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Abstract. One of the standard applications of Independent Com-
ponent Analysis (ICA) to EEG is removal of artifacts due to move-
ments of the eye bulbs. Short blinks as well as slower saccadic
movements are removed by subtracting respective independent com-
ponents (ICs). EEG recorded from blind subjects poses special
problems since it shows a higher quantity of eye movements which
are also more irregular and very different across subjects. It is
demonstrated that ICA can still be of use by comparing results
from four blind subjects with results from one subject without eye
bulbs who therefore does not show eye movement artifacts at all.

INTRODUCTION

Independent Component Analysis (ICA) [Comon 1994] is one of a group of
algorithms to achieve blind separation of sources [Jutten & Herault 1991].
ICA has already been used successfully for blind source separation of EEG
data. ICA finds an unmixing matrix which linearly decomposes the mul-
tichannel EEG data into a sum of maximally temporally independent and
spatially fixed components. These Independent Components (ICs) account
for artifacts, stimulus and response locked events and spontaneous EEG ac-
tivity. One of the standard applications of ICA to EEG includes artifact de-
tection and removal (see [Jung et al. 1998] and [Jung et al. 2000]). Selected
components responsible for artifacts are set to zero and all other ICs can be
projected back onto the scalp yielding EEG in true polarity and amplitudes.

EEG recorded from blind subjects poses special problems since it shows
a higher quantity of eye movements which are also more irregular and very
different across subjects. We present an application of ICA to removal of
ocular artifacts in evoked potentials recorded from four blind subjects. We
develop a semi-automatic procedure for detection of ICs responsible for ocular
artifacts. We show empirically that ICA is still able to remove these ocular



artifacts and compare results with those obtained from one subject without
eye bulbs who therefore does not show eye movement artifacts at all.

DATA

We recorded evoked potentials (EP) from seven subjects who have been born
blind. One subject (subject A) was born without eye bulbs and does there-
fore not show any ocular artifacts. EPs were recorded while subjects were
performing a ”tactile” version [Winkler 1998] of the 3DC cube rotation test
[Gittler 1990]. ”Tactile” meaning that instead of graphical presentation of
cubes on a computer screen, actual material cubes could be manipulated by
the subjects with their hands. The recordings of two subjects had to be
dismissed from the data set since they showed consistent huge artifacts of
unknown origin (possibly movements of the tongue and of the whole head)
across all electrode channels and single trials. Therefore four subjects (hence
B, C, D and E) remained besides subject A.

EEG was recorded with 22 (subject A) or 21 electrodes (all other sub-
jects) positioned evenly across the head according to the international 10-20
system !. Eye movements were recorded as vertical and horizontal electro-
oculogram (VEOG and HEOG) using two electrodes in a bi-polar montage
per EOG channel. Data was recorded with a sampling rate of 125Hz and
FIRfiltered with a bandpass from 0 to 30Hz. The subjects were allowed
to solve the 3DC tasks at their own pace which resulted in big variation of
the lengths of the single trials (subject A: 11.49sec+5.28sd, subjects BCDE:
45.08sec + 22.37sd). The data set consists of 34 single trials from subject
A and 35 from each of the subjects B,C,D and E. Item onset is one second
after the start of the recordings. The mean of the first half second of data is
subtracted as a baseline from all of the channels and single trials.

INDEPENDENT COMPONENT ANALYSIS (ICA)

Independent Component Analysis (ICA) [Comon 1994] is one of a group of
algorithms to achieve blind separation of sources [Jutten & Herault 1991].
To estimate the original sources from an observed mixture while knowing lit-
tle about the mixing process and making only few assumptions about it and
about the sources is called blind separation of sources. ICA allows to recover
N independent source signals s = {s1(t), s2(¢), - .., sn(t)} from N linear mix-
tures, z = {z1(t), z2(t), ..., zNn(t)}, modeled as the result of multiplying the
matrix of source activity waveforms, s, by an unknown square matrix A (i.e.
z = As). The task is to recover a version, u, of the original sources s, save
for scaling and ordering. It is necessary to find a square matrix W specifying
filters that linearly invert the mixing process (i.e. u = Wz).

1Positions for both groups of subjects were identical except that for subject A electrodes
Fpl and F'p2 were used instead of Fpz.



We used the ”infomax” neural network algorithm [Bell & Sejnowski 1995]
for ICA2. This approach uses the fact that maximizing the joint entropy,
H(y), of the output of a neural processor minimizes the mutual informa-
tion among the output components, yr = g(u;), where g(u;) is an inverted
bounded nonlinearity and v = Wz.

ICA has already been used successfully for blind source separation of EEG
data. Application of ICA to EPs include artifact detection and removal (see
[Jung et al. 1998] and [Jung et al. 2000]) as well as analysis of event-related
response averages (see [Makeig et al. 1996] and [Makeig et al. 1997]). Appli-
cation of ICA to single-trial EPs is more recent (see [Jung et al. 1999] and
[Jung et al. 2001]). In single-trial EEG analysis, the rows of the input matrix
z are EEG and EOG signals recorded at different electrodes and the columns
are measurements at different time points. ICA finds an unmixing matrix W
which linearly decomposes the multichannel data into a sum of maximally
temporally independent and spatially fixed components v = Wx. The rows
of the output matrix u are courses of activation of the ICA components.
These components account for artifacts, stimulus and response locked events
and spontaneous EEG activity. The columns of the inverse matrix W~ give
the relative projection strengths of the respective components at each of the
scalp sensors. These scalp maps of projection strengths provide evidence for
the components’ physiological origin (e.g. ocular activity projects mainly to
frontal sites). Selected components can be projected back onto the scalp
using the relation zg = W~lug, where ug is the matrix u with irrelevant
components set to zero. Thereby brain signals accounted for by the selected
components can be obtained in true polarity and amplitudes.

ICA FOR REMOVAL OF OCULAR ARTIFACTS

There are two main types of ocular artifacts, those due to blinks and those due
to saccadic movements. Saccade artifacts arise from changes in orientation of
the retino-corneal dipole. Blinks artifacts are due to contact of the eyelid with
the cornea which alters ocular conductance (see e.g. [Overton & Shagass 1969]
and [Jung et al. 2000]). The influence of blink artifacts on recording elec-
trodes decreases rapidly with distance from the eyes. The saccadic influence
decreases much slower and shows a typical pattern of polarity difference be-
tween contra-lateral sites. If ICA is used for removal of ocular artifacts, the
questions is how to decide which independent components (ICs) account for
eye movements and should therefore be set to zero.

[Jung et al. 2000] apply ICA to three different data sets (numbers of elec-
trodes range from 13 to 29) in order to remove ocular as well as other arti-
facts. ICA was done on 10 second epochs of the EEG data sets. The authors
use visual inspection of ICs and scalp topographies (ocular activity projects
mainly to frontal sites) to decide which ICs account for artifacts. Results

2All ICA related computations were done with the MATLAB toolbox EEGLAB
[Makeig et al. 2002].
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Figure 1: Illustrative examples of VEOG (left column) and HEOG (right column)
from subjects B, C, D to E (top to bottom rows); x-axis is always ten seconds of
recording; y-axis is amplitude (range differs between graphs for better visibility).

are compared to those obtained using Principal Component and Regression
Analysis. Results are presented graphically, no quantification is given.

[Jung et al. 2001] apply ICA to single trial EPs (31 channels) recorded
from 28 control subjects plus 22 neurological (autistic) patients performing
a visual selective attention experiment. EEG records from the patient group
were heavily contaminated by blinks and other eye movements. ICA decom-
position was performed on one second epochs of single trial EPs. With the
help of visual inspection of independent components and their scalp topogra-
phies plus, if necessary, source localization, artifacts caused by eye blinks were
detected. Lateral saccadic eye movements are time locked to visual stimuli
onset and are also systematically affected by differences in distance and di-
rection of the stimuli relative to a fixation point. This systematic relationship
as well as checking of the scalp topographies was used to detect independent
components accounting for saccadic lateral movements. Power spectra of the
independent components give further insight into their nature. With the help
of ICA the authors were able to remove artifacts and contaminations without
sacrificing neural signals at sites most affected by these artifacts. Results of
this study go beyond artifact removal, but again no quantification of how
successful artifact removal was is given.

[Britton & Jervis 2001] apply ICA to single trials of EPs recorded during
a cued reaction time task which generates the so-called Contingent Negative
Variation (CNV). The data set consisted of only 30 single trials recorded
via 25 electrodes. ICA was computed separately on data from each of the
single trials. ICs accounting for artifacts were detected via visual inspection.
The authors are able to show that an average of the denoised single trials
deviates little from the average of the original single trials. Denoising of
single trials via ICA also allows them to analyze the considerable variation
of CNV amplitude and latency which is hidden by conventional averaging.

Eye movements by blind subjects differ substantially from those of sub-
jects with full eye sight. Blind subjects are not able to fixate on visual stimuli,



TABLE 1: CORRELATION OF VEOG AND HEOG wiTH ICs. GIVEN ARE ONLY
CORRELATIONS WITH ICS WHICH ARE RESPONSIBLE FOR OCULAR ARTIFACTS. NOTE
THAT ALL BUT ONE (SUBJECT E) ARE GREATER THAN 0.40.

| H Pueog | Pheog ‘
subject B || -0.53 -0.49 | -0.41 -0.66
subject C 0.86 0.74
subject D || 0.56 -0.44 0.91
subject E || -0.63 0.35 | 0.60 -0.60

subjects who are born blind cannot even control their eye movements at all.
Therefore blind subjects show (i) more eye movements, (ii) they are more
irregular since not caused by visual stimuli and (iii) show very different pat-
terns across subjects. See Fig. 1 for illustrative examples of eye movements
from our subjects. Whereas e.g. subject C shows mainly blink activity in its
VEOG (second row from top, left side of Fig. 1), subject E shows very strong
and slow rolling behavior (bottom row, left side of Fig. 1). Note also the
big differences in HEOG across subjects (right column in Fig. 1). In order
to decide which ICs are due to eye movements we chose the following simple
procedure:

e Compute infomax ICA for each of the subjects B, C, D and E separately.
The respective input matrices = consists of all concatenated single trial
EPs from one subject. An ICA outputs the ICs u and the square matrix
W specifying the filters that invert the mixing process (u = Wz).

e Compute correlations pi.,, = cov(veog, u;)/Sveogsu; and pj.,, =
cov(heog, u;)/SheogSu; between VEOG and HEOG and all ICs from one
subject (with cov and s being covariance and standard deviations, u; the
i=1,...,22 ICs). Choose only ICs with high correlation (| p}.,, |> .4
and | p}'leog |> .4) as responsible for EOG artifacts.

e Use both visual inspection of relative projection strengths (W~1), of
ICs v and of back-projections of single ICs 2 to corroborate or dismiss
decisions based on correlations alone.

RESULTS

Applying the simple two step procedure (computing correlations plus visual
inspection) described in the last section to data from subjects B, C, D and E
proofed successful. Visual inspection of results showed that the correlation
threshold of .4 enabled to identify all ICs responsible for eye artifacts. Only
in one case (subjects E: pyeog = 0.35) it was necessary to relax the correlation
criterium. Tab. 1 sums up all information related to the correlations between
VEOG, HEOG and ICs. For all subjects, either one or two ICs are sufficient

3Using relation zg = W~1ug with all but one component set to zero in ug.
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Figure 2: Illustrative examples of signals (VEOG, HEOG, Fz, Oz; top to bottom
rows) before (left column) and after (right column) removal of ocular artifacts for
subject C; x-axis is always ten seconds of recording; y-axis is amplitude (range
differs between rows for better visibility); y-range is always the same within a row
(before vs. after removal).

to account for VEOG or HEOG artifacts. Illustrative examples of successful
artifact removal are given in Fig. 2 and Fig. 3. Note how blink artifacts for
subject C which are clearly visible in the VEOG and at Fz (Fig. 2 top left
and second from bottom at left) are almost completely removed (Fig. 2 top
right and second from bottom at right). The signal at Oz is hardly affected
at all by ocular artifacts and therefore left almost unchanged (Fig. 2 bottom
left and right). Ocular artifacts due to slower rolling movements of eyes can
be seen in recordings from subject E in Fig. 3. Artifacts clearly show in both
VEOG and HEOG as well as Fz and Oz (Fig. 3 left column). These ocular
artifacts seem to be removed quite well from all channels by ICA (Fig. 3 right
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Figure 3: Illustrative examples of signals (VEOG, HEOG, Fz, Oz; top to bottom
rows) before (left column) and after (right column) removal of ocular artifacts for
subject E; x-axis is always ten seconds of recording; y-axis is amplitude (range
differs between rows for better visibility); y-range is always the same within a row
(before vs. after removal).
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Figure 4: Grand averages across subjects BCDE after artifact removal at electrodes
Fz (top), Cz, Pz and Oz (bottom); x-axis is eight seconds of recording starting one
second before stimulus onset; y-axis is amplitude.

column). Since the true EEG signals without influence from ocular artifacts
are not known no direct quantification of success can be given.

Given the fact that subject A performed the same tasks as all other sub-
jects while not showing any ocular artifacts (because of not having eye bulbs),
it could be argumented that removal of ocular artifacts should make EPs
recorded from subjects B, C, D and E more similar to EPs recorded from
subject A. To test this hypothesis we compared a grand averages computed
from subjects B, C, D and E before and after ocular artifact removal with
an average computed from subject A. All averages were computed across all
respective single trials in all EEG channels. In Fig. 4 the grand averages
across subjects B, C, D and E after removal of ocular artifacts are depicted
at four selected electrodes. It can be seen that the main information in the
averages is a DC-like trend (negativation). Temporal integration across a
window from seven to eight seconds after stimulus onset further condensed
information to a single topography per average. This one second window was
chosen as being representative in time since the phenomenon under study is
believed to be best visible after several seconds after stimulus onset. Corre-
lation of the one-second temporal integration grand average from subjects B,
C, D and E with the same information computed from subject A improved
from .273 to .499 due to removal of ocular artifacts. The values for the three
topographies used computing these correlation are depicted in Fig. 5. It can
be seen that artifact removal made the topography of subjects B, C, D and E
smaller in amplitude and more similar to the topography of subject A (note
e.g. more negative values at posterior as compared to frontal electrodes in
both topographies).
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Figure 5: Comparing grand averages, x-axis electrode position (from frontal left F3

to occipital right O4), y-axis pV; subject A (top line, circles o), subjects BCDE
(bottom line, stars *), subjects BCDE after artifact removal (middle line, diamonds

).
CONCLUSION

We presented an application of Independent Component Analysis to the re-
moval of ocular artifacts in EEG recorded from blind subjects. We could
show empirically that application of ICA is successful although blind sub-
jects cause more and more irregular ocular artifacts compared to subjects
with full eye sight. We used a semi-automatic two step procedure for de-
tection of ocular artifacts consisting of computation of correlations between
VEOG, HEOG and Independent Components plus visual inspection of re-
sults. Since the true EEG signals without influence from ocular artifacts are
not known no direct quantification of success could be given. Evoked poten-
tials recorded from one of our subjects who was born without eye bulbs and
did therefore not show any ocular artifacts allowed for an indirect proof of
success. Removal of artifacts based on ICA made evoked potentials recorded
from subjects who did show eye movements more similar to evoked potentials
recorded from the subject without eye bulbs.
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