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ABSTRACT

Organising or browsing music collections in a musically meaningful way calls for tagging the data in terms of
e.g. rhythmic, melodic or harmonic aspects, among others. In some cases, such metadata can be extracted
automatically from musical files; in others, a trained listener must extract it by hand. In this article, we
consider a specific set of rhythmic descriptors for which we provide procedures of automatic extraction from
audio signals. Evaluating the relevance of such descriptors is a difficult task that can easily become highly
subjective. To avoid this pitfall, we assessed the relevance of these descriptors by measuring their rate of
success in genre classification experiments. We conclude on the particular relevance of the tempo and a set
of 15 MFCC-like descriptors.

1. INTRODUCTION

Currently, musical metadata and labels are largely
produced manually, and such labels can serve,
among many other things, to browse, or find one’s
way in musical databases. “Musically meaningful”
labels greatly enhance such procedures.

Musical genre is a fundamental kind of metadata for
browsing musical collections. Indeed, people often
describe their musical tastes with respect to genre.
Musical genre classification has received much atten-
tion from music record retailers and, recently, from
audio and music researchers, especially in the Music
Information Retrieval community [10, 1]. An im-
portant direction of research now relates to the def-
inition of features of musical genres and their auto-
matic extraction from various forms of musical data
(audio, scores, MIDI, mp3, etc.).

Even if there is still room for disagreement on
explicit definitions of musical genres [1], there is
a pervasive belief that this notion has something

to do with fundamental musical dimensions such
as melody, instrumentation, harmony and rhythm.
Rhythmic descriptors are therefore very valuable
candidates for musical metadata. This article re-
ports on definitions and evaluations of such descrip-
tors.

1.1. Rhythm classification

A large amount of literature exists on the extrac-
tion of rhythmic descriptors from musical data, from
symbolic data, audio or compressed audio. See [5]
for an exhaustive review. There are indeed many
ways to represent rhythm, from low-level signal-
related quantities to more abstract concepts. De-
signing new descriptors is not a difficult task, but
reliably extracting them from musical data in an au-
tomatic way is more difficult, even more so if they
refer to cognitively relevant concepts. Even more
problematic is the issue of their relevance in rhythm
classification, similarity and retrieval tasks.

Many computer systems focus on the extraction of
rhythmic descriptors defined by Western music the-
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ory. They focus on elements of the metrical struc-
ture, e.g. the tempo, the fastest pulse, the time
signature, the quantized durations, the swing, the
tempo variation or complete rhythmic transcrip-
tions. Many articles point towards the usefulness of
these metrical descriptors for rhythm classification
and retrieval tasks. However, very few papers report
on systematic assessments of their relevance for these
tasks. In [3], Dixon et al. conclude that very few pe-
riodicities (the tempo, the measure and optionally
others as the dotted quarter-note) seem sufficient to
classify 8 rhythmic classes relatively well. The major
source of error being in assigning the correct names
(‘quarter-note’, ‘measure’, etc.) to detected period-
icities.

Other researchers rather focus on descriptors more
tightly linked to physical properties of the signal and
whose musical meaning is less explicit. For instance,
[10] and [8] respectively report on genre classification
experiments and definitions of similarity distances
using signal descriptors that, somehow, embed some-
thing about the rhythm. Also, [4] claims that all
aspects of rhythm can be captured by a continuous
periodicity representation and that such represen-
tation is sufficient for the retrieval of similar pieces
of audio. However, this conclusion is based on the
analysis of solely 15 musical excerpts (4 songs di-
vided into several 10s chunks).

In this paper, following previous work by some of the
authors [3], we assess the relevance of a set of rhyth-
mic descriptors in automatic musical genre classi-
fication experiments. Genre-labelled musical data
provides the necessary “ground-truth” for our ex-
periments.

We acknowledge the fact that there actually exists
no ground-truth with respect to genres [1]. However,
some musical genres are rapidly recognisable by lis-
teners, even with minimal musical training, and on
the dancefloor, dancers do recognise instantly what
dancing step fits best to the music they hear. Danc-
ing having much to do with rhythm, it seems that
ballroom dance music provides a relatively solid ba-
sis for our experiments. Here, we focus on excerpts
of standard and Latin ballroom dance music, namely
Jive, Quickstep, Tango, Waltz, Viennese Waltz, Cha
Cha Cha, Samba and Rumba.

The organisation of the article is the following: we
first give the details of the data and metadata used.

Then we provide procedures of automatic extraction
of rhythmic descriptors from audio signals. We then
report on the method and results of rhythm clas-
sification experiments with these descriptors. We
finally summarise and comment our results and pro-
pose directions for future work.

2. DATA AND ASSOCIATED METADATA

The musical database we use for training and testing
contains excerpts from 698 pieces of music, around
30 seconds long. The audio quality of this data is
quite low, it was originally fetched in real audio for-
mat, with a compression factor of almost 22 with
respect to the common 44.1 kHz 16 bits mono WAV
format. It was subsequently converted to WAV for-
mat for experiments. This data is publicly available
on the world-wide web at the following URL:

http://www.ballroomdancers.com/Music/style.asp

For all those recordings, the musical genre is avail-
able. The data covers eight musical sub-genres of
ballroom dance music:

• Jive, 60 instances

• Quickstep, 82 instances

• Tango, 86 instances

• Waltz, 111 instances

• Viennese Waltz, 65 instances

• Samba, 86 instances

• Cha Cha Cha, 111 instances

• Rumba, 97 instances

In addition, the tempo (in beats per minute, BPM)
of each recording is also available. The minimum
value is 60 BPM, the maximum 224 BPM.

3. DESCRIPTORS

We consider 73 descriptors, divided into three
groups. Some of these descriptors have been com-
puted using Matlab, the rest in C++, part of them
with the free CLAM library.1 All are implemented
as open source software under the GNU license.

The first pool of descriptors (N=4) are widely used
rhythmic concepts related to the metrical hierarchy:

1http://www.iua.upf.es/mtg/clam
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• The ground truth tempo, in BPM, as provided
with the data.

• BeatRoot tempo. As detailed in [2], BeatRoot’s
tempo induction stage yields several tempo hy-
potheses that are subsequently refined, beat by
beat, and ranked in a tracking process. The fi-
nal tempo is the mean of the winning agent’s
inter-beat intervals.

• “Naive” tempo. This is the highest peak of a
periodicity representation (the inter-onset inter-
val histogram, see below and [6] for more de-
tails). Note that this is one of BeatRoot’s pri-
mary tempo hypotheses.

• The tick, or metrical level that coincides with
all note onsets (i.e. the fastest level) [6].

For the second pool of descriptors, we consider 11
descriptors based on a first representation of sig-
nal periodicities, the “periodicity histogram” (PH)
[8]. This representation (see Figure 1), loosely in-
spired by [10], is the collection in a histogram of the
saliences of different pulses (from 40 BPM to 240
BPM) in successive chunks of signal (12s long, with
overlap). In each chunk of signal, periodicities are
computed via a comb filterbank [9]. Among relevant
differences with previous works stands the fact that
the audio data is first preprocessed by a psychoa-
coustic model, removing information in the audio
signal which is not critical to our hearing sensation
while retaining the important parts. Also, period-
icity magnitudes are weighted w.r.t. their periods,
emphasis being given to tempi around 120 BPM, the
“preferred tempo” region.2

Descriptors are the following:

• The most salient periodicity: highest peak in
the PH.

• The distinctiveness of the most salient period-
icity. It is measured as the ratio between the
highest peak and the second highest peak.

• The periodicity power. This is the sum of the
energy in the PH.

2See [8] for details.
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0

1

Fig. 1: Periodicity histogram of a Jive excerpt. The
tempo is 176 BPM. Gray shadings tell us the num-
ber of analysis chunks for which a certain energy
was exceeded. Note the effect of “preferred tempo”
weighting.

• The periodic energy in the first three Bark
bands. This is the same as the previous, but
considering solely the energy in the 3 lowest fre-
quency bands defined by the Bark scale, below
300 Hz.

• The PH centroid, defined as the tempo for
which half of the PH energy is contained in
lower tempi.

• Three measures of the percussiveness. The
percussiveness is computed as the central ten-
dency of the energy in diverse frequency
bands, defined by the Bark scale, of the
half-wave rectified, first-order difference fil-
tered, waveform. We use three variations
of this descriptor where the central ten-
dency of the energy is computed in differ-
ent ways: mean(x), mean(x > mean(x)) and
median(x > median(x)).

• Three measures of the percussiveness in low fre-
quencies. This is similar as above but using only
the energy in the 3 lowest Bark bands.

The third pool of descriptors (N=58) are quantities
computed from a second representation of the sig-
nal periodicities, the inter-onset interval histogram
(IOIH) [6]. This representation gives a measure
of recurrence of the different inter-onset intervals
present in the signal (not just successive onsets, but
any pairs of onsets). Time intervals (in seconds) are
drawn on the X-axis while (normalised) recurrences
are drawn on the Y-axis (see Figure 2).
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Fig. 2: IOI histogram of the same Jive excerpt as
Figure 1. Recurrence vs time interval. The tempo
is 176 BPM (around 350 ms), which corresponds to
the third peak (not to the highest one). The second
highest peak is the measure (44 MPM, around 1.4s).

Onsets are computed as in [7]. Then differences are
computed and accumulated in a histogram which is
then smoothed by a Gaussian window.3 The IOIH
is in many ways similar to the IOI clusters obtained
in [3]. We therefore compute descriptors directly
inspired by those detailed in [3]: selected prominent
periods in the IOIH, together with their saliences.

• The saliences of 10 periodicities whose periods
are the 10 first integer multiples of the tick.
Note that solely the period salience is kept, not
the period value. Therefore, those descriptors
are independent of the tempo.

Then, inspired by the analogy between the IOIH and
a spectral representation, we define 48 other descrip-
tors as common “spectral” descriptors (distribution
statistics and MFCCs), but computed on the IOIH,
not on a spectrum. In the following {xi}i=1...N are
the IOIH samples.

• The mean of the IOIH magnitude distribution

∑N
i=1

xi

N
(1)

3whose width is set to 300ms for IOIH descriptor compu-
tation and 150ms for tick computation.

• The geometric mean of the IOIH magnitude dis-
tribution

(
∏

i

xi)
1/N (2)

• The IOIH total energy

N∑

i=1

x2

i (3)

• The IOIH centroid

∑N
i=1

i ∗ xi∑N
i=1

xi

(4)

• The IOIH flatness

ln (gmean)− ln (mean) (5)

• The kurtosis of the IOIH magnitude distribu-
tion. It measures how outlier-prone a distribu-
tion is, i.e. its degree of peakedness [11].

µ4

µ2
2

− 3 (6)

where µ2 and µ4 are respectively the second and
fourth central moments of the IOIH magnitude
distribution [11].

• The IOIH “high-frequency content”

N∑

i=1

i ∗ x2

i (7)

• The skewness of the IOIH magnitude distribu-
tion. This is the degree of asymmetry of a dis-
tribution [11]. A distribution spread out more
to the left than to the right of the mean has
a negative skewness. Perfect symmetry (e.g. a
Gaussian distribution) results in a null skew-
ness.

µ3

µ
3/2

2

(8)

where µ3 is the third central moment of the
IOIH magnitude distribution [11].

• The first 40 coefficients of an analog to the Mel-
Frequency Cepstral Coefficients (MFCCs).
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MFCCs are widespread descriptors in speech re-
search. The Cepstral representation has been
shown to be of prime importance in this field,
partly because of its ability to nicely sepa-
rate the representation of voice excitation (the
higher coefficients) from the subsequent filtering
performed by the vocal tract (the lower coeffi-
cients).4 Roughly, lower coefficients represent
the spectral envelope (i.e. the formants) while
higher ones represent finer details of the spec-
trum.
The CLAM implementation of the MFCCs is a
porting of Malcolm Slaney’s Matlab Toolbox,5

to C++, with minor changes in the code. One
way of computing the Mel-Frequency Cepstral
representation of a time signal is as follows:

– Short-time windowing

– Fourier transform - keep solely the magni-
tude spectrum

– Projection of the frequency axis from lin-
ear scale to the Mel scale, of lower dimen-
sionality (usually by means of a filterbank)

– Magnitude logarithm computation

– Inverse Fourier transform

In our case, we follow the same steps, apart from
the first two that are replaced by the computa-
tion of the IOIH.

4. METHOD

Before giving the detail of any classification experi-
ment, we must note that the baseline for classifica-
tion is 15.9% (classification rate when always guess-
ing the most probable class). This value should
be kept in mind when evaluating the goodness of
any classifier. Experiments have been conducted
using the free software Weka,6 we refer to [12] for
any details regarding algorithms mentioned below.
All classification accuracies reported below are com-
puted as 10-fold cross-validations: 10 subsets con-
taining 90% randomly selected samples are selected
for learning and the remaining 10% are used for

4http://mi.eng.cam.ac.uk/˜ajr/SA95/
5http://www.slaney.org/malcolm/pubs.html
6http://www.cs.waikato.ac.nz/ml/weka/

testing, final percentages are averages over those 10
runs.

Our chief objective is the relevance ranking of the de-
scriptors with respect to rhythm classification more
than the design of a reliable, generalizable and
ready-to-use classifier. Therefore, we used few clas-
sifiers in the following experiments. We rather fo-
cused on an evaluation of the descriptors with re-
spect to the same classifier, most of the times a Near-
est Neighbour scheme (1-NN).

4.1. Attribute selection

The number of input attributes to the classification
algorithm must be reduced for three reasons: get-
ting simpler models, improving prediction accuracy
(particularly with some classifiers which suffer from
the “curse of dimensionality”, such as k-NN), and to
get more insight into which aspects are relevant.

In some cases, attribute selection can be driven by
our understanding of the attribute meanings and our
intuitions regarding their relevances. In addition
we used the following automatic attribute selection
methods:

• Evaluation of the attributes on an individual

basis (use of the Ranker search method), as-
sociated to two different attribute evaluation
methods, ReliefF (method1) and symmetrical
uncertainty (method2). This is done 10 times
on different samples (of size 90%) drawn from
the dataset. The final ranks of the attributes
are the averages of the 10 runs.

• Evaluation of attribute subsets. We selected the
forward search method to explore the attribute
space. Different subset evaluators have been
tried:

– Correlation-based (Cfs), performed 10
times on different samples (of size 90%)
drawn from the dataset, the final attribute
ranks being the averages of the 10 runs.
(method3)

– Wrapping around a 1-NN classifier whose
accuracy is determined by 5-fold cross-
validations. This is done 10 times on dif-
ferent samples (of size 90%) drawn from
the dataset. The final attribute ranks be-
ing the averages of the 10 runs. (method4)

AES 25TH INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17–19

5



GOUYON ET AL. RHYTHM CLASSIFICATION

– Wrapping around a 1-NN classifier whose
accuracy is determined by 10-fold cross-
validations. This is done just 1 time on
the whole dataset. (method5)

5. EXPERIMENTS AND RESULTS

5.1. Relevance of the tempo

There is a common belief that tempo is of prime
relevance for classifying musical pieces. We tested
this assumption in the following experiments.

5.1.1. Correct tempo

As previously commented, the source of audio data
also provides ground-truth tempo values for each ex-
cerpt. A simple Nearest Neighbour classifier (k-NN)
using solely this descriptor reaches a classification
accuracy of 82.3% (with k=1). A C4.5 decision tree
achieves 78.6%. This last result was obtained with
a special tweaking of the algorithm: forcing a rela-
tively high number of instances per leaf (20 instead
of default value 2), which results in smaller trees,
with fewer leaves and guarantees good generalization
of the result. The number of leaves is 9. Each class
corresponds to a leaf, except one (Rumba) which
corresponds to two leaves. In sum, this technique
highlights a clear ordering of classes w.r.t. tempi,
from slow to fast:

tempo< 91⇒ Waltz
96 <tempo< 102⇒ Samba
102 <tempo< 104⇒ Rumba
104 <tempo< 124⇒ ChaChaCha
124 <tempo< 141⇒ Tango
141 <tempo< 176⇒ Jive
176 <tempo< 180⇒ VienneseWaltz
tempo> 180⇒ Quickstep

Further analysis of the results showed that strongest
confusions are between Rumba and Samba or Tango
and Cha Cha Cha.

The next paragraph shows that such performances
are not achievable when using computed tempo val-
ues instead of the manually given tempo.

5.1.2. Computed tempo

Using solely BeatRoot tempo, a 1-NN classifier
yields 51,7% correct classification, against 41.2% for

the “naive” tempo computation. With C4.5, with
the same parameter set as above, the results are, in
the same ordering, 52.5% and 42.5%.

As shown in Figure 3, the tempo induction algo-
rithms detailed in [2] and [6] make systematic errors
by confusing metrical levels. The former is more ac-
curate than the latter as it could be expected. This
explains why BeatRoot tempo is a better descriptor
for classification that the “naive” tempo.

However, accuracy levels are far from those with cor-
rect tempi. First, classification rates are much lower.
But more importantly, for the 2 algorithms, decision
trees yield too many leaves (between 13 to 17). This
means that they divide the tempo axis in small clus-
ters. We lost the nice “one tempo per class” scheme
because of errors in the choice of metrical level com-
mon proper to tempo induction algorithms. Note
that those are errors common to all state-of-the-art
algorithms and no solution to this problem is to be
expected soon (indeed, it is a very “natural” error
to tap the beat at half or twice its speed).

Focusing on the fastest pulse (the tick) instead of
the perceptual beat, correct classification rates are
comparable: 50.4% with a 1-NN classifier and 51.8%
with C4.5 (15 leaves).

5.2. PH descriptors

With the 11 PH descriptors, a 1-NN scheme yields
52.8% correct classification. The classification rate
can be kept around the same value (slightly higher,
56.7%) when discarding 6 descriptors, by inspection

Fig. 3: Tempo extraction performance of two algo-
rithms (respectively [2] and [6]). The plots show
computed tempi divided by correct tempo, X=1
means “exact-match”, the highest peak for both al-
gorithms. Other high peaks are at X=1/2, 2, 1/3
and 2/3.
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of the results of the 5 feature selection methods, and
keeping solely:

• The most salient periodicity

• The distinctiveness of the most salient period-
icity

• The periodicity power

• The PH centroid

• The first measure of the percussiveness in low
frequencies

5.3. Periodicity saliences

We refer here to the magnitudes of the IOIH peaks
whose periods are the ten first integer multiples of
the tick.

When using the 10 IOIH peak ampitudes together
with the correct tempo, we reach a 75.5% of correct
classification with a 1-NN classifier. This is worse
than with the correct tempo alone. However, it does
not mean that these descriptors are not relevant. In-
deed, when removing the tempo from the attribute
set, keeping therefore solely descriptors that are in-
dependent of the tempo, we reach a 51.2% of cor-
rect classification. This is only slightly lower than
the performance when associated to the computed
tempo (BeatRoot version), 54.3%, and similar to the
performance of the computed tempo alone.

A reason for this phenomenon is that instances mis-
classified when focusing on the tempo alone are
also misclassified when considering solely the IOIH
peaks. For instance, with the correct tempo alone,
an inspection of the confusion matrix reveals that
the common misclassifications are Rumba classified
as Samba (17 out of 97). Similarly, solely 37% of the
Rumba are correctly classified with the IOIH peaks.

So, on the one hand, it is clear that we should ac-
count somehow for the pace of the music and on the
other, computed tempo associated to IOIH peaks
does not show clear advantages. However an associ-
ation IOIH peaks - tick (which performed relatively
well when considered alone) performs better: 65.1%
of correct classification with a 1-NN classifier.

5.4. Other IOIH descriptors

Let us consider the first 8 distribution statistics (i.e.
not the MFCC-like). Using them all yields 46.1%

classification accuracy with a 1-NN classifier. Select-
ing solely 3 by inspecting results of the 5 automatic
attribute selection methods yields a slight improve-
ment: 48.7%. “Winning” descriptors are:

• The kurtosis

• The skewness

• The high-frequency content

Let us now consider the MFCC-like descriptors.
Also with 1-NN classification, the whole pool (i.e.
40 descriptors) yields 79.6% accuracy. Here also,
the dimensionality can be reduced automatically (we
did not consider method4, being too computation-
ally expensive with 40 descriptors). A very similar
classification accuracy can be reached (79%) when
selecting 15 coefficients: 1, 2, 3, 6, 7, 8, 10, 11, 15,
16, 19, 24, 25, 26 and 28.

5.4.1. On the meaning of IOIH MFCC-like de-

scriptors

When dealing with speech signals, it has been shown
that most of the relevant information occurs near
the origin of the cepstral representation and in a
few peaks higher up the cepstrum,7 these peaks cor-
responding to multiples of the pitch. Hence the fo-
cusing on the first MFCCs (less than 20), providing
a compact representation of the spectral envelope
while discarding the fine detail pitch information.
This is especially true in speech recognition tasks
where researchers precisely seek pitch-independent
descriptors.
When dealing with music signals, and when replac-
ing the Fourier transform by an ad-hoc transforma-
tion (the IOI histogram), it is less clear that higher
coefficients should be discarded. In our case, higher
coefficients provide a representation of finer detail
of the IOIH peaks, that is, a closer look at the har-
monic nature of this periodicity representation, its
“pitch.”8 Therefore, higher coefficients seem to be
somehow related to the pace of the piece at hand.
On the other hand, lower coefficients represent the
global envelope of the IOIH, which would be the
“spectral envelope” of a proper spectrum. They

7http://mi.eng.cam.ac.uk/˜ajr/SA95/
8Note that the tick is precisely computed as the “gap of

the IOIH harmonic series” [6].
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seem to represent in some way the global structure of
the IOIH.9 In our understanding, they encode some
aspects of the metrical hierarchy. Independently of
the tempo.

5.5. All in a bag

Consider now the subset of 35 descriptors that
showed to be relevant in the previous experiments
(the tick, the tempo, 5 PH descriptors, 10 period-
icity saliences, 3 IOIH distribution statistics and 15
MFCC-like) and let us keep on with the selection of
the most relevant.

Associating the 15 MFCC-like descriptors with the
correct tempo, the accuracy reaches 90.1%, the best
result until now. However, we must stress here that
if we use the computed tempo or the tick as rep-
resentative of the musical pace instead of the cor-
rect tempo, the performance decreases: 78.9% and
77,2% respectively, which is slightly worse than the
MFCC-like descriptors alone. In fact, running the
feature selection methods aforementioned and using
intuitions regarding which descriptors “should make
it”, we did not find any feature subset10 that would
present significant improvements over the 15 MFCC-
like descriptors alone.

However, an interesting result is that we can lower
the dimensionality to 9 descriptors that do not ac-
count for the tempo (periodicity power and MFCC-
like coefficients 1, 6, 7, 8, 10, 15, 16 and 24), and
keep a comparable accuracy as with the 15 MFCC-
like (77.3%).

6. SUMMARY, DISCUSSION AND FUTURE

WORK

The tempo is a very relevant feature for genre clas-
sification. Considering solely this feature gives very
good results (over 80% accuracy). However, tempo
values given by beat induction algorithms are much
less useful than the correct tempo, assigned man-
ually. This is due to common errors in metrical
level. This is in accordance with previous work [3]
that stressed on the one hand the relevance of met-
rical levels for rhythm classification and the other
the difficulty of deriving them unambiguously from
a periodicity representation. Indeed, any metrical

9For instance, excerpts whose periodicities have very simi-
lar saliences, as e.g. many Cha Cha Cha, have a flat envelope.

10that would not contain the correct tempo

level corresponds to a peak in the IOIH,11 but the
contrary is not true, not all peaks are part of the
metrical hierarchy. That is, not all periodicities are
metrical levels.
Representing the musical pace by the tick is also
relevant as it performs similarly as the computed
tempo.
Another conclusion is that in order to compute a
tempo value that would best resemble a human per-
ception of the musical pace, it is better to consider
a whole tracking process in addition to the peri-
odicity induction (as BeatRoot does) rather than
rely solely on the induction (as the “naive” method
does). In other words, the correct tempo might not
be the highest peak in a periodicity representation,
but rather the one that propagates better onto the
whole data.

Other descriptors of periodicity representations,
with weaker or less explicit musical meanings, are
also relevant. Several representations are possible
(e.g. IOIH, PH) and they can be parameterised in
different manner (e.g. peaks, distribution statistics,
MFCC-like descriptors). With few low-level descrip-
tors (e.g. 5 PH descriptors, 10 IOIH peaks, 3 IOIH
descriptors), classification accuracies are encourag-
ing.
Among the set of periodicity representation descrip-
tors, the subset that provides the best trade-off

accuracy-dimensionality is a set of 15 Mel-Frequency
Cepstrum Coefficients computed on the IOIH (79%
accuracy with only 15 descriptors).
In our understanding, higher coefficients are related
to the musical pace and lower coefficients to the met-
rical hierarchy.

Associating the correct tempo with the 15 MFCC-
like descriptors gives the best result: 90% accuracy.

Without the correct tempo (as in real life), we
encourage the selection of the 15 aforementioned
MFCC-like descriptors, or a subset of 9 that does
not damage the accuracy too much.

We illustrated the fact that one can not simply in-
crease the number of descriptors and wish that this
will result in an improvement of the classification ac-
curacy, even if all the descriptors have shown some
discriminative power. The descriptors introduced
above are indeed representative of the rhythm but,

11or is one of the IOI clusters of [3]
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in our understanding, they represent rhythm only
partly. Some aspect of rhythm, that would permit
to separate more accurately those 8 classes, is lack-
ing.

Future work is related to the incorporation of new
descriptors (e.g. the swing ratio, the time signa-
ture and the syncopation factor) and the evaluation
of their relevance on a larger amount of data. We
also strongly believe that time-varying descriptors
should be accounted for, as well as some representa-
tion of typical temporal patterns.

The design of a rhythmic distance, accounting for
the aforementioned descriptors, is another direction
of future work. This would permit to make an im-
portant step: organising any song collection with
respect to rhythm, not just songs which we already
know belong to a restricted set of classes.
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