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Abstract—High-dimensional data mining is challenging due
to the “curse of dimensionality”. Hubness reduction counters
one particular aspect of the dimensionality curse, but suffers
from quadratic algorithmic complexity. We present approximate
hubness reduction methods with linear complexity in time and
space, thus enabling hubness reduction for large data for the
first time. Furthermore, we introduce a new hubness measure
especially suited for large data, which is, in addition, readily
interpretable. Experiments on synthetic and real-world data show
that the approximations come at virtually no cost in accuracy in
comparison with full hubness reduction. Finally, we demonstrate
improved transport mode detection in massive mobility data
collected with mobile devices as concrete research application.
All methods are made publicly available in a free open source
software package.

Index Terms—curse of dimensionality, high-dimensional data
mining, hubness, linear complexity, interpretability, smartphones,
transport mode detection

I. INTRODUCTION

Data mining in high-dimensional spaces is often challenging
due to a number of phenomena commonly referred to as “curse
of dimensionality” [1]. Concentration of distances is one of the
more well-known aspects [2]: Distances between all pairs of
data objects become increasingly similar with increasing di-
mensionality, thereby losing their discriminative power. Many
popular distance measures are known to concentrate, including
general `p and fractional norms, cosine similarities, dynamic
time warping-based scores, and others [2]–[6].

Hubness is a related, albeit less known phenomenon [7].
In high but finite dimensional regimes, some objects have on
average smaller distances to all others. These central objects
have a high probability of becoming hubs, that is, objects that
are unwontedly often among the nearest neighbors of many
other objects in the data set. Simultaneously, antihub objects
are extruded from neighborhood lists. As a consequence, neigh-
borhood relations in high-dimensional spaces are often asym-
metric: Any hub object x is nearest neighbor to many other
objects, which, however cannot all be the nearest neighbor of
x. Hubs are known to propagate their information, for example
class labels, (too) widely in distance space, while information
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carried by antihubs is essentially lost. As a consequence, many
learning algorithms based on distances may be impaired by
hubness. The literature contains many examples of detrimental
effects of hubness to classification, clustering, visualization,
outlier detection, and other data mining tasks [7]–[11].

Several hubness reduction methods have been proposed to
mitigate detrimental effects of hubness. Three methods have
been identified as state-of-the-art in terms of reducing hubness
and improving learning performance in a recent review [12].
Mutual proximity (MP, [13]) and local scaling (LS, [14]) re-
duce hubness by repairing asymmetric neighborhood relations.
DisSimLocal (DSL, [15]) flattens density gradients, which
have been proposed as an alternative source of hubness [16].
All three methods transform primary distances to secondary
distances. MP and LS may be applied to any dissimilarities,
while DSL is restricted to (squared) Euclidean distances.

High computational complexity is a major restriction of
secondary distance-based algorithms. Assuming hubness re-
duction methods require square distance matrices as input, the
complexity of computing and storing distances between all
pairs of objects can trivially be identified as Ω(n2) in terms
of both time and space, where n is the number of objects in
the data set. Both quadratic time and space complexity are
prohibitive for large data sets, essentially restricting hubness
reduction to small data sets until now. In order to support hub-
ness reduction in linear time and space complexity, we propose
(i) a new hubness measure which enables reliable estimation
of hubness even from small samples, and (ii) approximation
strategies for established hubness reduction methods, both of
which are required for successful hubness analysis and reduc-
tion of massive data. Extensive experiments demonstrate that
both approaches support fast and powerful hubness reduction
in large and high-dimensional data.

Hubness measures and reduction methods are briefly re-
viewed in Section II. Our main contributions are presented
in Section III. The proposed methodology is evaluated in Sec-
tion IV. Successful approximate hubness reduction is demon-
strated for a real-world application in Section V, showing
improved transport mode detection based on massive mobile
phone sensor data. We discuss our findings in Section VI and
conclude in Section VII, where we also point to future work.



II. RELATED WORK

A. Hubness measures

Several hubness measures have been proposed so far, most
of which are based on the notion of k-occurrence. Let
D ⊆ Rm be a non-empty data set containing n objects in
m-dimensional space. The k-occurrence Ok(x) of an object
x ∈ D counts, how often x occurs among the k-nearest
neighbors of all other objects D\x indexed in the database. In
low dimensional spaces, k-occurrence distributions typically
are consistent with binomial distributions [7]. For example,
assuming uniform i.i.d. data, this is in line with the intuition
that all objects should be among the nearest neighbors of other
objects approximately equally often. With increasing dimen-
sionality, k-occurrence distributions are, however, increasingly
skewed to the right [7]. This skewness is often used as a
measure for hubness:

Sk = E[(Ok − µOk)3] / σ3
Ok , (1)

where µ and σ indicate mean and standard deviation, respec-
tively. The mean of a k-occurrence distribution is exactly k.

Computing the k-occurrence requires Ω(n) time for cal-
culating all distances and partitioning. The measure defined
above incorporates the k-occurrences of all objects, and thus
requires Ω(n2) time. The complexity can be trivially reduced
by sampling, and calculating estimates of the above. The
sample size may be varied ad libitum to approximate the true
value. However, this is problematic in high dimensions, which
we demonstrate in Section III-A, where we also present a new
hubness measure overcoming these issues.

B. Hubness reduction methods

A recent survey recommends three methods for hubness
reduction [12]. Let us briefly recall the formulations of full
hubness reduction methods (quadratic complexity), before
introducing approximate variants (linear complexity).

Local scaling (LS, [14]) transforms primary distances dx,y
between objects x and y with local neighborhood information:

LSk(dx,y) = 1− exp
(
−d2x,y /

(
rkxr

k
y

))
. (2)

The scaling factors rkx and rky refer to the distance of objects
x and y to their k-th nearest neighbors, respectively.

Mutual proximity (MP, [13]) considers distances between
all pairs of objects in a probabilistic way. Primary distances
dx,i∈{1,...,n}\x between an object x and all other objects
are modeled with some distribution. Let X be the resulting
random variable (analogously for random variable Y and
object y), and P the joint probability density function, then

MP(dx,y) = P (X > dx,y ∩ Y > dy,x), (3)

that is, the joint probability of x and y being nearest neighbors
to each other. The complement 1 − MP yields secondary
distances. Here, we model primary distances with independent
normal distributions X ∼ N (µ̂x, σ̂

2
x), and Y ∼ N (µ̂y, σ̂

2
y), so

that secondary distances are calculated as

MPG(dx,y) = SF (dx,y, µ̂x, σ̂
2
x) · SF (dy,x, µ̂y, σ̂

2
y), (4)

with the survival function SF (d, µ, σ2) = 1−CDF (d, µ, σ2).
Two dissimilarity measures were introduced in [15] to re-

duce hubness in (squared) Euclidean spaces. The local variant
DSL rescales distances using local centroids ck(·):

DSLk(x, y) = ‖x− y‖22 − ‖x− ck(x)‖22 − ‖y − ck(y)‖22 (5)

The local centroids are estimated as ck(x) = 1
k

∑
x′∈kNN(x) x

′,
where kNN(x) is the set of k-nearest neighbors of x.

C. Complexity of hubness reduction

Two factors dominate the complexity of hubness reduction.
First, calculation of the primary distance between a pair of
objects is typically in O(m), that is, linear in dimensionality.
This holds for Euclidean and general `p distances. For dynamic
time warping-based distances, near-optimal alignments can
also be obtained in O(m), while exact alignments require
O(m2) [17].

Without loss of generality, assume the database is split into
index I ⊂ D and queries Q ⊂ D, with nindexed := |I| and
nquery := |Q|. The set sizes are further determined by a split
ratio p ∈]0, 1[, so that nindexed = p · n, nquery = (1 − p)n,
and I ∪ Q = D, similarly e.g. to an evaluation scenario,
where data is split into training and test sets. Calculating
distances between each query object and all indexed objects
thus requires Ω(nquerynindexedm) = Ω(n2m) time.

The second dominating factor is exact neighbor search.
Hubness reduction methods often require knowledge of local
neighborhoods. For example, consider scaling factors rk in (2),
or local centroids ck in (5). Probing an object’s neighbor-
hood requires partitioning its distance list at the k-th nearest
neighbor. Θ(nindexed) = Θ(n) time is required to find k
nearest neighbors, for example using the introselect algorithm.
Neighbor search thus amounts to Θ(n2) for the whole data
set. 1

The quadratic complexity of hubness reduction methods
is prohibitive for large data sets. To this end, we present
approximate hubness reduction with linear complexity with
respect to the data set size n in Sections III-B and III-C. 2

III. APPROXIMATE HUBNESS REDUCTION METHODS

A prototypical hubness analysis pipeline was described
in [12], and must answer two questions: (i) To what extent
is the data set at hand affected by hubness? (ii) Can hubness
reduction improve learning performance? The pipeline thus
comprises two essential steps: hubness estimation, and hubness
reduction. To perform hubness analysis in linear time and
space, neither step must exceed linear complexity. To this end
we present approximation strategies for hubness estimation
and hubness reduction in linear time and space. In combination
with a new hubness measure, this enables hubness analysis in
large data sets.

1It is unnecessary to sort complete distance lists, which would require
Θ(n logn) time for each object.

2We assume dimension m to be fixed for each data set. Lower dimensional
embeddings could be used additionally to the methodology suggested below
to reduce complexity also w.r.t. dimension m. They are, however, out of scope
for this work. Therefore, constant O(m) will be omitted henceforth.
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(a) Commonly used hubness measure: skewness
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(b) Proposed hubness measure: Robin Hood index

Fig. 1. Hubness measure dependency on sample size (x-axis), and dimensionality (lines). Each line in the plots constitutes one experiment of a MADELON-
like data set (cf. Section IV-C) with 20 000 vectors in m-dimensional space, with m ∈

{
21, 22, . . . , 211

}
. Hubness is measured in random subsamples with

sizes between 100 and 19 000 (bootstrapped ten times, averaged). (a) Skewness of k-occurrence histogram, (b) Robin Hood index of k-occurrence histogram.

A. Approximate hubness estimation

The sampling strategy for estimating hubness in linear time
as described in Section II-A is problematic in high dimensions.
We demonstrate issues of this strategy in synthetic data sets.
For a motivating example, we consider clustered Gaussian
data (MADELON-like, as described in Section IV-C). Fig. 1a
shows the effect of sampling on k-occurrence skewness (k-
occurrence parameter k = 10 is used throughout the paper).
Values increase with increasing dimensionality as expected.
In low dimensions (up to 16 or 32), skewness in small
samples approximates skewness in large samples well. In high
dimensions (64 and higher), however, convergence to the true
value is slow. This is undesirable for fast hubness estimation,
which should ideally be accurate already at small sample sizes.

To counter this, we propose a new hubness measure bor-
rowed from socio-economics. The Robin Hood index (also
known as Ricci-Schutz/Piètra/Hoover index) is traditionally
used to measure income inequality [18]. We use it for measur-
ing k-occurrence inequality:

Hk =
1

2

∑
x∈D |Ok(x)− µOk |(∑

x∈D O
k(x)

)
− k

=

∑
x∈D |Ok(x)− k|

2k(n− 1)
(6)

Fig. 1b shows the behavior of the new hubness measure
on the same synthetic data used before. Again, we observe
a trend of increasing values with increasing dimensionality,
as expected and as desired. There is, however, only little
dependence on sample sizes. That is, values converge quickly
to the ‘true’ values (as observed in the full data set). Similar
behavior of both hubness measures was observed in i.i.d.
uniform and normal data as well (not shown).

In addition, the Robin Hood index is more easily accessible
for interpretation than the skewness measure. Values fall in the
fixed interval [0, 1], where Hk = 0 indicates that all objects
are equally often among the nearest neighbors of others (∀x ∈
D : Ok(x) = k), whereas Hk = 1 means that a single hub
is nearest neighbor to all objects (∃x ∈ D : Ok(x) = n − 1).
In other words, the Robin Hood index answers the question:
What share of ‘nearest neighbor slots’ must be redistributed
to achieve k-occurrence equality among all objects?

B. Instance selection for approximate hubness reduction

Reducing the number of objects indexed in the database
is a straight-forward approach to achieve linear time and
space complexity. Selecting a fixed number s � nindexed
representative objects yields O(nquerys) query time and mem-
ory usage. Varying s trades off time and space requirements
versus accuracy. We consider the following instance selection
algorithms:
• Random sampling is fast and easy to use. It may be used

in unsupervised fashion, or combined with class labels
for stratification. Random sampling is rather trivial, and
will serve as baseline here.

• k-means++ is k-means clustering with ‘careful seed-
ing’ [19]. Seed cluster centers are selected by an ini-
tialization strategy so that clustering converges in fewer
iterations. We use this strategy for unsupervised instance
selection, expecting to obtain better representatives than
by random sampling.

• Other popular instance selection methods, such as
DROP3, ICF, and related methods, use supervised al-
gorithms [20]. We restrict this work to unsupervised
techniques, however.

Algorithm 1 describes approximate hubness reduction with
generic instance selection and the example of local scaling.
Assume selectInstances() yields instances according to any
one of the above mentioned methods. Within this algorithmic
framework hubness reduction methods are easily exchangeable.
For details, see Section III-C.

Instance selection essentially drops many objects from the
database. While this reduces storage footprint to O(sm),
information loss occurs, which may deteriorate learning per-
formance. To overcome this issue, we present a second approx-
imation strategy for hubness reduction with linear complexity.

C. Approximate nearest neighbors for hubness reduction

The complexity of hubness reduction may also be reduced
by relaxing the requirement of exact neighbor search (cf.
Section II-C). Approximate nearest neighbor (ANN) search
retrieves true nearest neighbors with high recall, but allows for
some errors. This relaxation makes sublinear query time per



Algorithm 1 Approximate local scaling with instance selection
Input:

k . nearest neighbor parameter
s . Number of selected instances
I,Q . Indexed objects, query objects, respectively
rI , rQ . Empty vectors of sizes nindexed, nquery, resp.

Output:
distLS . Sparse matrix of shape nquery × nindexed, O(nquerys)

1: procedure FIT
2: selectedSample← SELECTINSTANCES(I, s)
3: for all y ∈ I do . O(nindexedm)
4: rI(y)← K-TH-NN(y, selectedSample)

5: procedure TRANSFORM
6: for all x ∈ Q do . O(nquerysm)
7: rQ(x)← K-TH-NN(x, selectedSample)
8: for all y ∈ candidates do . O(sm)
9: dist← PRIMARY DISTANCE(x, y)

10: distLS(x, y)← LS(dist)
return distLS

object possible. A plethora of ANN methods has been devel-
oped, most of which are based on tree algorithms [21], locality-
sensitive hashing [22], product quantization [23], or proximity
graphs [24]. ANN techniques have previously been suggested
for hubness estimation [25], and hubness reduction [12]. To
the best of our knowledge, this has not yet been evaluated
or implemented in related software packages. We strive to fill
this gap with the research presented here.

Combining ANN with hubness reduction yields a filter-
and-refine methodology. For each object some s � nindexed
approximate nearest neighbors are filtered from the database
in sublinear time with respect to nindexed. In the refinement step,
hubness reduction is performed on these candidate neighbors,
effectively reordering the approximate neighborhood. Assum-
ing hubness reduction is then in O(s) per object rather than
in O(nindexed), linear time complexity is obtained for the
complete set of query objects.

Algorithm 2 exemplarily describes approximate local scal-
ing with ANN techniques. Comments on the right-hand side
(.) indicate time spent in each loop, including nested loops,
and subroutines. The fit() procedure initially sets up the ANN
index. Assume fitANNIndex() creates this index in linear time,
and k-th-ANN(y) returns the distance between y and its k-th
approximate nearest neighbor in sublinear time3. LS scaling
factors for all indexed objects are stored in vector rI .

Query objects are handled in the transform() procedure.
In the filtering step, rangeANN() returns the s approximate
nearest neighbors (‘candidates’) for each query object x.
Primary distances are calculated between x and all candidates.
Subsequently, these distances are transformed to secondary
distances by LS in the refinement step. The order of candi-
date neighbors may have changed due to hubness reduction.
Secondary distances are stored in a sparse matrix with shape
nquery × nindexed and nquerys nonzero elements, which deter-
mines the memory requirements of O(nquerys).

3 This holds for LSH, HNSW, among other ANN techniques. Index creation
scales loglinearly in case of HNSW. For details please refer to related
publications and documentation.

Algorithm 2 Approximate local scaling with ANN
Input:

k . nearest neighbor parameter
s . Candidate neighborhood size
I,Q . Indexed objects, query objects, respectively
rI , rQ . Empty vectors of sizes nindexed, nquery, resp.

Output:
distLS . Sparse matrix of shape nquery × nindexed, O(nquerys)

1: procedure FIT
2: annIndex← FITANNINDEX(I)
3: for all y ∈ I do . O(nindexedm)
4: rI(y)← K-TH-ANN(y, annIndex)

5: procedure TRANSFORM
6: for all x ∈ Q do . O(nquerysm)
7: candidates← RANGEANN(s, x, annIndex)
8: rQ(x)← K-TH-ANN(x, annIndex)
9: for all y ∈ candidates do . O(sm)

10: dist← PRIMARY DISTANCE(x, y)
11: distLS(x, y)← LS(dist)

return distLS

Approximate mutual proximity (Algorithm 3) bears close
resemblance to the algorithm above. For each object, a normal
distribution is estimated from its distances to t indexed objects
(t = 30 was suggested in [13]). MPG incorporates these
Gaussians as described in (4).

Algorithm 3 Approximate mutual proximity (Gaussian)
Input:

s . Candidate neighborhood size
t . Sample size for estimating µ, σ
I,Q . Indexed objects, query objects, resp.
µI , µQ . Empty vectors of sizes nindexed, nquery, resp.
σI , σQ . Empty vectors of sizes nindexed, nquery, resp.

Output:
distMPG . Sparse matrix of shape nquery × nindexed, O(nquerys)

1: procedure FIT
2: annIndex← FITANNINDEX(I)
3: samples← RANDOM SAMPLE(t, I)
4: for all y ∈ I do . O(nindexedm)
5: distances← PRIMARY DISTANCE(y, samples)
6: µI(y)← MEAN(distances)
7: σI(y)← STANDARDDEVIATION(distances)

8: procedure TRANSFORM
9: for all x ∈ Q do . O(nquerysm)

10: distances← PRIMARY DISTANCE(x, samples)
11: µQ(x)← MEAN(distances)
12: σQ(x)← STANDARDDEVIATION(distances)
13: candidates← RANGEANN(s, x, annIndex)
14: for all y ∈ candidates do . O(sm)
15: dist← PRIMARY DISTANCE(x, y)
16: distMPG(x, y)← MPG(dist)

return distMPG

DisSimLocal estimates local centroids for each object. A
local centroid is the mean vector of an object’s k nearest
neighbors (see (5) and the paragraph below). Approximate
DSL (Algorithm 4) estimates the centroids from approximate
nearest neighbors.

All described methods are implemented in the publicly
available OFAI Hub-Toolbox4 [26].

4Source code available at https://github.com/OFAI/hub-toolbox-python3.
Python package available at https://pypi.org/project/hub-toolbox/. The Hub-
Toolbox is free open source software licensed under GPLv3.

https://github.com/OFAI/hub-toolbox-python3
https://pypi.org/project/hub-toolbox/


Algorithm 4 Approximate DisSimLocal
Input:

k . nearest neighbor parameter
s . Candidate neighborhood size
I,Q . Indexed objects, query objects, resp.
cI . Empty matrix of size nindexed ×m.
cQ . Empty matrix of size nquery ×m.

Output:
distDSL . Sparse matrix of shape nquery × nindexed, O(nquerys)

1: procedure FIT
2: annIndex← FITANNINDEX(I)
3: for all y ∈ I do . O(nindexedm)
4: neighbors← RANGEANN(k, y, annIndex)
5: cI(y)← LOCALCENTROID(y, neighbors)

6: procedure TRANSFORM
7: for all x ∈ Q do . O(nquerysm)
8: neighbors← RANGEANN(k, x, annIndex)
9: cQ(x)← LOCALCENTROID(x, neighbors)

10: candidates← RANGEANN(s, x, annIndex)
11: for all y ∈ candidates do . O(sm)
12: dist← PRIMARY DISTANCE(x, y)
13: distDSL(x, y)← DSL(x, y, cI , cQ)

return distDSL
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Fig. 2. Evaluation of Robin Hood (Hk) measure. Values indicate Spearman
correlation between attributes (n data set size, m dimension, Sk skewness).

IV. EVALUATION

We evaluate the proposed hubness measure and approximate
hubness reduction methods with multiple experiments on both
synthetic and real-world data.

A. Robin Hood index

The findings on synthetic data presented in Fig. 1 suggest
the Robin Hood index to be a suitable measure for hubness. We
further evaluate the Robin Hood index on 50 real-world data
sets, which have previously been used for analyzing aspects
of hubness measures in [12]. Skewness Sk=10 and Robin
Hood index Hk=10 are calculated for each data set without
any sampling. The proposed hubness measure shows very
strong rank correlation (Spearman r = 0.90) with the well-
established measure (Fig. 2). We observe equal correlations
of both measures with data dimensionality, but weaker depen-
dency of the Robin Hood index on data set size, compared to
the skewness measure. Both results are in line with the results
from Fig. 1. We thus deem the Robin Hood index a suitable
measure for hubness. Since it allows to estimate hubness from
small sample sizes, hubness can now be estimated accurately
in linear time.

B. Approximate hubness reduction - preface

The methodology presented in Section III-C is agnostic to
the choice of ANN method. We select two methods from
different ANN families as showcases for approximate hubness
reduction:
• Locality-sensitive hashing (LSH) is an established and

commonly used ANN method [22]. LSH is based on
hash functions, which are constructed so that close ob-
jects have high probability of collisions. Objects with
colliding hashes are mapped to the same approximate
neighborhood.

• Navigable small-world graphs (NSW) are a more recent,
graph-based approach to ANN. Indexed objects form the
vertices of a graph, whose edges are built so that the
network contains an approximate Delaunay subgraph [24].
Insertions and queries are performed by greedy search.
The HNSW variant features a controllable hierarchy [27],
and was particularly successful in a recent ANN bench-
mark [28].

We use the FALCONN [29] and nmslib [30] libraries for LSH-
and HNSW-based experiments, respectively.

Previous work showed hubness reduction methods to be
robust with respect to the neighborhood parameter k. We use
fixed LS/DSL parameter k = 5 for all experiments in this
work. MP is parameter-free.

We select a restrictive sample size s = 100 for all experi-
ments. This is relaxed to s = 1000 only for the two largest
data sets (UCI character fonts, Table IIg; and mobility data,
Table III).

C. Results with synthetic data

We evaluate approximate hubness reduction in synthetic
data sets of sizes n ∈ {1000, 2000, . . . , 20 000}, constructed
similarly to MADELON [31]. For each data set, n objects in
ten clusters are generated at the vertices of an 800-dimensional
hypercube, and 200 uninformative noise features are added,
yielding a 1000-dimensional embedding space. Five class
labels are assigned to the data, with each class comprising
two clusters. We perform five-fold stratified cross-validation,
and consider three evaluation metrics: (i) runtime (Fig. 3),
(ii) hubness reduction, measured with the Robin Hood index
(Fig. 4a), and (iii) accuracy in ten-nearest neighbor classi-
fication (Fig. 4b), where random classification yields 20 %
accuracy.

Full hubness reduction scales quadratically with the number
of objects. This is visualized in the top row of Fig. 3 for model
creation (fit procedure) in the left column, and (secondary)
distance calculations (transform procedure) for query objects
in the right column. The red line in Fig. 3ab represents baseline
k-NN with Euclidean distances. Each of the following rows
illustrates the time complexity of one approximation method.
For example, Fig. 3c shows time requirements for instance
selection with random sampling, which is, by far, the fastest
method, because it does not consider properties of the indexed
data. In contrast, k-means++ processes the indexed data to
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Fig. 3. Linear time complexity of approximate hubness reduction. Runtime for 80 % / 20 % train / test-split with synthetic data. Colors code for hubness
reduction methods (blue: local scaling, violet: mutual proximity, green: DisSimLocal, red: Euclidean distances without hubness reduction). Each row corresponds
to one approximation method, as indicated on the right-hand side. Left column: model creation time, right column: (secondary) distance compute time. For
example, the blue line in subplot h shows time spent in procedure TRANSFORM of Algorithm 2. It is mostly overlayed by the red line, indicating that
primary distance calculation dominates overall runtime. Values are averages of ten replicates. Error bars indicate standard deviation (generally low and clearly
visible only in subplot c). Gray lines show linear (dashed) and quadratic (dash-dotted) functions for comparison. Note the log-scaled y-axes in a and b.

select suitable instances. It thus spends more time in the
fit procedure, while the transform time is identical for both
instance selection methods.

Runtime of approximate hubness reduction with ANN meth-
ods is dominated by index structure generation, as indicated
by the Euclidean baseline in red, which overlays the other
curves. Index generation is linear in case of LSH (Fig. 3g),
and linearithmic in case of HNSW (Fig. 3i; consider the
slightly increased growth compared to the fitted linear function
displayed as dashed gray line).

Query time is only slightly longer with hubness reduction
than without, especially in case of LS and DSL (Fig. 3hj).

In other words, hubness reduction comes essentially ‘for free’
compared to solely performing ANN search.

Fig. 4 shows hubness and classification performance in
synthetic data with 20 000 objects (corresponding to the right-
most values in Fig. 3). Fig. 4a shows that ANN-based methods
reduce hubness in terms of the Robin Hood index to com-
parable levels as full hubness reduction. Instance selection,
however, nearly maximizes the Robin Hood index. This is
caused by measuring hubness with respect to the original
database. Selecting hundred instances from twenty thousands
objects essentially creates 19 900 antihubs and thus leads to
extremely imbalanced k-occurrences.
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Fig. 4. Evaluation results of medium-sized synthetic data.

Fig. 4b shows that hubness reduction methods improve clas-
sification in all cases of approximation or no approximation
compared to the Euclidean baselines depicted as red bars
(except for DSL with instance selection). HNSW with hubness
reduction is on par with full nearest neighbor classification
using Euclidean distances, despite the very small sample size
of 100, i.e. only 0.625 % of the training set size.

The feasibility of hubness reduction in large data sets is
demonstrated on a synthetic data set of one million objects,
for which full hubness reduction would require nearly 4 TiB
main memory. Table I shows the throughput of approximate
hubness reduction algorithms at runtime on a Intel Xeon Silver
4114 CPU @ 2.20 GHz in a single-threaded environment.
Hubness and classification performance are in line with the
results in Fig. 4 (not shown). Hubness reduction calculates
secondary distances from Euclidean distances. Therefore, it
requires additional compute time compared to the Euclidean
baseline. The extra time expenditure is, however, moderate for
LSH and HNSW, in which cases hubness reduction requires
roughly twice the baseline time. Instance selection methods are
orders of magnitude faster, but suffer from severely impaired
accuracy.

D. Results with public machine learning data sets

Having established successful approximate hubness reduc-
tion in synthetic data, we evaluate our methods on seven
real-world data sets affected by hubness from public machine
learning repositories also [32]–[34].

For all data sets, the Robin Hood index is improved by full
hubness reduction methods, as expected (Table II, left-hand
side). ANN without hubness reduction yields the same level
of hubness as the complete Euclidean distance matrices, with
LSH reducing hubness slightly in some cases. Approximate
hubness reduction yields highly comparable Robin Hood val-
ues compared to full hubness reduction in all cases, except for
HNSW, which does not perform well for UCI farm-ads.

TABLE I
APPROXIMATE HUBNESS REDUCTION THROUGHPUT IN 1M DATA.

Random sampling k-means++ LSH HNSW

LS 103 412 538 10 31
MPG 113 636 566 11 30
DSL 99 304 577 10 31
Eucl. 446 428 3240 25 59

(a) Throughput in procedure FIT (objects/s)

Random sampling k-means++ LSH HNSW

LS 33 344 30 211 35 1857
MPG 8501 8730 39 1509
DSL 22 036 19 527 35 1419
Eucl. 255 754 264 550 86 2759

(b) Throughput in procedure TRANSFORM (objects/s)

For each data set, the best result in terms of classification
accuracy is obtained with one of the hubness reduction meth-
ods (Table II, right-hand side). The results of approximate
methods closely follow those of full methods, that is, both
full and approximate hubness reduction improve accuracy over
the Euclidean baseline. Indeed, LSH-based hubness reduction
achieved slightly higher accuracy than full hubness reduction
in five data sets. Note, that in case of UCI character fonts, full
hubness reduction is not feasible with reasonable compute re-
sources. We were, however, able to compute the full Euclidean
baseline. Approximate hubness reduction improves over this
baseline also in this large data set.

Both random sampling and k-means++ yield high Robin
Hood values, comparably to the ones described in Sec-
tion IV-C. Classification accuracy is on average 15 %-points
below ANN-based approximate hubness reduction. Since in-
stance selection is clearly inferior to ANN for hubness reduc-
tion here, we do not report the results in Table II for brevity.

V. APPLICATION: TRANSPORT MODE DETECTION

We test our methods on accelerometer time series collected
by ninety participants equipped with smartphones and a special
smartphone application that records sensor data during travel-
ing in an urban environment. The users labeled the recorded
trips with the chosen transport mode. Table III reports the
amount of collected data per mode and the corresponding
labels for classification.

For this work, we preprocess the data by splitting each
recorded trip into segments of 30 seconds and aggregate the
time series to a dimension of 600. Further, to make the
recorded signal independent of the orientation of the device
we use the 2-norm of the three-dimensional accelerometer
vector as in [35]. Dynamic time warping (DTW) alignments
are computed between time-series vectors with the IncDTW
package for R [36]. DTW-based similarities are used to
classify trip segments as either active mobility, transport on the
road, or on the rail. The fourth class indicates the user having
reached his or her destination (Table III). The complete DTW
similarity matrix is used for experiments with full hubness



TABLE II
EVALUATION RESULTS OF REAL-WORLD DATA SETS.

Hubness (Robin Hood) Classification accuracy

LSH HNSW Full LSH HNSW Full
LS 0.282 0.282 0.282 0.932 0.932 0.933
MPG 0.282 0.283 0.294 0.933 0.935 0.930
DSL 0.303 0.323 0.354 0.938 0.906 0.927
Eucl 0.329 0.329 0.329 0.904 0.906 0.902

(a) OpenML Semeion (1593 samples, 256 features, 10 classes)

LSH HNSW Full LSH HNSW Full
LS 0.294 0.309 0.293 0.831 0.836 0.845
MPG 0.290 0.292 0.279 0.846 0.850 0.852
DSL 0.413 0.417 0.675 0.834 0.830 0.794
Eucl 0.388 0.433 0.414 0.773 0.779 0.780

(b) LibSVM DNA (2000 samples, 180 features, 3 classes)

LSH HNSW Full LSH HNSW Full
LS 0.308 0.307 0.297 0.746 0.744 0.745
MPG 0.323 0.331 0.357 0.715 0.715 0.693
DSL 0.315 0.556 0.332 0.735 0.500 0.740
Eucl 0.419 0.419 0.419 0.669 0.670 0.669

(c) Corel1000 (1000 samples, 192 features, 10 classes)

LSH HNSW Full LSH HNSW Full
LS 0.345 0.358 0.327 0.888 0.889 0.883
MPG 0.357 0.376 0.358 0.860 0.861 0.887
DSL 0.345 0.364 0.389 0.895 0.889 0.896
Eucl 0.485 0.511 0.508 0.875 0.856 0.864

(d) UCI CNAE-9 (1080 samples, 856 features, 9 classes)

LSH HNSW Full LSH HNSW Full
LS 0.329 0.353 0.338 0.783 0.776 0.775
MPG 0.320 0.334 0.320 0.777 0.768 0.769
DSL 0.338 0.369 0.515 0.742 0.761 0.782
Eucl 0.470 0.526 0.517 0.707 0.695 0.699

(e) LibSVM splice (1000 samples, 60 features, 2 classes)

LSH HNSW Full LSH HNSW Full
LS 0.430 0.681 0.383 0.801 0.683 0.832
MPG 0.505 0.670 0.462 0.814 0.747 0.848
DSL 0.447 0.671 0.595 0.852 0.769 0.838
Eucl 0.567 0.676 0.616 0.780 0.699 0.757

(f) UCI farm-ads (4143 samples, 54877 features, 2 classes)

LSH HNSW Full LSH HNSW Full
LS 0.303 0.308 n/a 0.675 0.675 n/a
MPG 0.304 0.335 n/a 0.678 0.665 n/a
DSL 0.322 0.335 n/a 0.687 0.680 n/a
Eucl 0.355 0.358 0.359 0.656 0.655 0.633

(g) UCI character-fonts (832670 samples, 410 features, 153 classes)

reduction. In case of LSH and HNSW, the candidate neigh-
bors are first retrieved using the methods’ intrinsic distance
measures. These distances are subsequently replaced by DTW
similarities, which are used for the baseline in Fig. 5 (‘LSH’,
‘HNSW’). Nearest neighbor classification performance is es-
timated in leave-one-user-out cross-validation. Classification
accuracy macro-averaged over the folds is reported as an esti-
mate, how well the system performs for a new user. No attempt
was made to optimize hyperparameters, since the objective
here is to demonstrate improvements due to hubness reduction,

TABLE III
ACCELEROMETER DATA FOR TRANSPORT MODE DETECTION

Class Mode Time (h) # 30 s trip segments

bicycle 52 6273
ACTIVE waiting 9 1108

walking 245 29 443

bus 49 5828
ROAD car 108 12 937

motorcycle 8 932

metro 46 5481
RAIL train 74 8848

tram 33 3997

DESTINATION destination 61 7263

626 82 110

rather than maximizing performance of the complete classifier
pipeline. Therefore, we use fixed k = 10 neighbors for classifi-
cation to allow for direct comparisons between pipelines with
and without hubness reduction. We postpone hyperparameter
optimization to future work, which will focus on maximizing
transport mode detection performance.

Hubness reduction is performed on DTW-based similarities
with LS and MPG. We omit DSL due to its tailoring to
Euclidean spaces. The database size of 82 110 allows us
to compute a full DTW similarity matrix, and perform full
hubness reduction for this evaluation scenario.5 We observe
marked improvements in terms of Robin Hood index and
classification accuracy due to hubness reduction with LS
(Fig. 5, ‘Full’). In contrast, full MPG is detrimental to both
hubness and accuracy.

Hubness appears to be heavily increased by the approximate
methods. For instance selection, this is expected, as described
in Section IV-C. Rather surprisingly, ANN methods show
similar behavior given this data set. Analysis of k-occurrences
revealed the imbalance again to be caused by a very high
number of antihubs.

The approximations show reduced baseline classification
performance compared to the full scenario. Applying hubness
reduction on top, however, strongly improves accuracy. For
both HNSW and random sampling, applying LS more than
doubles accuracy. Strikingly, random sampling with LS yields
the best classification performance among the approximate
methods, and is on par with the full scenario. HNSW and k-
means++ show competitive results also. The approximations
profit from MPG as well, showing accuracy slightly below LS.

VI. DISCUSSION

Hubness analysis of massive data requires both hubness
estimation and hubness reduction with linear complexity in
time and space w.r.t. the data set size. The new Robin Hood
index enables accurate hubness estimation from small samples.
Linear algorithmic complexity of hubness reduction methods
is achieved by introducing approximations based on instance

5 1750 h DTW compute time and 80 GiB peak memory during hubness
reduction clearly show the infeasibility of this approach in productive systems.
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Fig. 5. Transport mode detection performance. Column ‘Full’ refers to using
the complete DTW similarity matrix.

selection or ANN methods. We find that this comes at almost
no expense in terms of classification accuracy in case of the
ANN-based approach: Both LSH and HNSW showed overall
comparably good performance. Instance selection performs
worse than ANN in most cases. In contrast to our expec-
tations, we observe no advantages of k-means++ instance
selection over random sampling. The extra time required for
k-means++ may be better used for larger random samples. Our
experiments on synthetic data show only moderate additional
time required for hubness reduction compared to approximate
neighbor search alone. The ANN libraries used in this work
were among the fastest in a recent benchmark [28]. We thus
deem our methods to be fast enough for use in productive
systems.

Experiments on data sets from machine learning repositories
show, that successful approximate hubness reduction is not lim-
ited to synthetic data sets, which may exhibit special properties,
such as Gaussian distributions etc. The approximate methods
performed on par with the full methods in all evaluated
data sets, hinting at their potential to completely replacing
expensive full hubness reduction.

We demonstrate, how a real-world application is enhanced
by approximate hubness reduction. Transport mode detection
based on mobile phone sensor data is improved, despite
supposedly unsuccessful reduction of hubness per se. Let us
discuss the high Robin Hood indices of approximate hubness
reduction in mobility data in detail: LSH and HNSW use
metric distances for approximate neighbor search. These are
generally not well suited for time-series data. Theoretical
hubness research found, that hubs are usually close to the
data centroid. For normed accelerometer data, the time-series
centroid is a vector of approximately 9.81 m/s2 at each point
in time, i.e. zero movement plus earth gravity. Indeed we
find, that mobility hub objects in Euclidean space are mostly
trip segments of very little user movement. This includes
waiting at red traffic lights or traffic jams, which may occur

in nearly any vehicle, or during walking. Segments with little
movement may thus belong to essentially any of the presented
transport modes. It is easy to imagine how this severely affects
classification. Metric ANN seems to be influenced by this
behavior as well, retrieving many low movement segments,
but only few high movement segments as candidate neighbors.
We hypothesize that hubness reduction is able to reorder the
candidate neighborhood in a way that penalizes segments of
very low movement. Unless the candidate neighborhood size
is too restrictive, the high number of antihubs appears to be
noncritical, and hubness reduction thus improves classification
accuracy.

VII. CONCLUSION AND OUTLOOK

We presented approximate hubness reduction methods with
linear complexity, which enable hubness reduction in large
data sets. The approximations come at almost no cost in
terms of accuracy compared to full hubness reduction as
demonstrated for synthetic data, and even surpassed the full
methods in several real-world data sets. We also showed
how transport mode detection is improved by both full and
approximate hubness reduction. In addition, the new Robin
Hood index enables fast hubness estimation in massive data
sets, and is more easily interpretable than a traditional measure.
Having eliminated the bottleneck of high complexity, we hope
hubness reduction will aid many researchers and practitioners
with their specific tasks for large data sets. To this end, we
make all our hubness reduction methods publicly available in
a free open source software package.

In future work on general hubness, we will investigate addi-
tional approximate kNN-graph construction methods [37], [38]
for hubness estimation, and additional ANN methods, such as
tree-based methods or product quantization, for approximate
hubness reduction. In terms of concrete applications, we will
perform in-depth analysis of hubness in mobility data. We
will test our hypotheses of how hubness reduction improves
classification. In addition, we will examine, whether different
ANN techniques can yield better candidate neighbors and
avoid high numbers of antihubs. A focus will be on non-metric
techniques, such as distance-based hashing [39] and others.
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Popular nearest neighbors in high-dimensional data,” Journal of Ma-
chine Learning Research, vol. 11, pp. 2487–2531, 2010.

[8] D. Schnitzer and A. Flexer, “The unbalancing effect of hubs on k-
medoids clustering in high-dimensional spaces,” in International Joint
Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8.

[9] A. Flexer, “Improving visualization of high-dimensional music similar-
ity spaces.,” in Proceedings of the 16th International Society for Music
Information Retrieval (ISMIR) Conference, 2015, pp. 547–553.
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