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Abstract

We report a study on two-person game playing involving simulta-
neous EEG recording from both subjects. Independent Component
Analysis is used for identifying activities of individual cortical EEG
sources. Activity of a midline fronto-central component is identified
in four of five subjects. This component accounts for the P300 wave-
form whose amplitude varies depending on the success in the gaming
situation.

1 Introduction

This report is about first results in a neuroscientific study of two-person
game playing. A number of recent studies on game playing monkeys using
implanted electrodes have produced new insights into the function of the
brain. These types of studies have successfully linked single cell firing rates to
mathematical behavioural models, thereby producing a new field of research
sometimes termed neuroeconomics (see [Glimcher 2003] for a comprehensive
introduction). Our experiment seeks to clarify whether a similar study can
find evaluative signals in scalp EEG signals recorded non-invasively from
humans.

In our EEG experiment two subjects are tested at once, competing against
one another in a simple ”Same/Different” game formally akin to the classical
game of “Matching Pennies” (see e.g. [Camerer 2004]). We use Independent
Component Analysis (ICA) (see [Comon 1994], [Bell & Sejnowski 1995] and
[Makeig et al. 1996]) to decompose EEG recorded during the game into non-
brain artifacts and spontaneous EEG activity. During the games, the largest
non-artifact component in all but one subject had a midline fronto-central lo-
calisation and gave rise to a late positive component after auditory feedback.
This component accounts for a portion of the well known P300 waveform
[Sutton et al. 1965]. We show that the amplitude of this EEG component is
larger for losses than for wins in the game.
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2 Methods

2.1 Game

The recording of the human electro encephalogram (EEG) is a non-invasive
method of recording electric brain potentials from the human scalp via a
set of electrodes. In our EEG experiment two subjects were tested at once,
competing against one another in a simple ”Same/Different” game. During
these experiments, each subject wore 128 EEG electrodes positioned evenly
across the head, plus four sub-ocular electrodes recording their eye move-
ments (EOG). Simultaneous recording of their EEG and EOG was acquired
using a custom two-subject Biosemi EEG system. We recorded data from
three pairs of subjects (male, right handed, age = 29.6 ± 9.29 sd) who did
not know each other prior to the experiment. Data were recorded with a
sampling rate of 256 Hz, FIR-filtered with a bandpass from 1 to 50Hz and
then down-sampled to 128Hz.

Both subjects were seated facing one another in the experiment room.
Subjects were asked to avoid communicating to each other during the ex-
perimental session, including during breaks. Between the subjects, two LCD
screens, placed below face level, were used to deliver visual feedback. Each
subject held a response button in their dominant hand. The two LCD screens
shielded each participant’s view of the other participant’s hand and but-
ton, without blocking the view of the other subject’s face. Subjects were
instructed to look at their competitor’s face when actually playing. Each
subject wore ear insert headphones that delivered individual performance
feedback during the game.

Participants competed against one another in a simple ”Same/Different”
game formally akin to the classical game of “Matching Pennies”. Matching
Pennies is a zero-sum game with two players (see e.g. [Camerer 2004]). In
each play, each player shows one side of a coin, either heads or tails, to the
other. If both players’ coins show heads or both tails, then player One wins,
otherwise player Two wins. Matching Pennies is one in a family of games in
which one person benefits from a “match” whereas the other benefits from
a “mismatch”. Rational human beings, when confronted with this strate-
gic conflict reach a behavioural equilibrium at which the average subjective
desirability of the two actions comes to equivalence (see e.g. [Nash 1950]).

Participants were first taught the game including a short practice period.
They were told whether they had been assigned to play the “Same” or the
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“Different”strategy. During the game, the “Same” player was rewarded with
points and positive auditory feedback for having the response button in the
same position as that of their competitor (up = up or down = down). The
“Different” player was rewarded for having it in the different position from
that of their competitor (up 6= down or down 6= up). At the end of the game
playing session a bonus of $25 was divided between both players according
to the ratio of points earned during the game. If one of the players ended
the game with zero points or a negative score, the other one received the
whole bonus. Any bonus was in addition to the standard hourly rate. The
pseudo-code like representation in Tab. 1, plus the next paragraphs more
formally describe the game.

The game session consisted of four BLOCKs of ten BOUTs. Each BOUT con-
sisted of twenty PLAYs. Each BOUT started with the instruction “READY”
displayed on both LCD screens for two seconds (display(READY,2sec)).
This was followed automatically by the display of the instruction “PLAY”
(display(PLAY,until BOUT end)) which stayed on the screens for the rest
of the BOUT.

Players then covertly pressed and released their response button at self-
chosen intervals to maximise the chance of holding it either in the same or
different position than the other player. At irregular, 1-5 sec intervals chosen
at random by the computer running the game (wait(1-5sec)), the computer
tallied the relative position of the two participants’ buttons, computed points
won or lost by each subject, and rewarded one participant with positive
auditory feedback (“beep”1) and the other with concurrent negative feedback
(“buzz”2) (evaluate-and-feedback).

To minimize rapid button pressing by either subject, points awarded for
each winning PLAY, and lost for each losing PLAY, were proportional to the
length of time the subject had held the button in the same position (to a
maximum of 5 sec). To minimize the chance of any participant ending the
session with a negative point total, points lost in a PLAY increased with hold
time at a slower rate than points won. Larger point gains are indicated
to subjects with higher-pitched (“beep”) feedback; larger point losses were
indicated by lower-pitched (“buzz”) feedback3.

After twenty PLAYs, the BOUT was completed. The two LCD screens

1Sinus wave, .2 sec duration, 1300 Hz frequency, 10% on- and off-ramp.
2Sawtooth wave, .2 sec duration, 500 Hz frequency, 10% on- and off-ramp.
3Adding or subtracting 50 or 100 Hz to the basic “beep” or “buzz” sounds.
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indicated the total number of points won/lost during the last BOUT

(display(RESULT-BOUT,until button presses)), and then the scoring in
the session so far (display(RESULT-TOTAL,until button presses)). The
last display also showed each of the players the share of the bonus (in US
dollars) they would earn if the game ended right then. The next BOUT began
after both players pressed their response button at least once.

After twenty BOUT periods a game BLOCK was completed. Between BLOCKs,
subjects were allowed to relax (if not (BLOCK == 4)) by stretching, clos-
ing their eyes, etc. Players were allowed to talk to the instructor but not
to each other. This was indicated by displaying the instruction “RELAX”
on the LCD screens (display(RELAX,until instructor restart)). The
game resumed after both players told the instructor they were ready to begin
again. After four game BLOCKs, the LCD screen displayed final scores and
shares of the bonus to both players (display(RESULT-FINAL)).

One complete “Same/Different” session required about 4×10×20 PLAYs
×3sec = 40min not including break times between blocks and bouts. There-
fore the game session lasted less than an hour.

2.2 Preprocessing

Before any further processing of the data, channels which were noisy for the
majority of the recording period (e.g. due to drift or bad contact) and seg-
ments containing severe artifacts (disturbances across many channels) were
deleted. One subject had to be excluded from further analysis because of
problems with the ear insert headphones during the game. This left five
subjects for the analysis.

2.3 Analysis

Rather then analysing the raw EEG we used Independent Component Analy-
sis (ICA) to decompose the EEG recorded during the game into artifacts and
spontaneous EEG activity. This allows us to get a clearer and more artifact-
free picture of the activities of individual cortical sources [Makeig et al. 2004].

Independent Component Analysis (ICA) [Comon 1994] is one of a
group of algorithms that attempt to achieve blind separation of sources
[Jutten & Herault 1991]. To estimate the original sources from an observed
mixture, while knowing little about the mixing process and making only
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few assumptions about it and about the sources, is called blind separa-
tion of sources. ICA allows recovery of N independent source signals s =
{s1(t), s2(t), . . . , sN(t)} from N linear mixtures, x = {x1(t), x2(t), . . . , xN (t)},
modelled as the result of multiplying the matrix of source activity waveforms,
s, by an unknown square matrix A (i.e. x = As). The task is to recover a
version, u, of the original sources s, save for scaling and ordering. To this
purpose, it is necessary to find a square matrix W specifying filters that
linearly invert the mixing process (i.e. u = Wx).

By the central limit theorem a linear mixture of independent random
variables is necessarily more Gaussian than the original variables. There-
fore maximizing the nongaussianity achieves the unmixing of the recorded
signals x. This implies (i) that it is sufficient to assume that the source
signals s(t) are statistically independent at each time step t, though their
mixtures x(t) are not; (ii) that in ICA we must restrict ourselves to at most
one Gaussian source signal. Since there exist numerous ways to measure non-
gaussianity (e.g. kurtosis, negentropy, etc.) and different approaches towards
information maximization, ICA researchers have developed a family of algo-
rithms for solving the blind source separation problem (see e.g. [Lee 1998],
[Hyvaerinen 1999b] and [Roberts & Everson 2001] for an introduction and
overview).

Applied to simulated data sets for which the ICA assump-
tions are fulfilled, leading ICA algorithms (including “infomax”
[Bell & Sejnowski 1995], “JADE” [Cardoso & Souloumiac 1993] and “Fas-
tICA” [Hyvaerinen 1999a]) return near equivalent independent components
(see [Delorme & Makeig 2004] for a discussion of differences between ICA
algorithms). However, the physiological significance of any differences in the
results of the same or different algorithms has not yet been systematically
tested. Differences in ICA decompositions have been reported for neural
ensemble data [Laubach et al. 1999] and fMRI data (see [Duann et al. 2001]
and [Esposito et al. 2002]). To confront these difficulties we adopt the
following approach: (i) use an ICA algorithm which has been shown to be
well suited for decomposition of EEG data (“infomax”), (ii) analyze only
dominant independent components which account for a large portion of the
variance in the data and which are therefore known to be more stable than
smaller ones.

We used the ”infomax” neural network algorithm [Bell & Sejnowski 1995]
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for ICA as implemented by [Makeig et al. 1997]4. This approach uses the fact
that maximising the joint entropy, H(y), of the output of a neural processor
minimises the mutual information among the output components, yI = g(ui),
where g(ui) is an inverted bounded nonlinearity and u = Wx.

The “infomax” algorithm has repeatedly been shown to reliably find inde-
pendent components that are physiologically plausible, functionally distinct,
and often have spatial and functional similarities across data sets, sessions
and subjects (see e.g. [Delorme et al. 2002] and [Makeig et al. 2002]). Many
of the biologically plausible sources “infomax” identifies in EEG have scalp
maps closely fitting the projection of a single equivalent current dipole (see
again [Makeig et al. 2002] and [Jung et al. 2001]).

When using ICA for EEG analysis (see e.g. [Vigario 1997],
[Jung et al. 2001] and [Makeig et al. 2002]), the rows of the input ma-
trix x are EEG signals (and possibly EOG or other signals relevant for
the experiment) recorded at different electrodes and the columns are
measurements at different time points. ICA finds an unmixing matrix W

which linearly decomposes the multichannel data into a sum of maximally
temporally independent and spatially fixed components u = Wx. The
rows of the output matrix u are courses of activation of the independent
components (ICs). These components account for artifacts, stimulus and
response locked events and spontaneous EEG activity. The columns of the
inverse matrix W−1 give the relative projection strengths of the respective
ICs at each of the scalp sensors. These scalp maps of projection strengths
provide evidence for the components’ physiological origin (e.g. ocular activity
projects mainly to frontal sites). Selected components can be projected
back onto the scalp using the relation x0 = W−1u0, where u0 is the matrix
u with irrelevant components set to zero. Thereby brain signals accounted
for by the selected components can be obtained in their true polarity and
amplitudes.

3 Results

We computed infomax ICA for each of the five subjects separately. The
respective input matrices x consisted of all EEG and EOG channels from one
subject remaining after manual artifact inspection (see end of Sec. 2.1). We

4All ICA related computations were done with the MATLAB toolbox EEGLAB
[Delorme & Makeig 2004].
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used principal component analysis to reduce the dimensionality of the input
channels to 90. We found this to be advantageous for numerical reasons. ICA
outputs the IC activations u and the square matrix W specifying the filters
that invert the mixing process (u = Wx). We inspected topographical plots
of all IC scalp maps (the columns of the inverse matrix W−1) for all subjects
after sorting the components in descending order of their mean projected
variance (using x0 = W−1u0). We chose independent components for further
analysis based on the following considerations:

• take only components which account for a large portion of the variance
to guarantee reproducibility of results

• take only components which are stable across subjects, i.e. which show
similar characteristics (comparable IC scalp maps and power spectra
of IC activations) in all or most subjects

From this it should be evident that we tried to be quite conservative in
choosing independent components. This is especially important given the
rather small number of subjects in our study.

For four of the five subjects, we found a component with midline fronto-
central localisation to be a principal non-artifact component (artifact com-
ponents account for eye movements, muscle noise etc.). For three subjects
this component was the largest non-artifact component, for one the sec-
ond largest. Topographical plots of these four components are depicted in
Fig. 1. Since ICA estimates u and W only up to an arbitrary scaling factor,
topographical plots are made after transformation to z-scores to allow for
comparability across subjects.

In a next step we epoched the IC activations u of each of the four sub-
jects around the auditory feedback events. At the end of each PLAY there
was an evaluate-and-feedback-event consisting of an auditory feedback in
the form of a “beep” (positive for a win) or a “buzz” (negative for a loss).
Within each experiment there were 800 such stimuli, the number being de-
creased by artifact rejection later on. A “feedback-locked epoch” consisted
of the activation of an IC one second prior to two seconds after the feedback
stimuli. Average activations for the four ICs shown in Fig. 1 time-locked
to the feedback event are given in Fig. 2. Since ICA estimates the IC acti-
vations u only up to an arbitrary scaling factor, we normalised the average
activations to allow for comparison across subjects (z-score transformation
to zero mean and unit standard deviation).
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The most prominent feature of all four averages seems to be a positive
going waveform starting about 300 ms after stimulus onset. We estimated
the peak of this activity by finding the maximum of each average between
300 and 400 ms after stimulus onset. The second vertical line in each plot
indicates this maximum. The average latency of these peaks is 339.8 ms±37.5
sd after stimulus onset. This positive going waveform accounted for a portion
of the well known P300 waveform (see e.g. [Sutton et al. 1965]).

Each of the feedback events is equivalent to a win or a loss for the sub-
jects. Our goal was to find a relation between the context of wins and losses
and the IC activations. For each of the four subjects we computed aver-
ages across the activations in single trials of their respective fronto-central
components separately for wins and losses (W and L). For each of the av-
erages we computed an estimate of P300 amplitude, P300amp, by taking
the mean of the average IC activation from 50 ms before to 50 ms after its
peak (see above for how the peak was found). We subtracted the mean of
a one second pre-stimulus baseline from this P300 amplitude estimate. We
expressed the differences of the W and L averages as percentages by comput-
ing a P300amp estimate from the average across all feedback epochs from a
subject (no matter whether it was win or loss, see Fig. 2), setting this to be
100% and expressing all other P300amp as percentages relative to this over-
all estimate. These P300amp estimates expressed in percentages are given
in Tab. 2 separately for wins and losses for all four subjects. The P300amp

for losses is bigger than the one for wins for all four subjects.
The average P300amp estimate across subjects for wins is 88.82 ± 7.17

versus 111.78 ± 8.12 for losses. The corresponding t-value (paired t-test)
is |t| = | − 3.0047| which gives a probability of p = .057 under the null
hypothesis of no differences between wins and losses. Using a conventional
error level of α = .05 the difference between the P300amp estimate for wins
and losses is just not significant. The main reason for this seems to be the
very small number of only four subjects. With just one more subject and
hence one more degree of freedom for the t-test the above result would indeed
have turned out significant.

4 Discussion

The P300 waveform is one of the most widely studied endogenous evoked
potentials (see e.g. [Sutton et al. 1965], [Altenmueller & Gerloff 1999] for a
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standard text book treatment, [Soltani & Knight 2001] for a recent review).
As an endogenous evoked potential, it should be relatively immune to the
influence of stimulus parameters. There is some evidence that auditory stim-
ulus intensity increases P300 amplitude and that lower frequency marginally
affect stimulus latency [Sugg & Polich 1995]. The auditory feedback in our
experiment (“beep” and “buzz”) was presented with matching intensity and
we did not analyse latency of P300 components anyway. Therefore, differ-
ences between “win” and “loss” situations found in the EEG can be at-
tributed to higher cognitive functions.

The most common paradigm for eliciting a P300 is to randomly inter-
sperse infrequent and therefore unexpected stimuli among frequent stimuli
presented to an attentive subject. This is known as the “oddball paradigm”.
The amplitude of the P300 is inversely related to the stimulus probability.
P300 amplitude is also modulated by subjective outcome probability in an
inverse relationship. The latency of the P300 seems to be related to task
difficulty [Polich 1992]. The “oddball paradigm” has been used to study a
wide variety of information processing issues (see [Polich & Kok 1995] for an
integrative review of cognitive and biological determinants of P300). For our
experiment, on average, subjects win and lose equally often during a full game
session as expected from game theory. This is called Nash-equilibrium where
a behavioural equilibrium is reached at which the average subjective desirabil-
ity of the two actions in the game comes to equivalence (see e.g. [Nash 1950]).
Therefore the auditory feedbacks in our experiment are equally probable on
average and cannot be analysed in an “oddball paradigm” framework.

Although the theoretical meaning of the P300 is not yet completely clear,
the majority of data are consistent with some form of context updating and
information processing. Our work is not intended to add to the ongoing dis-
cussions on the meaning of P300 but rather to present proof that it is possible
in principal to link parameters derived from average evoked potentials to the
context of the gaming situation in our experiment. It seems to be the case
that the negative feedback following a loss acts as an averse stimuli giving
rise to a larger P300 amplitude similar to the averse nature of an unexpected
stimuli in the conventional “oddball paradigm”.

There are only few neuroscientific studies of social interaction engaging
human subjects in game playing. Most closely related to our approach is
probably an fMRI study using the children’s game “Paper/Rock/Scissors”
[Paulus et al. 2004] which is formally akin to a game of matching pennies
with three sided coins. The authors use a temporal difference model to ex-
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plain their subjects’ behavior when playing against a computer. Over the
course of the experiment they changed the prior probabilities of the com-
puter playing “Rock”, “Paper” or “Scissors”. The main result was that a
trend process derived from the temporal difference model accurately tracked
these changes in prior probabilities and was time-locked to the hemody-
namic changes in the inferior frontal gyrus. Contrary to this study, the
prior probabilities for our “Same/Different” game were not systematically
changed. They rather evolved around the theoretical equilibria due to the
subjects’ behavior. [McCabe et al. 2001] had their subjects play a “Trust”-
game while recording their fMRI. Their study focused on differences between
trials in which subjects played against humans versus trials in which they
played against a computer. [Rilling et al. 2002] report differences between
cooperative and non-cooperative phases during games of the so-called “Pris-
oner’s Dilemma”, monitored using fMRI with only one player being scanned.
[Fukui et al. 2005] present a study on decision making under uncertainty us-
ing fMRI to observe subjects during a card game against a computer. Ac-
tivity of the medial prefrontal cortex is found to best differentiate between
risky and safe conditions.

There are even fewer studies that try to simultaneously monitor
brain function of two subjects engaged in any form of social interaction.
[Montague et al. 2002] performed simultaneous fMRI in different scanners
with pairs of individuals competing against each other in a simple game.
The usage of different scanners in different locations has been termed “hy-
perscanning”. The game was designed to measure the effect of deception
in a competitive context. Their study is rather a proof of principle exper-
iment than a thorough, neuroscientific study of game playing in humans.
[King-Casas et al. 2005] use the same hyperscanning approach for studying
neural correlates of the expression and repayment of trust between interact-
ing anonymous human subjects.

To our knowledge, no one has yet looked into human game playing using
simultaneous EEG measurements. In our study of two-person game playing,
we have successfully linked the context of the gaming situation to param-
eters derived from average evoked potentials. This can be seen as a first
step toward extending results obtained for single cell firing rates of primates
and fMRI measurements of humans to EEG in humans. Average evoked
potentials in different game contexts account only for a small part of the
event-related brain dynamics one could study. [Makeig et al. 2004] give a
systematic view of how to use ICA to go beyond simple response averaging.
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Given that the midline fronto-central independent components we described
are the largest non-artifact components, they nevertheless seemed to be an
important part of the overall story.

5 Conclusion

We presented a first pilot study on human game playing using simultane-
ous EEG measurements. We were able to successfully link the context of
the gaming situation (wins and losses) to parameters derived from average
evoked potentials (P300 amplitude). Given the small number of subjects
in our study as well as the fact that we only started to account for the
full dynamics of event-related brain dynamics, this should be seen only as a
small first step towards the applicability of EEG measurements in the field
of neuroeconomics.

12



Acknowledgements: Arthur Flexer was supported by an Erwin Schrödinger
Fellowship provided by the Austrian Science Fund (FWF), project J2221-N04.
The Swartz Center receives support from the Swartz Foundation, East Setauket
NY, USA.

References

[Altenmueller & Gerloff 1999] Altenmueller E.O., Gerloff C.: Psychophysiology
and the EEG, in: Niedermayer E., Lopes da Silva, F. (eds.): Electroencephalog-
raphy: Basic Principles, Clinical Applications, and Related Fields, Williams &
Wilkins, 4th edition, pp. 635-655, 1999.

[Bell & Sejnowski 1995] Bell A.J., Sejnowski T.J.: An information maximisation
approach to blind separation and blind deconvolution, Neural Computation,
7(6), pp.1129-1159, 1995.

[Camerer 2004] Camerer C.F.: Behavioral Game Theory, Princeton University
Press, Princeton, New Jersey, 2003.

[Cardoso & Souloumiac 1993] Cardoso J.-F., Souloumiac A.: Blind beamforming
for non gaussian signals, IEE Proceedings F, 140:362-70, 1993.

[Comon 1994] Comon P.: Independent Component Analysis - a new concept?,
Signal Processing, 36:287-314, 1994.

[Delorme et al. 2002] Delorme A., Fabre-Thorpe M., Sejnowski T.J.: From Single-
trials EEG to Brain Area Dynamics, Neurocomputing, 44-46:1057-64, 2002.

[Delorme & Makeig 2004] Delorme A., Makeig S.: EEGLAB: an open source tool-
box for analysis of single-trial EEG dynamics, J Neurosci Methods, 134:9-21,
2004.

[Duann et al. 2001] Duann J.-R., Jung T.-P., Kuo W.-J., Yeh T.-C., Makeig S.,
Hsieh J.-C., Sejnowski T.J.: Single-Trial Variability in Event-Related BOLD
Signals, Neuroimage, 15, 823-835, 2001.

[Esposito et al. 2002] Esposito F., Formisano E., Seifritz E., Goebel R., Morrone
R., Tedeschi G., DiSalle F.: Spatial independent component analysis of func-
tional MRI time-series: to what extent do results depend on the algorithm
used?, Human Brain Mapping, 16:146-57, 2002.

[Fukui et al. 2005] Fukui H., Murai T., Fukuyama H., Hayashi T., Hanakawa T.:
Functional activity related to risk anticipation during performance of the Iowa
gambling task, NeuroImage, 24, 253-259, 2005.

13



[Glimcher 2003] Glimcher P.: Decisions, Uncertainty and the Brain, MIT Press,
Cambridge, Massachusetts, London, England, 2003.

[Hyvaerinen 1999a] Hyvaerinen A.: Fast and Robust Fixed-Point Algorithms for
Independent Component Analysis, IEEE Transactions on Neural Networks,
10(3):626-634, 1999.

[Hyvaerinen 1999b] Hyvaerinen A.: Survey on Independent Component Analysis,
Neural Computing Surveys, Vol. 2, 94-128, 1999.

[Jung et al. 2001] Jung T.-P., Makeig S., Westerfield M., Townsend J., Courchesne
E., Sejnowski T.J.: Analysis and Visualization of Single-Trial Event-Related
Potentials, Human Brain Mapping, 14:166-185, 2001.

[Jutten & Herault 1991] Jutten C., Herault J.: Blind separation of sources I. An
adaptive algorithm based on neuromimetic architecture, Signal Processing,
24:1-10, 1991.

[King-Casas et al. 2005] King-Casas B., Tomlin D., Anen C., Camerer C.F.,
Quartz S.R., Montague P.R.: Getting to Know You: Reputation and Trust
in a Two-Person Economic Exchange, Science, Vol. 308, 78-83, 2005.

[Laubach et al. 1999] Laubach M., Shuler M., Nicolelis M.A.: Indendent compo-
nent analyses for quantifying neural ensemble interactions, Journal of Neuro-
science Methods, 94: 141-54, 1999.

[Lee 1998] Lee T.-W.: Independent Component Analysis: Theory and Applica-
tions, Kluwer Academic Publishers, 1998.

[Makeig et al. 1996] Makeig S., Bell A.J., Jung T-P., Sejnowsky T.J.: Independent
Component Analysis of Electroencephalographic Data, in Touretzky D.S. et al.
(eds.), Advances in Neural Information Processing Systems 8 (NIPS’96), MIT
Press, Cambridge/Boston/London, 145-151, 1996.

[Makeig et al. 1997] Makeig S., Jung T-P., Bell A.J., Ghahremani D., Sejnowski
T.J.: Blind Separation of Auditory Event-related Brain Responses into Inde-
pendent Components, Proc. of National Academy of Science USA, 94:10979-
10984, 1997.

[Makeig et al. 2002] Makeig S., Westerfield M., Jung T-P., Enghoff S., Townsend
J., Courchesne E., Sejnowski T.J.: Dynamic brain sources of visual evoked
responses, Science, 295:690-694, 2002.

14



[Makeig et al. 2004] Makeig S., Debener S., Onton J., Delorme A.: Mining event-
related brain dynamics, Trends in Cognitive Sciences, Volume 8, Issue 5, pp.
204-210, 2004.

[McCabe et al. 2001] McCabe K., Houser D., Ryan L., Smith V., Trouard T.: A
functional imaging study of cooperation in two-person reciprocal exchange,
PNAS, Vol.98, No.20, pp.11832-11835, 2001.

[Montague et al. 2002] Montague, P.R., Berns, G.S., Cohen, J.D., et al.: Hyper-
scanning: simultaneous fMRI during linked social interactions, NeuroImage,
16(4): 1159-1164, 2002.

[Nash 1950] Nash J.F.: Equilibrium points in n-person games, Proc. Nat. Acad.
Sciences, 36, 48-49.

[Paulus et al. 2004] Paulus M.P., Feinstein J.S., Tapert F.S., Liu T.T.: Trend de-
tection via temporal difference model predicts inferior prefrontal cortex activa-
tion during acquisition of advantageous action selection, NeuroImage Volume
21, Issue 2 , pp. 733-743, 2004.

[Polich 1992] Polich J.: On the correlation between P300 amplitude and latency,
Bulletin of the Psychonomic Society, 30, 5-8, 1992.

[Polich & Kok 1995] Polich J., Kok A.: Cognitive and biological determinants of
P300: an integrative review, Biological Psychology, Vol. 41, Issue 2, 103-146,
1995.

[Rilling et al. 2002] Rilling J., Gutman D., Zeh T., Pagnoni G., Berns G., Kilts
C.: A neural basis for social cooperation, Neuron, 35(2):395-405, 2002.

[Roberts & Everson 2001] Roberts S., Everson R.: Independent Component Anal-
ysis: principles and practice, Cambridge University Press, Cambridge, UK,
2001.

[Soltani & Knight 2001] Soltani M., Knight R.: Neural Origins of the P300, Crit-
ical Reviews in Neurobiology, 14: 199-224, 2001.

[Sugg & Polich 1995] Sugg M.J., Polich J.: P300 from auditory stimuli: intensity
and frequency effects, Biological Psychology, 41, pp. 255-269, 1995.

[Sutton et al. 1965] Sutton S., Braren M., Zubin J., John E.R.: Evoked potentials
correlates of stimulus uncertainty, Science, 150, 1187-1188, 1965.

15



[Vigario 1997] Vigario R.N.: Extraction of ocular artefacts from EEG using inde-
pendent component analysis, Electroencephalography and Clinical Neurophys-
iology, 103, pp.395-404, 1997.

16



Table 1: Outline of “Same/Different” game.

for BLOCK = 1 : 4

for BOUT = 1 : 10

display(READY,2sec)

display(PLAY,until BOUT end)

for PLAY = 1 : 20

wait(1-5sec)

evaluate_and_feedback

end

display(RESULT-BOUT,until button presses)

display(RESULT-TOTAL,until button presses)

end

if not (BLOCK == 4)

display(RELAX,until instructor restart)

end

end

display(RESULT-FINAL)

17



Table 2: P300amp estimates expressed in percentages separately for wins
and losses for all four subjects.

% P300amp subject 1 subject 2 subject 3 subject 4

win 81.76 83.54 94.78 95.21
loss 119.44 118.15 104.68 104.85

18



(a) (b) (c)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d)

Figure 1: Topographical plots of largest non-artifact independent compo-
nents for subject1 (a), subject2 (b), subject3 (c), subject4 (d). Given in
z-scores, white being positive and black negative.
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Figure 2: Average normalized IC activations, x-axis are seconds, y-axis am-
plitude of activations, first vertical line in each plot is stimulus onset, second
is estimated peak of P300 activity.
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