
Combining Bayesian and Rule Score Learning: Automated Tuning for
SpamAssassin

Alexander K. Seewald
Austrian Research Institute for Artificial Intelligence

Freyung 6/6, A-1010 Vienna, Austria
alexsee@oefai.at, alex@seewald.at

Abstract

Spam (Unsolicited Bulk Email), has become a global
problem of high economic impact. In this paper, we discuss
an applied approach to automatically adjust all parameters
of a hybrid spam recognition system, SpamAssassin. We
investigate both learning of rule scores and selective train-
ing of the integrated bayesian spam filter. We report com-
petitive results concerning ham misclassification rate (i.e.
legal mails misclassified as spam) which are comparable
to human accuracy, and are able to significantly improve
the spam misclassification rate (i.e. spam misclassified as
legal mails) by a factor of around twenty versus SA with
default scores. A variant of Total Cost Ratio also shows
the same trend. The results of the training process can be
transformed into a SA preference file. Also, the training
process utilizes mainly non-spam mailboxes which are eas-
ily obtained.

1. Introduction

Unsolicited Bulk Email (Spam) has become a problem
of global impact. For example, according to a study under-
taken for the European Commission, Internet subscribers
worldwide are wasting an estimated 10 billion euro per year
just in connection costs due to Spam [11]. Economic im-
pact is only part of the problem - waste of time, resources
and the gradual erosion of trust in Email communications
should also be considered. Within the scientific community
these effects are felt strongly. For example, at our insti-
tute the proportion of Spam now exceeds 94%. This means
that for every nonspam mail, we receive around 17-25 spam
mails.

Several approaches exist to deal with spam [6]. Filter-
ing approaches based on message features are most widely
used and also the only workable solution at present. In
fact, most email clients already allow their users to man-

ually build email filters. However, the manual approach
is time-consuming and much expertise is needed to cre-
ate useful filters from scratch. Another option for fil-
tering is to collect large samples of spam and nonspam
(=ham) and train a classifier on it. This has been pro-
posed e.g. by [3] and works surprisingly well even
with simple statistical classifiers such as Naive Bayes.
Most state-of-the-art spam filters now include similar
learning systems, e.g. SpamBayes (spambayes.org ),
CRM114 (crm114.sourceforge.net ) and SpamAs-
sassin (www.spamassassin.org ).

SpamAssassin is an open-source hybrid spam mail filter
incorporating a state-of-the-art bayesian learner as well as a
set of 500+ human-created heuristic rules for spam recog-
nition. SpamAssassin thus incorporates background knowl-
edge on spam in the form of heuristic rules as well as a
bayesian classification system. Contrary to a pure bayesian
approach, this makes adapting the system harder – it not
clear when to adapt the scores, train the bayesian filter,
or both – but gives advantages in terms of out-of-the-box
availability, reliability and diversity. It may even be argued
that theses two levels of training correspond to a multi-view
learning system and that its diverse representation makes
the full system more robust. However, the latter investiga-
tion is beyond the scope of this paper.

During the last six months we have successfully adapted
SpamAssassin to the author’s mailbox, reducing the propor-
tion of spam from 94% to 4% with a false positive rate of
<0.2%. The average user is not as lucky, since the default
values of SA do not work as well and delete less than half of
incoming spam (see also Table 2, row SA), which reduces
the proportion of spam from 94% to a mere 89%. Even
training the bayesian filter properly alone is not sufficient
to reach a 1:1 spam/nonspam ratio - it is also necessary to
adjust score weights.

So we have reformulated the problem of adjusting score
weights and bayesian learning for SpamAssassin as a learn-
ing problem. Given that collection and especially verifica-
tion of spam is time-consuming and error-prone (error rates



as high as 0.16% have been reported even under optimal
conditions by [13]), while ham-only collections are easily
obtainable, we have based our training on pure nonspam
(=ham) collections from other users at our institute. Our
approach can either be viewed as an application of machine
learning techniques to the problem of optimal score assign-
ment and bayesian learning within SpamAssassin from a
mainly empirical viewpoint; or as an investigation into ap-
proaches to multi-view learning (one view is the bayesian
learner; another is the score assignment) within SpamAs-
sassin.

2. Evaluation measures

The effectiveness of spam filtering systems is measured
in terms of correct and wrong decisions. For simplicity, we
restrict ourselves to two classes: ham (+ aka nonspam) and
spam (- aka Unsolicited Bulk EMail). For a given number
of documents, the classification of a spam filtering system
can be summarized in a contingency table, see Table 1. The
abbreviations have the following meanings:TruePositives
andTrueNegatives are the ham resp. spam mails which are
correctly predicted by the system.FalsePositives are er-
rors where spam mails have been misclassified as ham, and
FalseNegatives are ham mails which have been misclassi-
fied as spam. Notice that our naming conventions are oppo-
site to those normally used. This is because we defined ham
(+) as positive class since this seemed to make more sense.

Traditional text categorization approaches are usually
evaluated in terms of recall, precision and F-measure, i.e.

r =
tp

tp + fn
, p =

tp

tp + fp
, F =

2rp

r + p

Other works make use of standard machine learning met-
rics, e.g. accuracy and error rate. We mainly report error
rates here because it makes comparison easier: for exam-
ple, the difference between 99.8% and 99.9% accuracy is
actually a reduction of error by factor of two. This is more
easily visible by comparing 0.2% and 0.1%. For ham-only
datasets, the error rate is equivalent to the proportion of ham
that would be misclassified of spam – this should be on the
order of human error (around 0.16%) for the best systems.
For spam-only datasets, this is equivalent to the proportion
of spam which gets through, i.e. which is not recognized
by the system, and should also be quite small (<5%). For
mixed datasets, i.e. those including ham and spam mails,
we use customary symmetric unit error costs to compute
the error rate instead of asymmetric misclassification costs
which would be more appropriate but harder to interpret.
However, the last is only reported for our first exploratory
experiment.

We will introduce two other measures: the ham error
(misclassification) rate and the spam error (misclassifica-

ham (+) spam (-)
ham (+) tp fp
spam (-) fn tn

Table 1. A set of classification decisions for
mails belonging to either ham (+) or spam (-)
category can be succintly represented by a
contingency table. The rows represent the
decision/prediction of the system while the
columns represent the true category.

tion) rate. These are simply the proportion of erroneous
mails in each category; i.e. the estimated probability of a
misclassification from ham to spam (hame) or vice versa
(spame), under the assumption that these are independent.

hame =
fn

fn + tp
, spame =

fp

fp + tn

Since we evaluate these two terms on ham-only and spam-
only datasets, it makes sense to report them as simple error
rates on the appropriate datasets.

It is also desirable to compute a single value for com-
parison between approaches. For this, we chose a variant of
Total Cost Ratio (TCR) with message specific costs inspired
by [7]. They introduced the following message-dependent
costs for misclassifying ham mails as spam, which were
used for training purposes – we will use them only for eval-
uation.

• Sensitive personal messages= 1000
Misclassifying this type of email could be potentially
most harmful, so the highest cost (equivalent to cor-
rectly recognizing 1000 spam mails) is justified.

• Business related messages= 500
The cost of losing business related emails is hard to
establish, especially for a research institute. We have
opted to put all emails here which are related to ad-
ministrative or research projects. If the mail was con-
sidered urgent or sufficiently important, we upgraded
it into the first category.

• e-commerce related messages= 100
These messages include registration, order, shipment
confirmation et al. However, we did not encounter any
of these mails as an error.

• mailing lists / discussion forums= 50
These messages are related to less important mailing
lists and discussion forums, other information sources
etc. We have also chosen to put forwarded stereotyped
funny mails, chain letters, get rich schemes and the like

2



into this category, since they would most probably not
be missed. Funny mails which look sufficiently origi-
nal are placed into thesensitive personal messagescat-
egory to err on the side of caution.

• promotional offers = 25
This category concerns promotional offers, commer-
cial offers, additional unsolicited information from
companies which we are in contact etc. However, we
did not encounter any of these mails as an error.

We have decided manually for each false negative error
in which category it belongs and summed the costs accord-
ingly. The costs for misclassifying a spam mail as ham is
assumed to be 1, as is the cost of removing a spam mail
manually. We will report results in terms of a variant of
Total Cost Ratio for message dependent misclassification
costs, i.e.

TCR =
fp + tn∑

xεfn C(x) + fp

The TCR measures how effective the system performs. We
compare the effort to delete all spam mails manually (fp+tn)
versus deleting just the ones which were misclassified (fp)
plus recovering from the cost of misclassified ham mails
(
∑

xεfn C(x)). The cost of each misclassified ham mail
C(x) is computed according to above categories. Greater
TCR means better performance; a TCR<1 means that the
system performs worse than manual deletion of all offend-
ing mails, under the given assumption on action costs.

Since our set of mailboxes for training consist only of
ham mails, we need an additional way to estimate spam er-
ror rate. We have chosen to estimate spam error rate of these
systems by evaluating them on the spam mails of astest.
This gives a rough estimate on how well spam mails will
be recognized. We scaled the number of true spams to 17
times the number of true hams before computing TCR to
best approximate the real-life situation at our institute.

3. Experimental setup

We first created our own mailbox of 1176 hams and 1611
spam mails from past mails received at our own mail ac-
count. This set is denoted as astrain and was arbitrarily
sampled to a somewhat balanced class distribution. We also
collected 109 hams and 1011 spam mails for evaluation pur-
poses. These are more current and the class distribution is
also more realistic, but the small number of hams makes
them unsuitable for training. We denote this set as astest,
and will use it later to estimate the spam error rate for our
models.

We also collected ham-only datasets from our col-
leagues: 475 (hx), 2163 (ix) and 363 (ux) mails, respec-
tively. These datasets were taken from archived mail files;

as train astest hx ix ux
SA 36.9% 58.5% 0.2% 0.3% 0.8%
SAnb *7.79% *8.6% 0.4% 0.1% 1.4%
Log 0.65% *1.7% 2.7% 1.8% 1.1%
SMO 0.68% *1.2% 2.7% 0.9% 1.1%
MLR *0.65% *1.9% 2.7% 1.3% 1.1%
J48 0.61% *1.6% 2.9% 0.9% 1.1%

Table 2. First experiments: two-fold cv on
as train (except SA and SAnb); test of the
trained model on as test plus hx, ix, ux. All
reported results are ham error rates in per-
cent. A star (*) indicates that no true ham
mails were misclassified (fn=0).

however, during the course of our investigations we found
four spam mails wrongly classified as ham, although they
had been looked through at least once. At this point we
removed all four wrongly classified hams and had to re-
peat all previous experiments. From this involuntary exper-
iment we can roughly infer an empirical error estimate of
0.12±0.11% for overlooking minority mails in a large mail
collection during manual investigation. This agrees reason-
ably well with the human error rate of 0.16% measured in
[13].

We used version 2.63 of SpamAssassin in all our exper-
iments. SA is a hybrid classifier with a set of 500+ heuris-
tic rules, and a bayesian learner. Each heuristic rule has
a weight (score) attached. Rule matching is binary and
based on perl regular expression matching. The sum over
all matching rules is the full score for the mail. A user-
definable threshold is used to determine if a mail is to be
classified as spam or ham. The bayesian learner is inte-
grated into the ruleset as a small set of pseudo-rules (e.g.
BAYES 00 matches when bayes spam probability is be-
tween 0% and 5% etc.), also with an attached user-definable
score. A genetic algorithm has been used to optimize the
scores for all the rules and the bayesian pseudo-rules on a
large corpus of spam and ham mails. These defaults were
used for the SA and SAnb runs. The default threshold of
5.0 was used, and autolearn was switched off for these ex-
periments.

The bayesian learner for SpamAssassin was taken from
a recent model which has been sporadically trained for six
months. It was restored at the beginning of each experimen-
tal run. Bayesian learning was prevented during the experi-
ments, except where required by the experiment.

Our meta-datasets consist of the mail classification
(spam or ham) and the set of SA rules (including bayes
pseudo-rules) which match the corresponding mail. Each
rule is represented by a binary attribute.

3



Four classifiers were chosen for the initial comparison:
MLR (Multi-Response Linear Regression) which learns a
linear regression function to predict class membership; Lo-
gistic regression, a more elaborate approach than MLR [2];
SMO (a support vector machine classifier [8]); and J48 (a
C4.5 decision tree learner clone, [9]). All classifiers were
taken from the WEKA machine learning workbench (www.
cs.waikato.ac.nz/˜ml/weka ). Table 2 shows the
results. We report SA’s performance without (SA) and with
(SAnb) our recent bayesian model and default scores for all
rules. Both of these are intended as baseline comparison.
We also report error rates for astrain as estimated by two-
fold crossvalidation, and the performance of the astrain full
training set model on astest, as well ashx, ix andux. Since
the latter three are ham-only mailboxes, what we report here
is essentially an estimate for the probability of misclassify-
ing a ham-mail as spam – the ham error rate. The number of
ham mails misclassified was usually quite low for astrain
and astest – a star (*) denotes where it was zero.

We chose MLR for further investigation because of these
three reasons: MLR is the only classifier to never misclas-
sify any ham in astrain or astest; is quite competitive to
the other learners onhx, ix andux; and it is also the only
classifier which generates a model that can directly be trans-
formed into a weighted score file for SA, facilitating future
deployment of the system. The last reason is probably the
most important one to us. It should also be noted that SA
with default rule scores – both with and without our pre-
trained bayesian model – already performs quite well on
hx, ix andux without any further adaptation. As we shall
see later, the difference lies in the spam misclassification
rate rather than the ham misclassification rate.

In this simple setting, the performance onhx, ix andux
is not yet satisfactory. Clearly it is necessary to train on
part of the specific hams which we try to recognize. So
we have opted for a 1:1 split for all hams into ham-F1 and
ham-F2 (using odd and even-numbered mails), separately
for hx, ix andux. One of these is used for training, the other
for test and afterwards they are swapped (two runs), remi-
niscent of a two-fold crossvalidation. The main difference
is that we reuse parts of the training set for economical rea-
sons, e.g. we use the same spams from astrain in both folds
which would not be possible with a normal CV. A two-fold
CV gives us more opportunity to look at each error in turn.
Lastly, it is also a harder test for our approach, which makes
sense since we want to apply this system in practice.

We investigated various different approaches to training
which we called V0-V6. Testing is always on the other ham
file (i.e. test on ham-F1, if ham-F2 is used for training; and
vice versa). The part of the ham mailbox used for training
is denoted ham-Fx here.

• V0: This is the baseline model which was trained only
on astrain. No training data from ham-Fx is used at

all.

• V1: Train on ham-Fx and all spams from astrain. No
hams from astrain are used for training. The inten-
tion is to focus the training on the important hams.
Since the obtained mailboxes are ham-only, at least a
source of spam mails has to be added to enable two-
class learning.

• V2: Train on ham-Fx and astrain (ham+spam). The
intention of this is to use the hams from astrain as
additional data, since two of our mailboxes are quite
small and may benefit.

• V3: Learn all ham-Fx via NB learner; then train on
ham-Fx and all spams from astrain. The idea here is
to use bayesian learning in a simple setting: just learn
all hams from ham-Fx and see whether the bayesian
learner is able to generalize to the unseen examples.
This is roughly equivalent to training method Train Ev-
ery Thing (TEFT) from [13].

• V4: Train on ham-Fx and astrain (ham+spam), after-
wards adapt the training set probability threshold from
the default of 0.5 so that false negative training set er-
rors (i.e. hams misclassified as spams) disappear. If
misclassified ham mails with probability of 1.0 appear,
these remain training set errors. This needs a learner
which can output confidence values for the prediction
- fortunately, this is the case for MLR. V4 was moti-
vated by a common approach to cost-sensitive learn-
ing. This approach is also easy to implement within
SA by changing the score threshold.

• V5: Train on ham-Fx and astrain (ham+spam), learn
all misclassified hams via bayesian learner; then train
on ham-Fx and astrain (ham+spam) again and eval-
uate. This is roughly equivalent to Train Only Errors
(TOE) from [13], with the restriction that only one type
of error is learned.

• V6: Train on ham-Fx and astrain (ham+spam), learn
all training set errors via NB learner; then retrain on
ham-Fx and astrain (ham+spam) and evaluate. This is
roughly equivalent to TOE from [13].

4. Results

Table 3 shows the ham error rates and standard devia-
tions for approaches V0-V6. We can directly interpret the
error rate as estimated probability that a given ham will be
misclassified as spam for the respective mailbox. As ex-
pected, there is less variance within the largest mailboxix,
and more within the smaller ones. In most cases V1-V3 fail
to perform much better than V0 (except V2 onux, which is

4



hx ix ux
V0 2.53% 1.20% 1.10%
V1 4.63±2.38% 0.79±0.07% 1.65±2.34%
V2 2.53±0.60% 0.79±0.07% 0.55±0.78%
V3 5.68±2.08% 1.16±0.33% 2.20±0.78%
V4 0.63±0.30% 0.14±0.07% 0.55±0.78%
V5 0.21±0.30% 0.32±0.07% 0.55±0.78%
V6 0.21±0.30% 0.23±0.07% 1.10±0.00%

Table 3. Average and standard deviation of
ham error rate is computed over the two-fold
crossvalidation, for each mailbox separately.

a special case – see below). Generally, V2 performs better
than V1 except for the largest mailboxix where it performs
equally well, which confirms our suspicion that adding ham
mails from astrain is beneficial for smaller datasets.

The worse performance of V3 took us by surprise. How-
ever, it can be explained as follows with the benefit of hind-
sight. Training all hams prior to MLR learning means that
most of them will match a bayes-pseudo rule. Since no
other hams are present in the training set, this means that
this rule will dominate the MLR model, reducing the com-
plexity of the model. It now seems as if the bayesian learner
is then unable to compensate for this reduction in MLR
model complexity by a better generalization to the test set.
This results in an overall reduction in performance. Consis-
tent with this assumption, the approaches V5 and V6 which
disturb the bayesian model less work much better.

V4 works quite well and forix even has the best model
overall. However, by adapting the threshold we change both
fp and fn at the same time. While we are in most cases
able to reduce the ham error (fn) by changing the threshold
for classification from the default value of 0.5 (we could
always reduce it to zero by changing it to 1.0 – which gives
us the trivial all-ham model), this is also accompanied with
an increase in the misclassification rate for spam (fp) – for
ix, the spam error rate is 45.5%! (see Table 4)

V5 and V6 give competitive results to V4. The worse
performance onux is likely to be due to insufficient training
data –ux is the smallest dataset.ux is also the only mailbox
where V2 is already competitive, since no training set errors
are found – therefore neither V4 nor V5 can improve on the
model, while V6 fails to improve it. The last may be due
to overfitting. Notice that the error of 0.6% corresponds to
only two misclassified hams forux, and even in this case
TCR is greater than 1 (see Table 5).

V5 and V6 follow the premise to change the bayesian
model only where necessary. This approach of showing
only those mails to the bayesian learner where informa-
tion of the other heuristic rules is insufficient to determine

hx ix ux
SA 64.7%
SAnb 9.5%
V4 7.3% 45.5% 2.1%
V5 3.2% 4.9% 2.1%
V6 2.1% 2.7% 1.5%

Table 4. This table shows the spam error rate
on all spams from as test, for SA, SAnb and
V4-V6.

hx ix ux
SA 1.53 1.39 1.12
SAnb 9.31 7.29 2.02
V4 10.92 2.07 5.46
V5 26.18 10.50 5.46
V6 36.42 17.25 2.92

Table 5. This shows the Total Cost Ratio for
SA, SAnb and V4-V6.

its categorization correctly seems to work well in prac-
tice. Conceptually, we may also describe this as related to
multi-view learning - if the information in one view (=the
heuristic rules) is insufficient, the examples are enhanced
by adapting their second view representation (=the bayesian
model) through adding additional information, which again
changes the first view representation to allow a better model
there.

V5/6 and the thresholding approach from V4 cannot be
combined, because both of these approaches practically en-
sure that fn on training is zero afterwards, leaving no handle
for the other method. V6 achieves near-human-level perfor-
mance concerning false negative errors, and also yields the
lowest spam error rate on two out of three mailboxes (all but
the smallest one).

In Table 4, we see that SpamAssassin with our pretrained
bayesian model is already quite good, but an additional im-
provement by factor four is still possible. SpamAssassin
without bayesian model performs much worse, so a well-
trained bayesian model seems to be essential for significant
reduction in visible spam mail volume.

Now we will take a short look at the three best systems
V4-V6 plus SA and SAnb in Table 5. The Total Cost Ra-
tio has been computed as previously defined, i.e. estimat-
ing the ham error rate via two-fold CV on the spam as de-
scribed previously and estimating the spam error rate on
spams from astest averaged over the trained two-fold CV
models. The cost has been estimated for each misclassified
ham mail separately by assigning it to the most appropriate

5



cost category from Experimental Setup – for more details on
this, see Discussion. Our high proportion of spam at 94%
(around 17:1) was also accounted for by scaling the number
of true negative and false positive values accordingly.

As can be seen, the Total Cost Ratio is usually above 1.0
as it should be, even for the simplest baseline SA. Generally,
TCR increases from top to bottom, with few exceptions,
so we conclude that our models from V4-V6 are improv-
ing and we propose approach V6 for further experiments,
followed by V5 which is slightly worse but seemingly less
risky. We will thus deploy V6 tohx andix, plus V5/V4/V2
(which are all the same model for lack of training set er-
rors) toux. Multiple runs of retraining similar to V6 may
improve performance further, we leave this for the future.

5. Discussion of False Negatives

On hx, only a single ham mail appears as error in the
experiments V4-V6. This is a newsletter on Italian Cui-
sine from About.com. The newsletter only appears twice in
the test set and is correctly recognized as ham once. When
training on the full data, both instances of the newsletter are
correctly recognized as ham. We have assigned a cost of 50
to this misclassified mail after obtaining feedback from the
mailbox’s user.

On ix, multiple diverse mails appear as errors. There is
no clear pattern to the errors. If we take a close look at
the five mails from V6, we see that most of them are from
an ongoing email conversation. Only one of the mails is
unique; the others come from people who appear 3, 7, 9
and 60 times in the whole mailbox. We can assume that
the auto whitelist feature (which averages mail scores over
a longer conversation) is able to smooth one error in 7, 9
and 60; and probably even one error in 3. The diverse na-
ture of this dataset makes further optimization challenging.
A training on the whole dataset indicates that a consistent
model cannot yet be learned: the person from which mail
appears 3x in the whole mailbox is still once misclassi-
fied. We should note that the mentioned mail is completely
empty, with a large binary attachment which is a microsoft
executable, and additionally has some twice encapsulated
mime structure. As a (supposedly?) funny mail we have
assigned it a cost of 50 (after checking with the mailbox’s
user), along with three other similarily misclassified mails:
forwarded chain letters and other mails which are not likely
to be strongly missed. Generally, mails from freemail sys-
tems (GMX, Hotmail, Yahoo) seem more likely to end up
misclassified. We also assigned a cost of 500 to each of the
four business mails which were misclassified.

On ux, two mails from the same person appear as errors
in experiments V4-V5. Almost a dozen rules in SpamAs-
sassin match both mails; and both of them are in the same
fold, so they cannot be learned in our two-fold CV reminis-

cent setup. In V6, two other mails also appear as errors. All
these errors disappear when trained on the whole data, indi-
cating that a consistent model can be learned - however, the
training data within the CV seems to be too small to achieve
this. All erroneous mails have been assigned a category of
business mail and cost of 500.

6. Related Research

[5] reports a cost-sensitive evaluation of current ap-
proaches to unsolicited bulk email categorization. A large
set of papers which apply machine learning techniques to
spam categorization is mentioned. However, all of these pa-
pers are built on the term vector space (bag of words) input
and do not use a simple binary representation of matching
rules like our approach.

[4] reports a comparative evaluation of several machine
learning algorithms on the text of messages and also a set
of 9 heuristics. The reported improvement due to the use
of heuristics is modest. Our approach uses 500+ heuristics
from SpamAssassin which may explain why the observed
improvement in our case is higher. On the other hand, no
direct content features such as word or phrase occurrence
are available to our system. It should be noted that a well-
trained bayesian model is still at the core of a good spam
filter even in our case, so heuristics alone are in any case
insufficient.

[10] reports that a scheme for combining classifiers
known as stacked generalization improves the performance
of spam categorizers. While the use of ensembles is similar
in spirit to SpamAssassin, their ensemble is a set of classi-
fiers trained on bag-of-word representations of mails while
SA’s ensemble is one of human-created rules and a bayesian
learner which is expected to be more diverse than their en-
semble which differs only in the choice of learning algo-
rithms at the base level. Since diversity is one of the key
elements for successful ensemble learning, it is not unex-
pected that our approach is competitive.

Our results disagree with [1] who found that current
spam filters are not suitable for deleting messaged classi-
fied as spam. However, since then things have changed: For
once, our spam mails account for 94% of mails, while their
corpus had only 16.6% spam mails. It seems that the last
three years have seen an exponential increase in spam vol-
ume. Also, they used Total Cost Ratio with a simple cost
of 1000 for all false negative errors. In reality, the cost for
losing a ham mails varies with the type of mail, which has
been addressed by [7] with a variable cost measure. We be-
lieve this to yield a more accurate picture of spam filtering
than a constant cost approach and have therefore decided to
use it for our evaluation.

[7] propose a SVM classifier which explicitly uses
the per-message cost values during training, or for post-

6



processing. They found that their use during training was
most helpful. We on the other hand have found the given
variable cost measures also very useful for realistic evalua-
tion of ham misclassification errors.

[12] has described an approach to use Genetic Algorithm
techniques to optimize rule scores within SpamAssassin.
Their approach differs from ours in that they do not ex-
plicitly trigger bayesian retraining, but instead assume that
bayesian model to be fixed. Our approaches V5 and V6 aim
to mesh rule score training and bayesian training within a
simple setting reminiscent of multi-view learning.

7. Conclusion

We have investigated an application of machine learn-
ing techniques for spam mail classification. Contrary to
other approaches, we have learned from a representation
of mails as a set of heuristic rules (partially human-created,
partially pseudo-rules which corresponds to the output from
bayesian learner) with binary matching; and not from term
vector space (bag-of-word) representations. This efficient
representation has allowed us to learn models which are as
accurate as state-of-the-art systems in classifying spam, and
also offer a competitive false positive rate. The given sys-
tem would be able to reduce the proportion of spam mails
from 94% to around 24% for our institute and the ham mail-
boxes which we considered.

Ham misclassification rates as low as 0.1%-0.3% and
overall accuracies in excess of 95% were achieved. A To-
tal Cost Ratio of up to 36.42 was observed, indicating that
the system is at least an order of magnitude more efficient
than manual deletion of all spam mails. It compares well to
statistics for single users (0.1% ham error and 99% overall
accuracy, [12]) and to human error rate in classifying spam
(0.16% according to [13]; 0.12±0.11 according to our in-
voluntary experiment).

The excellent results are even more surprising because
we did not use cost-sensitive learning, and used a two-fold
crossvalidation instead of the ubiquituous ten-fold CV used
in other papers. This translates into a harder task for learn-
ing, since the amount of training data is reduced by factor
1.8.

8. Future Work

We intend to apply this approach to classify harder ham
mails, e.g. the public collection by SpamAssassin. Al-
though preliminary experiments look somewhat promising,
multiple cycles of learning may be necessary in that case.

We will deploy the final system from this approach to
our colleagues who contributed the mailboxes and aim to
deploy it system-wide at our institute for further practical

evaluation. We will also investigate the feasibility of a sin-
gle bayes model for the whole institute.

As a long-term goal, we will also aim investigate
whether it is possible to transfer some expertise across to
another institution with completely different spam mail cor-
pora to speed up the first step: training a well-performing
bayesian model.

9. Acknowledgements

The Austrian Research Institute for Artificial Intelli-
gence is supported by the Austrian Federal Ministry of Ed-
ucation, Science and Culture. We want to thank our anony-
mous colleagues for contributing the ham collections.

References

[1] Androutsopoulos, I., Koutsias, J., Chandrinos, K.V.,
Paliouras, G. and Spyropoulos, C.D. An Evaluation of
Naive Bayesian Anti-Spam Filtering. In Proceedings of
the Workshop on Machine Learning in the New Infor-
mation Age, 11th European Conference on Machine
Learning, p. 9–17. Potamias, G., Moustakis, V., van
Someren, M.n (eds.), Barcelona, Spain, 2000.

[2] le Cessie, S. and van Houwelingen, J.C. Ridge Estima-
tors in Logistic Regression. Applied Statistics, Vol. 41,
No. 1, pp. 191-201, 1997.

[3] Graham, Paul. A Plan For Spam.www.paulgraham.
com/spam.html , 2003.

[4] Gómez Hidalgo, J.M., Mãna López, M. and Puer-
tas Sanz, E. Combining Text and Heuristics for Cost-
Sensitive Spam Filtering, Proceedings of the Fourth
Computational Natural Language Learning Workshop,
CoNLL-2000, Association for Computational Linguis-
tics, Lisbon, Portugal, 2000.

[5] Gómez Hidalgo, Jose M. Evaluating Cost-Sensitive Un-
solicited Bulk Email Categorization, Proceedings of
SAC-02, 17th ACM Symposium on Applied Comput-
ing, 615–620, Madrid, Spain, 2002.

[6] Hoffman, Paul and Crocker, Dave. Unsolicited bulk
email: Mechanisms for control. Technical Report UBE-
SOL, IMCR-008, Internet Mail Consortium, 1998.

[7] Kolcz, A. and Alspector, J. SVM-based Filtering of
E-mail Spam with Content-specific Misclassification
Costs, Proceedings of the TextDM’01 Workshop on
Text Mining, IEEE International Conference on Data
Mining, 2001.

7



[8] Platt, J. Fast Training of Support Vector Machines using
Sequential Minimal Optimization. Advances in Kernel
Methods - Support Vector Learning, B. Schlkopf, C.
Burges, and A. Smola, eds., MIT Press, 1998.

[9] Quinlan, R. C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[10] Sakkis, G., Androutsopoulos, I., Paliouras, G.,
Karkaletsis, V., Spyropoulos, C.D. and Stamatopou-
los, P. Stacking Classifiers for Anti-Spam Filtering of
E-Mail, Proceedings of EMNLP-01, 6th Conference
on Empirical Methods in Natural Language Process-
ing, Association for Computational Linguistics, Mor-
ristown, Pittsburgh, US, 2001.

[11] Serge Gauthronet and Etienne Drouard. Unsolicited
commercial communications and data protection. Tech-
nical report, Commission of the European Communi-
ties, 2001.

[12] Sergeant, Matt. Internet Level Spam Detection
and SpamAssassin 2.50. 2003 MIT Spam Con-
ference, Cambridge, Massachusetts, U.S.A, 2003.
spamconference.org/proceedings2003.
html

[13] Yerazunis, William S. The Spam-Filtering Accuracy
Plateau at 99.9% Accuracy and How to Get Past It.
2004 MIT Spam Conference, MIT, Cambridge, Mas-
sachusetts.

8


