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ABSTRACT

For the description of rhythmic content of music signals
usually features are preferred that are invariant in presence
of tempo changes. In this paper it is shown that the impor-
tance of tempo depends on the musical context. For pop-
ular music, a tempo-sensitive feature is improved on mul-
tiple datasets using analysis of variance, and it is shown
that also a tempo-robust description profits from the inte-
gration into the resulting processing framework. Important
insights are given into optimal parameters for rhythm de-
scription, and limitations of current approaches are indi-
cated.

1. INTRODUCTION

Determining the similarity between two pieces of music is
one of the core problems in Music Information Retrieval
(MIR). Methods to estimate such similarity usually con-
sider the timbre of music, i.e. the instantaneous sound
characteristics that are contained in a sample. Similar-
ity measures based on timbre can be improved by adding
the aspect of rhythmic similarity [1]. However, while the
meaning of timbre similarity is somehow intuitive, rhyth-
mic similarity is a more abstract concept. In Cooper and
Meyer [2], rhythm is defined as the way one or more un-
accented beats are grouped in relation to an accented one.
Furthermore, meter is defined as the measurement of the
number of pulses between more or less regularly occur-
ring accents. Even though rhythm can be perceived with-
out the existence of a meter, in this paper we will restrict
to music signals that have a meter. As soon as we im-
pose this restriction, each piece of music is characterized
by a frequency of pulsation (i.e. a pulse-tempo), that de-
termines how fast the accents in the metrical structure are
performed. Thus, in order to achieve high similarity values
for similar pieces that are performed at different tempi, one
approach is to make descriptions of rhythmic content inde-
pendent of this pulse-tempo. Such descriptors were e.g.
proposed by Peeters [3] and Jensen et al. [4]. These de-
scriptors are based on periodicity representations: Given
a music signal, the periodicities caused by its regularly
occurring accents are estimated. Then it is tried to make

Copyright: c©2011 Andre Holzapfel, Arthur Flexer and Gerhard Wid-

mer. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

50 100 150 200
0

0.05

0.1

0.15

0.2

Pulse−tempo/bpm
50 100 150 200

0

0.01

0.02

0.03

0.04

Pulse−tempo/bpm

Figure 1. Tempi of the Ballroom (left) and the Turkish Art
music (right) datasets modeled by Gaussian distributions.

either these representations or the applied similarity mea-
sure between them robust to tempo changes. An important
question that will be addressed in this paper is whether
such invariance is desirable in every context, or if there
are cases in which a certain sensitivity of the descriptors
to changing pulse-tempo is of advantage for the rhythmic
similarity measurements.
In order to get an understanding of the significance of this
question, let us have a look at two music collections: First,
a collection of eight western Ballroom dances that is widely
used in experiments in the MIR research community (e.g.
in [3]), and, second, a collection of Turkish Art music di-
vided into six metric classes that has been compiled by
Holzapfel and Stylianou [5]. The pulse-tempo of all pieces
is known for these collections. In Figure 1, the pulse-
tempo in beats per minute (bpm) of all pieces in each con-
tained class was modeled by a Gaussian distribution. For
the Ballroom collection it is obvious that tempo can serve
as a valuable information in order to differentiate between
samples of different dances, a fact that was observed by
Dixon et al. [6] for this dataset. The tempo distributions of
the Turkish Art music collection, however, reveal opposite
conditions for a good similarity measure. On this collec-
tion, it appears to be a good choice not to consider tempo
information, because distributions have large overlaps and
standard deviations.

Thus, depending on the type of music samples we want
to compare we would either choose to discard tempo infor-
mation, or to use it for improving our similarity measure.
However, in most cases an annotated ground truth of the
pulse-tempo is not given, and it must be estimated from
the audio signal. Including estimated instead of annotated
tempo information will lead to a decreased performance of
the similarity measure, as shown recently by Peeters [3].
This is due to the fact that the tempo estimation is subject
to halving- and doubling errors, and its accuracy depends
strongly on the signal characteristics [7]. For that reason,
it would be desirable to have two types of descriptors at
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hand. In the first case, when we want to discard tempo
information, a descriptor that completely ignores tempo
information would be preferred, as e.g. for Turkish and
Arabic art music. In the second case, we would prefer
a descriptor which remains invariant for a small range of
tempo changes, and which automatically varies in presence
of larger tempo changes. To give an example, for Hip Hop
music one would like to have descriptors that do not vary
when the same beat is used in another track with a differ-
ence of only 5 beats per minute, but the contained shuf-
fled grooves would appear altered and of different charac-
ter when changed by 20 bpm.
For that reason, it was chosen to contrast two different
techniques for rhythmic similarity estimations. The first
was presented by Holzapfel and Stylianou [8] and is based
on the Scale Transform Magnitudes (STM). This method
was shown to be invariant to tempo changes. The second
method was introduced by Pohle et al. [1], and applies de-
scriptors that are referred to as Onset Patterns (OP). Large
changes in tempo lead to a shift in these descriptors, but
small changes in tempo leave this representation almost
unchanged as shown in an example in Section 3. For both
descriptors, no estimation of the pulse-tempo from the sig-
nal is necessary.
In this paper, with the availability of multiple datasets, it
was feasible to conduct a series of analyses of variance
(ANOVA) [9] in order to find improved parameters for
rhythm descriptors. Improvements are related to optimal
multi-band processing schemes, length of applied analysis
windows, and the resolution which is necessary to obtain
a good similarity descriptor. Our experimental setup can
serve as an example of how to obtain optimal system pa-
rameters when several data sources are given. Until now,
such parameters are usually found in a trial and error pro-
cedure, and not in a rigorous statistical setting as in our
contribution.
Optimal parameters will be obtained by performing ANOVA
on the OP computation, but it will be shown that the STM
based rhythm descriptors profit from the obtained system
improvement in the same way. This confirms that the found
processing framework is generalizable and can be applied
to other descriptors as well. We will then contrast the
performance of the OP and STM descriptors on various
datasets in order to verify the correctness of our hypoth-
esis about the context-dependent meaning of pulse-tempo
for rhythmic similarity.
The following Sections of this paper are structured as fol-
lows: In Section 2 experimental methods are detailed. Datasets
are described, it is detailed how conclusions about the ac-
curacy of descriptors are obtained, and STM and OP de-
scriptors will be outlined, with emphasis on the method to
improve the OP framework. Then, in Section 3, the differ-
ent degree of robustness to tempo changes of OP and STM
descriptors will be clarified in some examples. The results
of the analyses of variance and comparisons between STM
and OP features are given in Section 4, and Section 5 con-
cludes the paper.
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Figure 2. OP computation and system parameters.

2. EXPERIMENTAL SETUP

2.1 Rhythm Content Description

In Figure 2 the computation of Onset Patterns (OP) is sum-
marized. The computations are symbolized by the bold
rectangular boxes, and the dotted rectangular boxes show
the parameters that will be evaluated in separate ANOVAs.
As indicated by the dotted boxes, parameters are grouped
into two sets. The first set, NBANDS1, COMPR1 and COMPR2
are related to the multi-band processing. The second set,
WINL, NBINS and the usage of unsharp masking are re-
lated to the OP computation. A simultaneous analysis of
those factors and all their interactions would be too chal-
lenging. We believe that factors in the two parameter sets
are sufficiently independent to be improved separately. The
rather coarse grid of factor levels (see Section 4) is also
due to considerations of tractability. In the following para-
graph, the computation of OP will be described and the
meaning of the mentioned parameters will be explained.
Input to the first computation in Figure 2 is a monophonic

piece of music sampled at 22050 Hz. The input is trans-
formed into the frequency domain using a STFT with a
46.4 ms length Hanning window with half overlap. The
magnitude of the transform is then processed by a filter-
bank in order to obtain coefficients on a logarithmic axis.
The number of bands on this axis is denoted as NBANDS1
in Figure 2, and was set to 85 by Pohle et al. [1]. In each of
these bands, a masking can be computed in order to accen-
tuate instrument onsets by emphasizing transient regions
in the signal. This masking applies a moving average filter
with a length of 0.25 s to each band and then half-wave
rectifies the output. In this paper we will retain the nota-
tion of unsharp masking for this process which was used in
[1]. Then the logarithm of the signal is computed and the
NBANDS1 bands can be reduced by the factor COMPR1.
In [1], 85 bands were reduced to 38, which results in a
compression of COMPR1= 85/38 ≈ 2.24. Then, a second
STFT is computed on each band in order to obtain a de-
scription of the periodicities contained in this band. Such a
description will be referred to as periodicity spectrum. The
periodicity spectral magnitudes are mapped onto a loga-
rithmic axis by applying a filter bank. In this computa-
tion, it was decided to evaluate the optimal analysis win-
dow length of the STFT (WINL) and the number of bins
per octave that are obtained from the filter bank, the orig-
inal values were 6s and 5 bins per octave [1]. The period-
icities are described in five octaves from 30 to 960bpm. It
should be pointed out that no zero padding was used in the
STFT’s, and a Hanning window of WINL length in seconds
with a shift of half a second was applied to obtain the pe-
riodicity spectra. In the final stage of the OP computation,



it was tried to reduce the number of bands again, in order
to obtain more compact descriptors. This results in a two
stage compression scheme, starting from NBANDS1 bands.
The rhythm of a whole sample is described by the mean of
the OP obtained from the various segments of this sample.

A method that is robust to tempo variance in a very wide
range is the description based on Scale Transform Mag-
nitudes (STM) as proposed by Holzapfel and Stylianou in
[8]. The computation of these descriptors was left exactly
as explained therein, and its basic computation steps are
depicted in Figure 3. The first step is a computation of a
spectral flux based Onset Strength Signal (OSS). Within
moving windows of eight seconds length, autocorrelation
coefficients are computed and then transformed into the
scale domain by applying a discrete Scale Transform. For
one sample, the mean of Scale Transform Magnitudes (STM)
obtained from all the analysis windows are the STM de-
scriptors of the rhythmic content of a sample. For the ex-
act computation parameters please refer to [8]. However, it
should be pointed out that the final descriptors do not con-
tain separate information from various bands as for the OP.
In order to improve the existent descriptors, the two pa-

AC

1. 2.

TRANSF.

SCALE
3.

OSS

o(t) S(c)r(t)sample

Figure 3. Computational steps of STM rhythm descrip-
tors.

rameter groups in the OP computation depicted in Figure
Figure 2 are evaluated in a two stage analysis of variance.
In the first stage, the optimal parameters for the multi-band
parameter set (NBANDS1, COMPR1, COMPR2) are eval-
uated in an ANOVA with the observations being the 1-
nearest-neighbor classification accuracies on three datasets
using Onset Patterns. For this, the parameters from the sec-
ond set were set to the values applied in [1] (usage of un-
sharp masking, WINL = 6s, NBINS = 5). After deciding on
the values for the parameters for the first set, these values
are fixed and optimal values for the second set are found
using a second ANOVA again with the observations being
the accuracies on the same three datasets using Onset Pat-
terns. Then, the improved processing framework for OP
will be applied to STM in order to prove the validity of the
obtained parameters also for these descriptors.

2.2 Datasets and evaluation

In order to improve the system depicted in Figure 2, three
data sets will be used. The first, DBall, is the widely used
Ballroom dataset, consisting of 8 classes with 698 ball-
room dance excerpts of 30s length. The second dataset,
DLat, was presented by Silla et al. [10], and contains 3226
files of Latin dance music in 10 classes. Finally, a third
dataset, DPop, was compiled that consists of 347 excerpts
from popular music samples organized into 15 different

classes that are related to rhythmic concepts (e.g. Break
Beat and Jive). In order to investigate the different de-
mands on the context of traditional music, two more datasets
will be used to compute similarity measurements. The
first, DCrete, was used by Holzapfel and Stylianou [8] and
contains 180 short excerpts of six different dances com-
monly encountered in the island of Crete in Greece. The
second traditional dataset, DTurk, contains 288 audio sam-
ples synthesized from melodies of Turkish art music. The
pulse-tempo distributions of this dataset are shown in Fig-
ure 1, and further details on the dataset and the synthesis
method are given in [8].
As the application for the proposed features is music simi-
larity, the features will be evaluated in a 1-Nearest-Neighbor
classification in a leave-one-out scheme. The distance be-
tween features will be Euclidean distance in all cases. The
obtained classification accuracies will be used to find an
optimal computation setup, and will serve as a way to con-
trast the performance of different features when applied to
music of different style.

3. TEMPO ROBUSTNESS

In order to show the influence of tempo changes on the OP
and STM descriptors, a simple experimental setting was
chosen. From each class of DBall, DLat and DPop one
song was chosen and its tempo was manipulated without
changing pitch using the audacity audio editor. The tempo
of each song was changed by +/-20%, +/-10%. This results
in five tempo variants for each song, including the original
tempo. Following this procedure, 22 songs in five tempo
variants were obtained. Note that for classes which appear
in several datasets (e.g. Tango), only one sample was used.
The accuracy of correctly identifying a song in a 1-NN
classification was determined. This means that it was de-
termined how often the nearest neighbor is indeed a tempo
changed version. Additionally, the average ratio of the dis-
tances between a song and all different songs and distances
between a song and its tempo variations was computed.
For example, if this ratio equals 2, the distance of one song
to a different song is on average two times larger than the
distance of a song to its tempo variants. Hence, larger num-
bers of this ratio indicate a better robustness to the tempo
changes. The applied features are the OP and STM with
the original parameters as presented in [1] and [8], respec-
tively. The results shown in Table 1 clearly show the supe-

Table 1. Song identification in presence of tempo changes
OP STM

ACCURACY 70.0 83.6
RATIO 2.26 3.03

rior tempo robustness of the STM features, both in terms
of ratio and in terms of accuracies. However, we should
have a closer look at the effect of small tempo changes on
the OP features. This effect is visualized in Figure 4, where
the low coefficients of a periodicity spectral magnitude of a
Cha-cha-cha sample is shown as a bold line. This piece has
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Figure 4. Excerpt of periodicity spectral magnitude of a
Cha-cha-cha sample. Small changes in tempo lead to min-
imal change in OP due to the log-filterbank (center fre-
quencies shown as dotted vertical lines).

an annotated tempo of 120 bpm, and the standard tempo
deviation of this class in DBall is 5.6bpm. The dashed pe-
riodicity magnitude has been derived from the same piece,
when its tempo has been changed by this standard devia-
tion using audacity. The dotted vertical lines denote the
positions of the log-filterbank center frequencies that map
the periodicity spectral magnitudes to a logarithmic axis
(LOG-STFT2 in Figure 2). It is obvious that this change in
tempo leads to a minimal change in the resulting descrip-
tors due to the coarse frequency resolution. This confirms
that the OP descriptors are robust to tempo changes within
certain limits that are determined by the NBINS parameter
in Figure 2.

4. RESULTS

As explained in Section 2, two ANOVAs were performed
as indicated by the dotted boxes in Figure 2. The results
will be analyzed starting with the multi-band processing
scheme.

4.1 Multi-band Processing ANOVA

We performed a four-way analysis of variance (ANOVA)
with the following factors: “Number of bands” (NBANDS1,
4 levels: 16, 32, 64, 128), “Compression 1” (COMPR1, 3
levels: 1, 2, 4), “Compression 2” (COMPR2, 3 levels: 1,
2, 4), “Data set” (DS, 3 levels: DBall, DLat, DPop). We
also looked into possible two-factor interactions. The de-
pendent variable is the accuracy resulting from 1-Nearest-
Neighbor classification. As can be seen in Table 2, all main
effects as well as two-factor interactions are significant at
the .05 error level (see last column, Prob>F smaller than
0.05).

Table 2. Result table of multi-band ANOVA

Source Sum
Sq.

d.f. Mean
Sq.

F Prob>F

NBANDS1 0.0369 3 0.0123 76.82 8.469e-22
COMPR1 0.0104 2 0.005 32.42 1.296e-10
COMPR2 0.0037 2 0.0018 11.6 4.624e-05
DS 0.5807 2 0.2903 1810.14 1.079e-59
NBANDS1*COMPR1 0.0179 6 0.0029 18.64 1.099e-12
NBANDS1*COMPR2 0.0052 6 0.0008 5.48 1.125e-04
NBANDS1*DS 0.0405 6 0.0067 42.17 4.803e-21
COMPR1*COMPR2 0.0031 4 0.0007 4.86 0.0017
COMPR1*DS 0.0115 4 0.0028 18.03 3.916e-10
COMPR2*DS 0.0081 4 0.0020 12.68 9.152e-08
Error 0.0109 68 0.0001
Total 0.7294 107
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Figure 5. Influence of the number of bands and the com-
pression factors. Chosen parameter shown as a bold line,
the significantly different means are depicted by dashed
lines. Additional horizontal lines improve legibility.

Therefore there are significant effects on the classifica-
tion accuracy caused by the number of frequency bands,
the first and second compression rates as well as the data
set. The fact that the type of data set used has an influ-
ence on the accuracies achieved is clear since the three
data sets have different levels of difficulty (mean accu-
racies for the datasets are 87.1% (DBall), 80.1% (DLat)
and 69.3% (DPop)). Since all two-factor interactions are
also significant, we have to investigate all factors together
to find out which combinations of factors are optimal in
terms of achieved accuracy. It is important to point out
that the two-factor interactions with the datasets (DS) in
this as well as in the second ANOVA only influence the
degree but not the direction a factor has on the depen-
dent variable. Therefore we can analyze aggregate results
across all three datasets. In Figure 5 we plotted mean
accuracies and 95% confidence intervals for all combina-
tions of factors “Number of bands” (NBANDS1), “Com-
pression 1” (COMPR1) and “Compression 2” (COMPR2).
The mean accuracies are based on the results from all three
data sets. A considerable number of combinations of fac-
tors is able to achieve similar levels of mean accuracy of
around 80% and more. We concentrate on one combina-
tion that achieves good accuracy and compact represen-
tation at the same time: NBANDS = 32, COMPR1 = 1,
COMPR2 = 4, i.e. this combination uses a log-filterbank
with 32 filters after the first STFT, and reduces the result-
ing number of bands to eight in the second reduction in
Figure 2. The periodicities in each of these eight bands are
described using 25 coefficients (5 NBINS × 5 octaves).
This specific combination is shown using a bold line in
Figure 5. Based on the results from the ANOVA, we com-
pare the mean accuracy for this one combination with all
other combinations with a series of t-tests (level of signif-
icance α = .05). Tukey’s HSD adjustment was used to
account for the effect of multiple comparisons. All com-
binations significantly different from the chosen combina-
tion are shown as dashed lines. These combinations start



at a low number of bands (NBANDS1=16), and then fur-
ther reduce this representation, except one case in which
starting with 32 bands and reducing them to 2 bands leads
to significant decrease. Compared to the chosen scheme,
no other higher dimensional combination can significantly
improve the results. This shows that a number of bands
much smaller than the number of semitone bands (85) is
sufficient. This number can be further compressed to ob-
tain a more compact descriptor; A lower bound for the
number of bands to start with is at about 32, and a lower
bound of bands to keep at the end is 4.
At this point it should be pointed out that instead of the sec-
ond reduction in Figure 2, also usage of a two dimensional
DCT was considered, which resulted in the Onset Coef-
ficients proposed in [1]. The first DCT reduces the num-
ber of bands, while the second DCT reduces dimension-
ality of the periodicity content description in every band.
However, it was found that by using DCT the dimension-
ality of periodicity content description cannot be further
reduced, and application of a DCT to the dimension of
the bands leads to no performance gain compared to our
simple reduction based on linear combination of neighbor-
ing bands. Moreover, when applying a DCT results are no
longer nicely interpretable as log-periodicity spectra, and
for those reasons it appears to be preferable to refrain from
using Onset Coefficients.

4.2 Processing parameter ANOVA

We performed a four-way analysis of variance (ANOVA)
with the following factors: “Unsharp mask” (MASK, 2 lev-
els: 0, 1), “Window length” (WINL, 4 levels: 6, 8, 10, 12),
“Number of bins” (NBINS, 4 levels: 3, 4, 5, 6), “Data set”
(DS, 3 levels: DBall, DLat, DPop). We also looked into
possible two-factor interactions. The dependent variable
is again the accuracy resulting from 1-Nearest-Neighbor
classification. As can be seen in Table 3, all main effects
as well as the two-factor interactions “MASK*DS” and
“NBINS*DS” are significant at the .05 error level. There

Table 3. Result table of processing parameter ANOVA

Source Sum
Sq.

d.f. Mean
Sq.

F Prob>F

MASK 8224.3 1 8224.28 5495 2.2382e-58
WINL 171.5 3 57.15 38.19 1.1558e-13
NBINS 239.7 3 79.89 53.38 1.4701e-16
DS 6772.5 2 3386.23 2262.48 5.0402e-55
MASK*WINL 10.9 3 3.63 2.43 0.0747
MAKS*NBINS 10.6 3 3.53 2.36 0.0811
MASK*DS 671.2 2 335.61 224.23 9.7103e-28
WINL*NBINS 18.5 9 2.05 1.37 0.2229
WINL*DS 29.5 6 4.92 3.29 0.0075
NBINS*DS 50.9 6 8.49 5.67 0.0001
Error 85.3 57 1.5
Total 16284.8 95

is a strong positive effect of using the “Unsharp mask” on
the accuracy in all tested combinations of parameters. To
be precise, mean accuracies improved by 22.4% for DBall,
10.9% for DLat, and 22.1% for DPop. In Figure 6 we plot-
ted mean accuracies and 95% confidence intervals for all
levels of factor “Window length” (WINL). The mean accu-
racies are based on the results from all three data sets. The

67 67.5 68 68.5 69 69.5 70 70.5 71 71.5
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MEAN ACCURACIES/%

Figure 6. Influence of WINL in the LOG-STFT 2. Chosen
parameter shown as a dotted line, the significantly different
means are depicted by dashed lines.
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Figure 7. Influence of NBINS in the LOG-STFT 2. Cho-
sen parameter shown as a dotted line, the significantly dif-
ferent means are depicted by dashed lines.

result for using a window length of WINL = 8 is shown
as a dotted line Figure 6. Using WINL = 8 is significantly
better than using WINL = 6 or 12 and equally good as us-
ing WINL = 10 (based on t-tests, α = .05, Tukey’s HSD
adjustment). In Figure 7 we plotted mean accuracies and
95% confidence intervals for all levels of factor “Number
of bins” (NBINS). The mean accuracies are based on the
results from all three data sets. The result for using NBINS
= 5 number of bins is shown as a dotted line Figure 7. Us-
ing NBINS = 5 is significantly better than using NBINS
= 3 or 4 and equally good as using NBINS = 6 (based on
t-tests, α = .05, Tukey’s HSD adjustment).

The most important conclusion from the processing pa-
rameter ANOVA concerns the effect of the window length.
By using STFT, we are bound to the stationarity constraint.
In this paper, the finding is that increasing window lengths
to values of more than 8s leads to problems. This phe-
nomenon was described in [8] as well, but on partly dif-
ferent datasets and using different descriptors. However,
the common aspect is that the processed signal had to be
stationary within their analysis window as well. This leads
to the conclusion that rhythmic aspects of music perfor-
mances tend to be non-stationary beyond this temporal limit.

4.3 Summary and comparison

In order to quantify the performance gain that is achieved
when using the optimal parameters, we will contrast the ac-
curacies of the improved features (OPopt) with the original
setting from [1], denoted as OPorg . The exact parameters
of the improved and the original setups are listed in Table
4.
In Table 5.(a), accuracies on all five datasets using the OP
features are depicted, while Table 5.(b) shows the accu-
racies for the STMorg features computed as described in
Section 2 together with the STMopt, which were obtained
by integrating the STM computation into the optimized
multi-band processing scheme: Instead of the logarithmic



Table 4. Comparison of system parameters
Parameter Improved Original

NBANDS1 32 85
COMPR1 1 2.2
COMPR2 4 1
MASK 1 1
WINL 8 6
NBINS 5 5

filterbank applied in the LOG-STFT 2 step in Figure 2,
we input the linear axis periodicity spectral magnitudes
into a Discrete Scale Transform and keep the magnitude.
All the other processing steps are the same as for OPopt

(except of NBINS, which is specific to the OP compu-
tation). Bold numbers in Tables 5.(a) and 5.(b) indicate
significant changes, at a .05 error level, by applying the
improved multiband processing to either STM or OP. Un-
derlined numbers indicate significant differences between
the different features, thus comparing either OPopt with
STMopt or OPorg with STMorg .

Table 5. Classification Accuracies
(a) (b)

Dataset OPopt OPorg STMopt STMorg

DBall 88.4 86.1 84.1 85.1
DLat 81.0 81.8 79.7 65.2
DPop 74.4 68.6 70.3 60.5

DCrete 70.4 64.0 68.2 61.5
DTurk 46.2 45.2 56.3 58.3

It can be seen that both for OP and STM descriptors, in-
troducing the improved multiband processing leads to sig-
nificant improvement in three cases (bold numbers in Ta-
ble 5). Only for DTurk it shows no effect, which is related
to the fact that this dataset contains melodies synthesized
from MIDI, and is characterized by less spectral diversity
than the other datasets. Observing the underlined accura-
cies in Table 5, it can be seen that only for DTurk there is
a significant advantage of the STM over the OP features,
whereas OP appear to represent a more accurate similarity
measure on the three popular music datasets. The supe-
rior performance on the popular music datasets related to
the small variance in pulse-tempo in the classes. The small
set of Cretan dances has similar standard deviations as the
DBall (for exact values refer to [8]), but larger overlaps
between distributions. The accuracies on this set are not
significantly different for OP and STM descriptors (70.4%
and 68.2%, respectively). However, in a musical context
where we have to face huge variance of tempo for one and
the same rhythmic class, such as in Turkish and Arabic art
music, the tempo robustness of STM lead to a significant
improvement over OP (56.3% compared to 46.2%).

5. CONCLUSIONS

In this paper, a crucial problem for rhythmic similarity es-
timation in music was addressed: Depending on the tempo
variances inherent in classes of a musical style it is ei-
ther of advantage to encode larger tempo changes in the
descriptors, or to use descriptors that are robust for even
large tempo changes. The former case was addressed by
descriptors based on Onset Patterns, while for the latter
Scale Transform based descriptors were shown to be more

adequate. An advantage of both descriptor types is that no
tempo estimation has to be performed on the audio signal,
which is an error-prone step in almost all styles of mu-
sic. Another important contribution of this paper is the
improvement of system parameters using an analysis of
variance (ANOVA). It is shown that the obtained param-
eters lead to improvements even for different approaches
(STM). The conclusions drawn from the ANOVA are re-
lated to the numbers of bands to be used for rhythm de-
scription, and the limitation of a STFT analysis window
length to 8 seconds. This limitation also limits the possi-
ble resolution of the OP descriptors, because for a higher
resolution (NBINS) longer windows would be necessary.
Thus, the stationarity requirement for the STFT limits the
possible parameter space of the OP description. A possible
approach to explore the effects of going beyond this border
is the usage of transforms that can deal with non-stationary
signals.
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