
Österreichisches Forschungsinstitut für /
Austrian Research Institute for /

Artificial Intelligence

TR–2007–09

Christoph Hermann, Bernhard Jung,
Paolo Petta

Designing Criteria-Driven Scheduling as
Integrated Service for IEEE-FIPA

Compliant Multi-Agent Infrastructures

• Freyung 6/6 • A-1010 Vienna • Austria •

• Phone: +43-1-5336112 •

• mailto:se
�ofai.at •

• http://www.ofai.at/ •

Österreichisches Forschungsinstitut für /
Austrian Research Institute for /

Artificial Intelligence

TR–2007–09

Christoph Hermann, Bernhard Jung,
Paolo Petta

Designing Criteria-Driven Scheduling as
Integrated Service for IEEE-FIPA

Compliant Multi-Agent Infrastructures

The Austrian Research Institute for Artificial Intelligence is supported by the
Austrian Federal Ministry for Science and Research and the

Austrian Federal Ministry for Transport, Innovation and Technology.

Citation: Hermann C., Jung B., Petta P.: Designing Criteria-Driven Scheduling as Integrated Service
for IEEE-FIPA Compliant Multi-Agent Infrastructures. Technical Report, Österreichisches Forschungsin-
stitut für Artificial Intelligence, Wien, TR-2007-09, 2007.

Designing Criteria-Driven Scheduling as Integrated Service
for IEEE-FIPA Compliant Multi-Agent Infrastructures

Christoph Hermann, Bernhard Jung, and Paolo Petta

Austrian Research Institute for Artificial Intelligence (OFAI)*

of the
Austrian Society for Cybernetic Studies (ÖSGK)

Freyung 6/6
A-1010 Vienna, Austria (EU)

c.d.hermann@gmail.com
bernhard.jung@ofai.at

paolo.petta@ofai.at

Abstract: The Foundation for Intelligent Physical Agents (FIPA) provides a rich
set of standards for implementing industrial scale multi-agent infrastructures.
Despite its manifold possibilities for achieving coordinated action execution based
on interaction protocols, it lacks direct support of multi-agent planning and
scheduling for goal directed action execution. In this paper, we discuss a design
strategy to integrate Design-to-Criteria (DTC) scheduling using the Framework for
Task Analysis, Environment Modeling and Simulation (TÆMS) for explicit partial
modelling of coordination issues into FIPA infrastructures, as represented by the
Java Agent DEvelopment Framework (JADE). Following the concept of
“coordination as a service”, we exploit the infrastructural facilities of the FIPA
multi-agent platform, and re-use FIPA interaction protocols for exchange of partial
TÆMS structures, as well as for committing to action execution.

1 Introduction

The Foundation for Intelligent Physical Agents1 (FIPA) provides a rich set of standards
for implementing multi-agent infrastructures. The FIPA reference architecture is only
one out of many multi-agent platform architectures. Reusable Environment for Task-
Structured Intelligent Networked Agents2 (RETSINA) [Sy03] or Java Agent Framework3

(JAF) [Ho98] are further examples. Each multi-agent infrastructure has its focus on
some specific features. JAF for example emanates from a multi-agent planning and
scheduling viewpoint. FIPA on the other hand is more communication centric and
stresses aspects including formal semantics of languages and interaction protocols.

*The Austrian Research Institute for Artificial Intelligence is supported by the Austrian Federal Ministry for
Science and Research and the Austrian Federal Ministry for Transport, Innovation and Technology.

1http://www.fipa.org/ , last visited Oct. 10, 2007
2http://www.cs.cmu.edu/~softagents/retsina_agent_arch.html/ , last visited Oct. 10, 2007
3http://dis.cs.umass.edu/research/jaf/ , last visited Oct. 10, 2007

http://dis.cs.umass.edu/research/jaf/
http://www.cs.cmu.edu/~softagents/retsina_agent_arch.html/
http://www.fipa.org/

Following the notion of coordination as service proposed by Viroli and Omicini in
[VO06] we present a way of adding planning and scheduling features to a
communication centric multi-agent infrastructure such as FIPA: As for any other service
provided by the multi-agent infrastructure, whenever an agent requests to use our
scheduled method execution as coordination service, it is bound to comply with the rules
and policies defined by this specific service. The interaction protocols we provide then
guarantee a flawless coordination process, even if scheduled method execution should
fail. Note that while in the remainder of this paper we will explicitly address scheduling
only, DTC in fact subsumes both planning and scheduling activities without an excessive
need of backtracking at the cost of approximate solutions.

The remainder of this paper is organised as follows: In section 2 we briefly survey basic
technologies underlying our work (FIPA, Jade, TÆMS and DTC-Scheduling). In
section 3 we further motivate our goal of integrating DTC-Scheduling within a FIPA
compliant platform. In section 4 we discuss our design in more detail. We conclude with
some early evaluation results and by outlining next steps to be undertaken in this line of
work. For further information, we refer the interested reader to the results documented in
[He07].

2 Underlying Technologies

2.1 FIPA and JADE

The Foundation for Intelligent Physical Agents (FIPA) as an IEEE Computer Society
Standards Organisation evolved from a precursor association formed by several

Figure 1: FIPA agent management reference model
([Fo04], Fig.1, p.5)

companies and organisations with special interest in promoting agent-based technologies
as usable industrial standard. This organisation defines domain and implementation
independent requirements for interoperable agent-based systems. The current set of
specifications that are ready for implementation are grouped under the term FIPA 2000.

The core FIPA specifications identify essential support services. One of these services is
the Agent Management System (AMS) which maintains a white pages service. In other
words, this service administers a directory of agent references. The Directory Facilitator
(DF) provides a yellow pages service. Agents playing the DF-role provide a registration
service for agent capabilities as well as an agent capability discovery service. An agent is
defined as a fundamental actor that aggregates several service capabilities to form a
unified and integrated execution model [BR01]. Agents communicate with one another
via the Message Transport System (MTS) using the Agent Communication Language
(ACL) with formally defined semantics. Agent communication is message based on
speech act theory by John Austin [Au62] and extensions by John Searle [Se70]. Message
content is expressed by statements in a so-called Content Language (CL). FIPA does not
enforce a certain CL, but defines its own, called Semantic Language (SL). The MTS is
responsible for (i) passing ACL-statements between agents, and (ii) inter-connecting
multiple agent platforms. Figure 1 illustrates the FIPA 2000 agent management reference
model.

The Java Agent DEvelopment Framework4 (JADE) is a FIPA 2000 compliant [Be01]
software framework. Its development is supervised by the JADE board and released
under the terms of LGPL version 2. In addition to being FIPA compliant, JADE eases
agent-based software development by being designed as a fully distributed platform;
providing ready to use implementations of agent interaction protocols; hiding complex
intra- and inter-platform communication behind a simple API; and providing a
framework for agent construction. Using the well established Java programming
language, JADE maps nearly all FIPA concepts to the object-oriented paradigm. JADE
provides a plug-in mechanism called kernel-level services which deals with platform
specific features, such as the automatic translation of ACL encodings. As a
representative for FIPA compliant multi-agent infrastructures, JADE was picked as the
multi-agent platform of choice for our reference implementation described in section 4.

2.2 TÆMS and DTC-Scheduling

The Task Analysis, Environment Modeling and Simulation (TÆMS) framework is a
formal, domain-independent modelling language to represent hierarchical task structures.
It can be understood as a model of an agent's partial view of a distributed goal tree
[Le04]. TÆMS provides language constructs for specification of different ways to
achieve a specific goal. Its main abstractions are tasks and methods. Tasks represent
goals which can be further decomposed into sub-goals, which can be again tasks or
methods. Methods are atomic actions and therefore always leaf nodes of the distributed
goal tree. Additionally, TÆMS has support for explicit interrelationships (IRs) like

4http://jade.tilab.com/ , last visited Oct. 10, 2007

http://jade.tilab.com/

enables, disables, hinders, and facilitates between tasks which do not follow the
hierarchical goal decomposition principle induced by the term „tree“. Resources model
interactions with the environment. Figure 2 illustrates such a goal decomposition
containing IRs.

The most noteworthy aspect of TÆMS is not so much task decomposition, but rather its
coverage of aspects of relevance for the modelling of (soft) real-time requirements;
handling of uncertainty via probability distributions [Ho99]; and modelling of worth-
oriented domains (i.e., where goals can be reached to a certain degree, rather than only in
an all-or-nothing fashion [Le98, ZR96]). Each method comes with a triple of discrete
probability distributions describing quality, duration, and cost of method execution. This
approach offers the means to find paths representing ways to achieve a goal to a certain
degree. The aggregation of probabilities in sub-task relationships is defined by so-called
quality accumulation functions (QAFs).

Design-to-Criteria (DTC) [Wa97] scheduling offers a flexible and domain-independent
approach to task scheduling. This scheduling algorithm constructs an ordering of TÆMS
methods that suffices

● the restrictions of task decomposition;

● temporal constraints;

● commitments of agents;

● resource usage; and

Figure 2: A TÆMS example based on the small
cleaning kitchen example from [Ho99]

● relative preferences for valid solutions, according to quality, cost, and duration.

Consideration of such relative preferences for solutions sets DTC apart from other
scheduling strategies. VIE-CDS [Ju03] is a Java implementation of the DTC scheduling
algorithm as well as the TÆMS framework. It is an integral part of our reference
implementation presented in section 4.

3 Integration Design Considerations

Our aim was to design the integration of a scheduling component in as generic a way as
possible, so as to ideally enable all FIPA compliant agent frameworks to adopt our
approach and thereby enable even inter-platform scheduling. Before we outline our
reference implementation, we discuss some ideas and related work which led to our
approach.

We first considered exploiting the notion of kernel-level services defined in JADE, the
FIPA-compliant platform used as reference for implementation. This low-level feature of
JADE would have appeared to allow for a tight integration with the platform; however, it
lacks coverage by the FIPA standard. We therefore looked one infrastructural level
higher, at the agent level, for a different integration possibility. In FIPA, an agent and
everything it can do in its environment are well defined. Agents can register their
capabilities as services with the DF, and other agents may use them. So why not follow
the “coordination as a service” concept, and register a coordination mechanism with the
DF? The notion of coordination mechanism, however, is somewhat abstract, making it a
research challenge in its own right to define exactly what to register with the DF.

Agent services are not self-explanatory. Service registrations are only strings. But when
such a string matches a concept in an ontology an agent knows about, the service makes
sense for it. Consequently, we had to define an ontology offering agents the vocabulary
necessary to deal with scheduled method execution. Just the vocabulary is still not
sufficient, though. We also needed to define the basic conditions for using this
vocabulary. This is the point where we re-used FIPA interaction protocols, to define
under which conditions agents can talk to one another about scheduling issues.

Several architectural design strategies for multi-agent systems exist. There could be one
superior instance which coordinates all scheduled action execution. This superior
instance would be responsible for collecting all information about action dependencies;
building the schedule; and monitoring schedule execution. In case the superior
scheduling instance should already have all information necessary for scheduling and
execution monitoring, this system design would resemble a mainstream client/server
architecture, where the server knows about the clients' capabilities and orchestrates them.
Even though such a centralised layout introduces a single point of failure. there are
scenarios where opting for centralised control can be defended.

To avoid the single point of failure feature/disadvantage to some extent, the system
designer could allow for several such scheduling instances. In the case of such a multi-
centric approach, the system designer could decide to assign each agent a fixed
scheduling agent. Taking this approach would give only some small advantage over the
centralised strategy, because a failing scheduling agent would cause several dependent
agents to stop working. Again, as for the centralised approach, this layout could make
sense under certain circumstances. Yet another option, however, would be to relax this
fixed hierarchical design and allow for run-time discovery of scheduling services. But
the advantage of run-time discovery does not come for free: On the one hand, the multi-
agent infrastructure has to provide elaborate communication features for

● asking the yellow pages agent for a scheduling service;

● contacting the scheduling agent; and

● negotiating scheduling conditions.

Having a multi-agent infrastructure providing appropriate communication features as
well as a yellow pages service, is still shares the same kind of vulnerability. The single
point of failure has moved from the scheduling agent to the yellow pages agent.
Assuming that the multi-agent infrastructure provides the yellow pages service, the
responsibility for yellow pages service-replication and accessibility has been delegated
to the underlying infrastructure.

Given the case that each agent constitutes a scheduling service, we have a fully
distributed system design. An example for a fully distributed multi-agent system design
where each agent has planning, scheduling, and execution monitoring capabilities is
Generalized Partial Global Planning5 (GPGP) [DL92] which has its roots in Partial
Global Planning (PGP) [DL91]. The main idea behind GPGP is to extend the PGP
approach by

● using TÆMS as formal domain-independent framework to communicate more
abstract and hierarchically organised information;

● using TÆMS to detect coordination relationships; and

● separating the process of coordination from local scheduling [DL92].

GPGP assumes a local scheduler and local TÆMS structures representing an agent's
partial subjective view of system knowledge at each agent. Information for the scheduler
can be represented by local and non-local commitments to tasks in the task structure or
by altering and extending the local task structure. The main field of application for
GPGP and TÆMS are worth-oriented domains [Le04]. GPGP defines the following five
coordination mechanisms [DL95], which inspired our approach:

5http://dis.cs.umass.edu/research/gpgp/ , last visited Oct. 12, 2007

http://dis.cs.umass.edu/research/gpgp/

● Updating Non-Local Viewpoints means finding other agents with overlapping
beliefs and further gathering information about them. A belief equates with a
task in the local TÆMS structure.

● Communicating Results enforces a policy that defines which agents
participating in scheduled action execution communicate which result qualities
to which agent. For example, participating agents could exchange result
qualities of each finished task among them all. Another example would be to
communicate only result qualities of the goal task.

● Handling Simple Redundancy means to decide which agent should execute a
method given the case that multiple agents provide the same method execution
capabilities.

● Handling Hard Coordination Relationships means preserving a strict
temporal order given by the IRs “enables” and “disables”, with low
negotiability.

● Handling Soft Coordination Relationships means preserving a temporal order
given by the IRs “facilitates” and “hinders”. with high negotiability.

Taking ideas from GPGP, our approach should be powerful enough to meet
requirements of centric, multi-centric, and fully distributed multi-agent scheduling
architectures.

4 DTC-Scheduling as FIPA-Based Service

One major design decision taken is to treat planning, scheduling, and execution
monitoring as one big building block6. Consequently, these tasks cannot be distributed
among different agents. This approach restricts the multi-agent system designer, but
saves communication costs. It avoids sending large string representations of TÆMS
structures multiple times over the communication channel. We require each agent to
provide a simple mechanism for manipulation its local TÆMS structures. This
mechanism has to take care of properly proclaiming local TÆMS knowledge, as well as
implementing all scheduling related interaction protocols. In summary, we do not want
the agent programmer to be confronted with internals of the scheduling and method
execution process, but still provide the greatest possible degree of control.

As mentioned earlier, agents are required to share vocabularies defined by ontologies.
Based on ideas taken from [CP99], we use the well-known UML formalism to visualise
our ontology structure in figure 3.

6In the design phase, numerous trade-offs between flexibility and usability had to be taken. In particular, we do
not aim to answer the question whether it is better to use dedicated planning, scheduling, and execution
monitoring agents or to provide these abilities to each agent. Therefore, we rather speak about agent roles than
concrete agents in the following. Interaction protocols are the glue between these roles.

● BasicOntology is the root ontology we extend. We assume it to contain all
primitive concept and aggregate definitions.

● TAEMSOntology mainly deals with wrapping TÆMS structures, defining the
vocabulary for TÆMS structure exchange and providing a predicate to refine a
given TÆMS structure.

● DTCOntology adds DTC-specific predicates and terms to TAEMSOntology.
Its main purpose is to define the vocabulary necessary for requesting scheduled
method execution, as well as providing VIE-CDS with scheduling criteria.

● TAEMSMetaInfOntology contains only one concept. This ontology is
intended to be refined by application specific ontologies which provide meta-
information about information encoded in a TÆMS structure. For example, this
ontology could be used to provide information about how to resolve
redundancies.

Service publishing and discovery occurs via the DF. On the one hand, we make standard
use of it to register the planning, scheduling, execution monitoring service, and on the
other hand we exploit it to publish an agent’s local TÆMS knowledge. To avoid the DF
to be a single point of failure, we recommend to use techniques such as DF replication
and federation.

Our scheduling integration approach does not comprise a single component to be added
to a FIPA compliant agent platform. We specify it as an orchestration of well defined
FIPA interaction protocols. The whole scheduled method execution process consists of
five phases, where each phase corresponds to the use of a FIPA interaction protocol:

1. Request scheduled action execution: The request for scheduled action
execution triggers the whole planning, scheduling, and action execution
monitoring process. The requester queries the DF for an agent providing a

Figure 3: The structure of the scheduling ontology

planning, scheduling, and execution monitoring service. Then it requests a
scheduled action execution implemented as FIPA Request Interaction Protocol.
This stage has no directly equivalent GPGP mechanism.

2. Updating non-local viewpoints: The agent updates its non-local viewpoints
and builds a partial global TÆMS structure. This updating occurs as the
planning, scheduling, and execution monitoring agent looks at its already built
partial global plan and queries DF for all tasks and methods in this TÆMS
structure for agents having TÆMS knowledge about these tasks or methods.
Afterwards, it requests these agents to send TÆMS knowledge they consider
important for the requested task or method. Requesting is done with the FIPA
Request Interaction Protocol. Then, the receiver agent merges the received
TÆMS structures into the existing stub. It continues with this until no tasks or
methods arrive which could be refined further. This stage subsumes updating
non-local viewpoints and handling simple redundancy from GPGP.

3. Scheduling: The resulting partial global plan is passed to the scheduling part of
the planning, scheduling, and execution monitoring component. If the
scheduling request message contains scheduling criteria, the DTC scheduler is
configured with them. Since so far only the problem structure has been
determined, it is now time to fetch proposals for concrete TÆMS method
execution. Here we use the FIPA Query Interaction Protocol. Subsequently, the
scheduler schedules this TÆMS structure and provides a set of possible
schedules which is passed on to the next phase. This stage subsumes handling
hard and soft coordination relationships from GPGP.

4. Schedule selection: The schedule selection phase is realised with the FIPA
Request Interaction Protocol. If all commitment providers confirm their
commitment proposal at the start and finish times selected by the DTC
scheduler, a feasible schedule has been found. This stage subsumes
communicating results from GPGP.

5. Execution monitoring: During this phase the planning, scheduling and
execution monitoring agents waits for success and actual method execution
qualities messages. If all methods being part of the selected schedule are
executed at the right time, the planning, scheduling and execution monitoring
informs the requester agent about the successful schedule execution. If an
action execution fails some re-planning and re-scheduling have to be started.
Such recovery strategies should be subject to further investigations.

Merging partial TÆMS structures is a precarious task. At the moment, we take a very
optimistic approach, expecting sub-task decomposition of equally named tasks from
different agents to be non-conflicting even if the task sub-nodes differ. Another maybe
better approach would be to group these two partial TÆMS structures under a virtual
task node. Figure 4 illustrates our current merging approach.

This scheduling protocol could be regarded as a three-layered hierarchical architecture,
with the scheduled execution requesting layer on top; the planning, scheduling, and
execution monitoring layer in the middle; and the method execution layer at the bottom.
Successful protocol flow across these layers is well defined via FIPA interaction
protocols. It must also be possible to propagate failures through these layers. Errors in
the top-down direction are propagated via the FIPA Cancel Meta-Protocol. If an error in
the bottom-up direction has to be reported, the message type of standard protocol flow is
changed from INFORM to FAILURE.

Failures at the method execution level occur when the executing agent is not able to
meet the requested execution requirements. Such an error could be recovered by the
planning, scheduling, and execution monitoring layer. For example, it could switch to
another schedule or use slack times. If the error is not recoverable, a FAILURE message
has to be sent to the scheduled execution requesting layer.

Cancellations may occur in scheduled execution requesting layer if the requester agent
does not need the action to be performed any more, or at planning, scheduling, and
execution monitoring level. There, CANCEL messages are used to dissolve
commitments. Cancellations can be common during schedule selection, if an agent
refuses to confirm its earlier commitment, and also during execution monitoring, if an
agent fails to execute its TÆMS method (either altogether, or within expected
performance bounds).

5 Evaluation and Future Perspectives

In software development terms, our current JADE reference implementation would still
be classified as pre-alpha. Nonetheless, [He07] contains a medical care toy example
demonstrating its out-of-the-box functionality, with some interesting user interface

Figure 4: Merging partial TÆMS structures

functionalities. It should be regarded as a first proof-of-concept step towards really
usable criteria-driven scheduling in a FIPA compliant multi-agent infrastructure.

GPGP provides an elaborate framework, which inspired the integration of criteria-driven
scheduling in FIPA compliant multi-agent infrastructures. JADE is a well-known FIPA-
compliant multi-agent development framework. The whole integration process is driven
by the idea to use FIPA defined platform features where possible and to reduce TÆMS’
function to problem structure definition. This leads to the definition of scheduled action
execution as a pre-determined sequence of ACL-messages based on FIPA standardised
interaction protocols. TÆMS knowledge is published at the Directory Facilitator.
Ontologies for TÆMS and DTC scheduling are developed to provide the vocabulary
necessary for ACL message exchange.

The largest differences to scheduling approaches such as the Distributed Sliding Window
Scheduler [Lo03] or the Parma Development Environment PARADE [BP01] are the
explicit representation of qualitative (coordination dependencies) and quantitative
(probability distributions) aspects of coordination, as well as — and this is maybe the
most important one — criteria-driven schedule selection. The scheduler is able to make
trade-offs between quality, cost, and duration of schedule execution according to user
preferences.

One big disadvantage of our integration approach at conceptual level is the embedding
of TÆMS structures in ACL-messages as non-accessible blocks for standard FIPA
content language manipulation mechanisms. Consequently, a next required step would
be to define an ontology which allows the definition of TÆMS structures using standard
content language mechanisms. Generally speaking, it would be desirable to better exploit
the semantics of FIPA SL.

At the time of writing, our approach does not deal with sophisticated recovery strategies
for broken schedules. Once a schedule has failed, the planning, scheduling, and
execution monitoring agents informs the requester about the failure. Instead, it should try
to find another schedule. Not breaking start and end time constraints of schedule
execution is of capital importance. Re-using successfully finished action execution
would be advantageous. Given the case that the planning, scheduling, and execution
monitoring agent cannot find a valid schedule inside the timing bounds. it should have
the ability to negotiate another schedule proposal with the requester agent.

References

[Au62] Austin, J. L.: How to Do Things with Words. Oxford University Press, Oxford, 1962
[Be01] Bellifemine, F.; Poggi, A.; Rimassa, G.: JADE: A FIPA2000 Compliant Agent

Development Environment. In Müller, J.; Andé, E.; Sen, S.; Frasson C, (eds): AGENTS
’01: Proceedings of the fifth international conference on Autonomous agents, pp. 216–
217. ACM Press, New York NY USA, 2001

[BR01] Bellifemine, F.; Rimassa, G.: Developing Multi-Agent Systems with a FIPA-Compliant
Agent Framework. Softw. Pract. Exper., 31(2):103–128, 2001

[BP01] Bergenti, F; Poggi, A.: A Development Toolkit to Realize Autonomous and Inter-
operable Agents. In AGENTS ’01: Proceedings of the fifth international conference on
Autonomous agents, pages 632–639. ACM Press, New York NY USA, 2001

[CP99] Cranefield, S.; Purvis, M.: UML as an Ontology Modelling Language. In Fensel, D. et
al. (eds.), Proceedings of the IJCAI-99 Workshop on Intelligent Information Integration,
CEUR (Sun SITE Central Europe) Publications, Stockholm el51Sweden, 1999

[DL91] Durfee, E. H.; Lesser, V. R.: Partial Global Planning: A Coordination Framework for
Distributed Hypothesis Formation. IEEE Transactions on Systems, Man, and
Cybernetics, 21(5):1167-1183, 1991

[DL92] Decker, K.; Lesser, V. R.: Generalizing the Partial Global Planning Algorithm.
International Journal on Intelligent Cooperative Information Systems, 1(2):319-346,
1992

[DL95] Decker, K,; Lesser, V. R.: Designing a Family of Coordination Algorithms. Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), AAAI Press,
pp. 73-80, January 1995

[Fo04] Foundation for Intelligent Physical Agents: FIPA Agent Management Specification.
IPA Agent Management SC00023K, 2004.
http://www.fipa.org/specs/fipa00023/SC00023K.pdf (2007-10-10)

[He07] Hermann, C. D.: Criteria-Driven Scheduling in an IEEE-FIPA Compliant Multi-Agent
Infrastructure. Master's thesis, Vienna University of Technology, 2003

[Ho98] Horling, B.: A Reusable Component Architecture for Agent Construction. Computer
Science Technical Report 1998-49, University of Massachusetts. October 1998.

[Ho99] Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.; Zhang, S.; Decker, K.;
Garvey, A..: The TAEMS White Paper, Multi-Agent Systems Lab Technical Report 182.
Department of Computer Science, University of Massachusetts at Amherst, Amherst MI
USA, 1999

[Ju03] Jung, B.: VIE-CDS: A Modular Architecture for Criteria-Driven Scheduling. Master's
thesis, Vienna University of Technology, 2003

[Le98] Lesser, V.: Reflections on the Nature of Multi-Agent Coordination and Its Implications
for an Agent Architecture. Autonomous Agents and Multi-Agent Systems, 1(1):89–111,
1998

[Le04] Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Garvey, A.; Horling, B.; Neiman, D.;
Podorozhny, R.; Prasad, M.; Raja, A.; Vincent, R.; Xuan, P.; Zhang, X.: Evolution of the
GPGP Domain-Independent Coordination Framework. Autonomous Agents and Multi-
Agent Systems, 9(1-2):87–143, 2004

[Lo03] Logie, S.; Sabaz, D.; Gruver, W. A.: Combinatorial Sliding Window Scheduling for
Distributed Systems. In Proc. of the 2003 IEEE International conference on Systems,
Man and Cybernetics, October 5-8, 2003, volume 1, pp 630–635. IEEE Press,
Washington, DC USA.

[Se70] Searle, J. R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, 1970

[Sy03] Sycara, K.; Paolucci, M.; Van Velsen, M.; Giampapa, J.A.: The RETSINA MAS
Infrastructure. Autonomous Agents and Multi-Agent Systems, 7(1/2):29–48, 2003

[VO06] Viroli, M.; Omicini, A.: Coordination as a service. Fundamenta Informaticae, 73(4):
507-534, 2006

[Wa97] Wagner T.; Garvey A.; Lesser V.: Design-to-Criteria Scheduling: Managing Complexity
through Goal-Directed Satisficing. Zilberstein S. and Hoebel L. (eds): Building
Resource-Bounded Reasoning Systems. Papers from the AAAI Workshop (AAAI-97).
Technical Report WS-97-06. AAAI Press/MIT Press, Cambridge/Menlo Park, 1997, pp.
80-85, 1997

[ZR96] Zlotkin, G.; Rosenschein, J.: Mechanisms for Automated Negotiation in State Oriented
Domains. Journal of Artificial Intelligence Research, 5:163–238, 1996

http://www.fipa.org/specs/fipa00023/SC00023K.pdf

