offer any clues as to what makes a song act as a

hub song.

Looking at boxplots of the mean MFCC values for hubs,

normal and anti-hub songs in Figure 3 shows that there are also

no peculiarities in the MFCCs either. The mean values for all

three types of songs are very comparable, the main difference

being the larger variation for normal and anti-hub songs

compared to hub songs. Comparison of MFCC covariances

does also not offer any indication how to distinguish the songs.

We now argue in more detail, whether a song’s property of

being or not being a hub can, in the context of the method

for computing similarity as described above, depend on mean-

ingful, semantic content of that particular song. A waveform,

which is perceptually equivalent to the original sound, and

thus bears the same semantic content, can in principle be

reconstructed from a sufficiently redundant spectrogram [35],

2The three songs can be listened to at this site: http://ofai.at/∼arthur.flexer/
hdm2018.html

http://ofai.at/~arthur.flexer/hdm2018.html
http://ofai.at/~arthur.flexer/hdm2018.html
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Fig. 2. FFT power spectrum (y-axis) for 10 seconds (x-axis) of the largest
hub song, a normal and an anti-hub song. All songs are from the ’electronica’
genre with vocals.
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Fig. 3. Box plots for mean vectors of Gaussian models for hub, normal and
anti-hub songs.

[50]. Synthesis of a meaningful approximation to the original

sound can also still be obtained from a mel-spectrogram,

i.e. a version of spectrogram coefficients in which averaging

has been performed in frequency [46], [54]. Since the cosine

transform is invertible, a similar reconstruction would also be

possible from MFCCs, albeit with a certain loss of information

since only a limited number (20 in our case) of MFCCs

are retained. On the other hand, using a single Gaussian

to model the spectral content of a song (see Section IV-B)

essentially averages over all the MFCCs in time, reducing

the observation to mean and variance statistics and discarding

temporal structure [27]. The remaining average information

does not allow to make any meaningful statements about the

original waveform that was used for computing the MFCCs.

The same average can be obtained through data with very large

or very small variation around the mean values, just to give a

trivial example. As a consequence, very different audio signals

can be close to the center of all data and hence very different

audio signals can become hub songs.

B. What if we delete central or hub songs from the data base?

Next we explore what happens if we remove certain songs

from the data base. We removed the 653 most central songs

(i.e. those with minimal KL divergence to the center of the

data), or we removed the 653 hub songs (i.e. every song with

Ok > 25), or, as a control, 653 random songs. In Figure 4

we plotted the results with the k-occurrences before deletion

on the x-axis and the k-occurrences after deletion in the now

slightly smaller data base on the y-axis. Looking at the left

plot giving the results for deletion of the most central songs,

one can see that k-occurrences increase after deletion, i.e. most

points in the plot are above the dashed diagonal axis. Since

many of the deleted most central points are also hub songs,

other songs now take over the role of these hub songs. After

deletion of the most central points there are 650 hub songs

with an Ok larger than 25, which is almost identical to the

653 hub songs before deletion. The largest hub maxhub now

appears in the recommendation lists of 145 other songs, as

opposed to 620 before deletion. The new 650 hub songs cover

34.85% of all the recommendation lists, opposed to 40.11%
before deletion. The hub songs after deletion take over the role

of the hub songs in the full data base to a large extent, but

not fully so. There also is a high Pearson correlation of 0.97
between Ok before and after deletion, indicating that songs do

not completely change their role with respect to being hubs,

normal or anti-hub data.

Looking at the center plot giving the results for deletion

of the 653 hub songs, one can again see that k-occurrences

increase after deletion. After deletion of all hub songs there

are 629 new hub songs with an Ok larger than 25, which is

close to the 653 hub songs before deletion. The largest hub

maxhub now appears in the recommendation lists of 88 other

songs, as opposed to 620 before deletion. The new 629 hub

songs cover 27.80% of all the recommendation lists, which

is less than before deletion and less than with deletion of the

most central songs, but still quite considerable. The Pearson

correlation of Ok before and after deletion is again very high

at 0.93.

Looking at the right plot giving the results for deletion of

653 random songs, one can see that k-occurrences basically

remain identical with a perfect Pearson correlation of almost

1. The number of hub songs at 636 and the maxhub of size

615 remain hardly changed. The hub songs cover 40.20% of

all recommendation lists which is almost identical to the full

data base. It seems that because only random songs are being

deleted and not hub songs or songs from the center, the role

of the songs concerning their being hubs, anti-hubs or normal

songs is hardly changed at all.



0 25 100 150

0

25

100

150
central

0 25 100 150

0

25

100

150
hubs

0 200 400 600700

0

200

400

600

700
random

Fig. 4. k-occurrences before (x-axis) and after (y-axis) deletion of 653 most central songs (left plot), all 653 hub songs (middle plot), 653 random songs
(right plot).

VI. DISCUSSION

In discussing our results we first want to summarize our

major findings. In Section V-A we were able to corroborate the

theoretical result that hub songs are indeed on average closer

to the center of all data than other songs. This relationship is

not completely clear, which might be due to the fact that the

data distribution perhaps is multi-modal and we worked with

one center of the data only. Additional experiments looking

at the relationship of the distance of hub objects to multiple

centers obtained via clustering might help in this respect.

By listening to hub, normal and anti-hub songs, by inspect-

ing their time-frequency representation and their respective

Gaussian models it became clear that hub songs do not

carry a distinct semantic meaning. Since modeling the MFCC

representation via single Gaussians essentially computes an

average in time entailing a severe loss of information, very

different audio waveforms can end up being close to the center

of the data. This is further confirmed by our experiments

deleting all hub songs or an equal number of central songs

from the data base in Section V-B. In this case other songs take

over the role of hub songs, with all their negative implications

of dominating the recommendation lists.

In summary it can be said that hubness should be seen

as a form of technical algorithmic bias in high dimensional

machine learning, causing unfair treatment of music by the

recommender system. This recommendation system is based

on Mel Frequency Cepstrum Coefficients (MFCCs), a time-

frequency representation of the spectral information of a

signal, which is at the heart of many MIR systems (see

e.g. [53] for an influential example using MFCCs for music

classification). The frequency distributions of musical record-

ings are determined by the instruments and voices used as

well as technical equalization choices made by the record-

ing and mixing engineer. Although modeling the MFCCs

computed from a song via single Gaussians entails a severe

loss of information, at least average information concerning

the frequency distributions still persists. It is the problem of

measuring distances in high dimensional spaces that causes

unfair treatment of certain songs, either by recommending

them too often if they are close to the center of all data, or by

never recommending them in case they are far from the center.

This property of being close or far from the center of the data

can seemingly not be connected to any semantic content of

the underlying audio.

The resulting unfair treatment of certain songs will cause

more or less exposure to interested audiences. In case this

recommendation system were at the heart of a music streaming

service distributing revenue in relation to listening time, the

unfair treatment would result in monetary gains and losses

for the respective artists who created the songs. These gains

and losses would be due to the technical algorithmic bias

of the system, but not to the semantic content or level of

popularity of the songs. The fact whether a song is close to the

center of the whole data base, given a certain representation

and method of computing music similarity, is a major factor

deciding whether a song will be recommended very often or

never at all. Since this closeness to the center of all data bears

no clear relation to semantic musical meaning, it is a failure of

the recommendation system due to technical algorithmic bias.

One could even go a step further and try to take advantage

of this technical algorithmic bias by trying to move the model

of a song closer to the center of the data thereby turning it into

a hub song gaining more recommendations. For music genre

classification systems, it has been shown [49] that irrelevant

audio filtering transformations of the music signal can be used

to both deflate and inflate the performance, as measured with

e.g. genre classification accuracy, to no better than chance level

or perfect 100% respectively. The irrelevance is ascertained via

listening tests, with the transformation being audible but not

changing the clear impression of a certain musical genre. It is

probably not straightforward but still conceivable that similar

application of minor equalization filtering, almost in-audible

to a listener, could shift a song’s model closer to the center of

the data.

On the other hand, methods to reduce hubness in machine

learning systems have already been developed [16], [25],



[43], [51] and have been applied successfully [19] to the

music recommendation system analyzed in this paper. Hubness

reduction increased the reachability, i.e. the percentage of

recommended songs, from less than two thirds of all songs to

more than 90%. Additional analysis showed that only 16% of

the listening time is spent on what used to be hub songs, which

is a great improvement compared to the 60% before. Hubness

reduction also increased the semantic correctness of music

recommendations with the percentage of non-matching music

genre labels between a music track and its nearest neighbors

dropping from 56% to 38%. Therefore it could be said, that a

fairness-aware data mining approach [24] to hubness already

exists, which has been developed without prior understanding

of hubness as a problem of technical algorithmic bias and

fairness. This understanding is provided in this paper for the

first time.

It took the effort of three research teams and a time

period of seven years from the discovery of the hubness

phenomenon [3] in 2004, to understanding it is a problem of

learning in high-dimensional spaces [36], to developing a first

hubness reduction method [42] in 2011. This should make it

clear that only the researchers developing these methods are

able to discover and understand a technical algorithmic bias

existing in their methods. In a very recent report [38] from the

French ‘Commission for the Ethics of Research in Information

Sciences and Technologies (CERNA)’ on ‘Research Ethics

in Machine Learning’, the ethical responsibility of machine

learning researchers has been made very clear by stating that

“The originator or the designer is responsible if the system

is poorly designed, the user is responsible if he or she has

misused the system”. This responsibility is illustrated with a

user being clumsy and hitting himself with a hammer on the

finger versus the designer being responsible in case the head of

the hammer flies off and knocks the user out. This paper tried

to raise awareness that high-dimensional data mining produces

potentially dangerous ‘hammers’ too and that it is our duty as

data mining researchers to design our systems in a safe and

fair way.

VII. CONCLUSION

The intention of this paper was to bring the ethical respon-

sibility to produce fair and unbiased systems to the attention

of the high-dimensional data mining community. This was

done by presenting an example of technical algorithmic bias,

where a music recommendation system, due to a problem of

high-dimensional data mining, favors a small group of songs

in its recommendations. These so-called hub songs dominate

the recommendation lists not because they have a specific

sound or semantic meaning, but because the algorithmic bias

of the system favors songs close to the center of the data

set, a requirement which these hub songs fulfill almost by

accident. Deletion of songs close to the center of the data

distribution promotes other songs to hub songs. It is our hope

that this paper will trigger an in-depth discussion about the

technical biases built into data mining algorithms operating in

high dimensional spaces.
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Popular nearest neighbors in high-dimensional data, Journal of

Machine Learning Research, 11:2487-2531, 2010.
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