
Modelling Large Datasets Using Algebraic

Datatypes: A Case Study of the CONFMAN

Database

Markus Mottl
Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1010 Vienna, Austria
markus@oefai.at

May 15, 2002

Abstract

Being able to provide clear specifications of large datasets comprising
hundreds of variables, each of which can take on many different values,
while still being able to efficiently and accurately learn functional relations
from such data would certainly make data mining techniques even more
viable in the real world. In this report we describe a new modelling
approach, which essentially generalizes discrete decision tree learning to
induction of non-recursive functions over algebraic datatypes. Taking the
CONFMAN mediation database as guiding example, we demonstrate how
this approach allows us to give more natural data specifications that can
take into account semantic aspects which are hard or even impossible to
model in common attribute-value representations. We will also explain
how this can have a positive impact on accuracy and efficiency.

1 Introduction

The CONFMAN mediation database1, a detailed collection of currently 3676
mediation attempts in 309 conflicts, consists of a total of 237 attributes including
1168 different attribute values. Achieving improvements in excess of the base
line accuracy has turned out to be hard2, which may be a consequence of the used
data representation not allowing the expression of certain semantic properties.
Furthermore, the comprehensibility of learnt models may also benefit from more
fine-grained representations.

This report will not go about the details of learning using the more expres-
sive representation that builds on algebraic datatypes, but will focus on how to

1More information can be found in [BL93].
2See [FPT97] for a survey of applying machine learning techniques to this database. A

good introduction to machine learning can be found in [Mit96].

1

design such data specifications, describing their advantages as we go along. It
suffices here to mention that learning using the strictly more general represen-
tation can be done equally efficiently as with decision trees. The generalized
algorithm actually performs absolutely identical when given a specification that
can be handled in the traditional way.

We will furthermore assume that the reader has a basic understanding of
algebraic datatypes3, which are conceptually quite simple.

2 Improving existing specifications

Rather than just enumerating improvements to the data representation in our
database, we will discuss general principles that can guide us to improved spec-
ifications of the usual attribute-value encoding as required by ordinary decision
tree learning, but we will do so by providing concrete examples for demonstra-
tion purposes.

2.1 Local improvements

2.1.1 Problem: handling ordered values

One immediately obvious shortcoming of the usual representation is the im-
possibility of expressing order relations between attribute values. This can be
seen most easily with discretized numerical values. For example, the variable
CM10A in the CONFMAN database tells the number of months that a conflict
persisted before intervention by conflict management. There are seven possible
values with the following meaning:

value tag description
0 pre-intervention
1 1-2
2 3-6
3 7-12
4 13-24
5 25-36
6 37+

Table 1: CM10A: number of months before conflict intervention

This encoding drops significant information, namely that these values can
be ordered (on a time scale). The learning algorithm is forced to discriminate
between all these cases, which means that provided training data is split up into
seven subsets here. The more values the variable can take, the smaller those

3Also sometimes referred to as (recursive) sums of products. See, for example, [Win93] for
a formal treatment.

2

subsets, which will usually impose a strong bias in subsequent learning steps.
This is also suggested by empirical evidence in surveys concerning the “small
disjuncts”-problem4.

This problem also shows up in a dual way when we consider target attributes.
Instead of just predicting whether some mediation outcome is a success or fail-
ure, we might be interested in the exact quality. The attribute CM14 expresses
it as one of five values:

value tag description
1 med offered only
2 unsuccessful
3 ceasefire
4 partial agreement
5 full settlement

Table 2: CM14: detailed outcome of mediation attempt

Here, again, our background knowledge tells us that there is an implicit
order hidden in these values. We would certainly expect that, for instance,
a ceasefire is a requirement for obtaining a full settlement. This should also
change the way we estimate classification accuracy. Predicting ”unsuccessful”
is surely worse than predicting ”partial agreement” if indeed a ”full settlement”
was achievable.

This problem should not be confused with cost-sensitive learning as described
in e.g. [Dom99] or similar techniques that take a detour over regression as in
e.g. [KWPD01] to predict ordinal classes. We will show that ordered structures
can be represented naturally without the help of numerical values of any kind.

2.1.2 Solution: expressing order with algebraic datatypes

To remedy this shortcoming, we now explain the way in which ordered struc-
tures can be expressed using algebraic datatypes. These datatypes are defined
as (potentially recursive) type equations. On the left hand side we have the
type name and on the right hand side a disjoint union of values, which are
separated by bars. Such values consist of a constructor (starting with a cap-
ital letter) such that the value is uniquely tagged, and this constructor may
take an argument. The argument is either a type or a (Cartesian) product of
types. This way we can specify any kind of inductively definable datastructure5.

4See [WH00] for such a survey.
5It may be interesting to point out that algebraic datatypes (sums of products) actually

form a semi-ring. This also means that they are isomorphic to, for example, context-free
grammars. This again implies that this representation is suitable for learning problems in the
domain of natural language processing: it can essentially be used to induce (tree) transducers
for parse trees originating from context-free languages.

3

Returning to our previous example, instead of defining the variables as fol-
lows:

cm10a = PreInt | M1_2 | M3_6 | M7_12 | M13_24 | M25_36 | M37p.
cm14 = MedOff | UnSucc | CeaseFire | PartAgr | FullSett.

we could use the following definitions (type equations), which exhibit the un-
derlying ordered structure:

cm10a = PreInt | LateInt late_int.
late_int = M1_2 | M3p m3p.
m3p = M3_6 | M7p m7p.
m7p = M7_12 | M13p m13p.
m13p = M13_24 | M25p m25p.
m25p = M25_36 | M37p.

cm14 = MedOff | MedAcc med_acc.
med_acc = UnSucc | Succ succ.
succ = CeaseFire | Agree agree.
agree = PartAgr | FullSett.

Data values would now be represented in a structured way. Instead of en-
coding, for example, a ceasefire as “CeaseFire”, we would write

MedAcc (Succ CeaseFire)

which makes clear that a ceasefire is an accepted, successful mediation attempt.
Conversely, an intervention after two months would be encoded using the ex-

pression “LateInt M1_2” (“late intervention after 1 or 2 months”) rather than
as “M1_2” directly.

How does this help us? For instance, it might be completely irrelevant for the
learner to know that some mediation attempt was undertaken, say, more than
six months too late. Therefore, the learner could stop splitting up the dataset
according to the number of months exceeding this limit and instead continue
with other, possibly more relevant input variables, which is likely to improve
accuracy (can choose better variables in subsequent splits) and efficiency (no
need to learn more subtrees than required).

For what concerns structured output values, the resulting classifier is allowed
to start constructing values even before it is sure about their exact form. For
example, given some political scenario, the classifier might be able to predict
with very little data that the outcome of a mediation attempt will be successful,
but might need much more information to classify the exact kind of success, i.e.
a ceasefire only or even a (partial or full) agreement.

This property is also very important from a pragmatic point of view. It
may often be extremely costly to collect all relevant data. If mediators are only

4

interested in whether the outcome will be successful irrespective of the details,
they need only collect this much information as required for this goal. On the
other hand, if input data about the conflict is already available, we can guaran-
tee that the classifier will already predict every property that only requires this
data. In short, we can predict a maximum of information about the result with
a minimum of information about the input.

It may also be useful to depict the difference between ordinary encodings
and ones that allow subattributes in a visually more appealing way6:

cm14
MedOff UnSucc CeaseFire PartAgr FullSett

Table 3: CM14 represented in the standard way.

cm14
MedOff MedAcc med acc

UnSucc Succ succ
CeaseFire Agree agree

PartAgr FullSett

Table 4: CM14 represented in a structured way.

2.1.3 Factoring out local information

Taking a general view on subattributes, we see that they are useful for factoring
out common information from values which would otherwise be encoded as
atomic tags. We now demonstrate this with variable CM187:

value tag description
1 one medtr
2 two medtrs-same interests
3 two medtrs-diff interests
4 group medtrs-same interests
5 group medtrs-diff interests

Table 5: CM18: number of mediators acting in the mediation event

6Types (sets) are written italic whereas constructors are written in bold letters.
7Like value orderings, this pattern is quite frequent in the database (e.g. see also variable

CM29, D7, etc.

5

Instead of forcing the learning algorithm again to discriminate between five
values, we can give hints that some of these values have common information
by using a more appropriate encoding:

cm18 = OneMedtr | TwoMedtrs interests | GroupMedtrs interests.
interests = Same | Diff.

Then, again, the learning algorithm need not continue discriminating further
if the interests of the parties do not make a difference but their number does.
The algorithm is even free to look at the mediators’ interests in certain cases,
say, if there are only two mediators.

Note that there are not always unique factorizations. For example, we could
also have encoded the upper variable as follows:

cm18 = OneMedtr | Same medtrs | Diff medtrs.
medtrs = Two | Group.

Doing this, we put more stress on the ability of multiple mediators to coordi-
nate their interests rather than on their number. This way we can bias learning
by putting discriminating features (value constructors) that we consider more
important closer to the top of structured values.

But what do we do if we are unsure about which feature to prefer? Then we
can just leave this learning task to the algorithm again and encode our data as
follows:

cm18 = OneMedtr | TwoOrMore (size * interests).
size = Two | Group.
interests = Same | Diff.

Of course, the question about exact size or commonality of interests only
makes sense if there are at least two mediators, assuming that mediators cannot
be schizophrenic. This example also demonstrates the usefulness of allowing
more than one subattribute by employing the product type operator “*”. A
group of mediators having differing interests can now be denoted by:

TwoOrMore (Group, Diff)

2.2 Global improvements

The structure improvements we have considered so far have only affected one
variable. By rearrangement of values in a structured way, we could express
semantic relations between them.

We can, however, improve existing specifications even more by considering
several variables at once and modelling them in a different way. This will most
often result in fewer but more structured variables. Due to lack of expressiveness
with usual encodings, there are many cases where redundancies exist which can
be eliminated.

6

For example, consider variables P23 and P24:

value tag description
1 both Christian
2 both Muslim
3 both other global religions
4 both traditional-indigenous
5 both mixed religious base
6 different religions

Table 6: P23: Religion type compared

value tag description
1 same religion
2 different religion

Table 7: P24: Religion identity of parties compared

As we can see, both variables allow one to decide whether two parties have
the same or different religions, but one of them (P23) is much more detailed.
This is obviously a workaround invented by the database designers, because
they could not express both the abstract and detailed views adequately without
redundancies.

The solution here is to merge equivalent values or constructors as follows:

pm23_24 = Same religion | Different
religion = Christian | Muslim | OtherGlobal | Traditional | Mixed

The learning algorithm would initially see only one variable, which essen-
tially captures the meaning of the variable P23. Only in the case of two parties
having the same religion would the algorithm get access to the details as en-
coded in P24.

This has several advantages:

• Users cannot accidentally (or even intendedly) enter inconsistent data,
e.g. that the two parties have differing religions in variable P23 and at the
same time that both are Christian in P24.

• Models never contain redundant parts. E.g. the more abstract variable
P23 could be highly relevant in general, but P24 may be so in particular
for some values only. In such a case a learning algorithm might decide to
split up the data according to both P23 and P24 one after the other, which
leads to redundant generation of submodels for the “different religion”
cases.

7

• The algorithm can handle the data more efficiently, because it will only get
to see the detailed layer once it has matched the abstract layer, whereas it
would have to handle not yet relevant data during splits in less expressive
representations. E.g. as long as P24 has not been used, it is superfluous
work to handle P23.

It is much more effort in general to factor out redundancies among many
variables, but this is certainly justified by the benefits.

3 Design hints

In this section we will give a short summary of design hints that one should
apply when creating new data specifications.

3.1 Top-down design

The following steps may give a suitable start:

• Identify commonalities among all observable variables and encode this
background knowledge by factoring out redundancies using (products of)
subattributes (see section 2.2).

• Make sure that bias encoded in the specification truly reflects relations in
the real world. If unsure, you may try different representations that leave
the task of learning such relations to the employed algorithm as described
in section 2.1.3.

• When given several values, identify relations, especially order relations,
between them and make use of representation techniques as presented in
section 2.1.1.

3.2 Treatment of missing values

An annoying but important point in machine learning concerns the treatment
of missing values, i.e. value tags that indicate that some value could not be
observed or is even meaningless in a certain context. An often used approach
applied in traditional techniques is to explicitly encode (“hardwire”) strategies
for handling missing values in the learning algorithm. Given more expressive
representations it seems necessary to ask whether this is still required or even
advisable: more declarative ways of specifying (handling of) missing values may
be possible.

Lets consider the following definition:

t = A | B

If this variable could have missing values, then users of machine learning
systems often extend this definition as follows:

8

t = A | B | Missing

This, however, may cause not necessarily expected results. Assume that
some dataset that uses t as result variable contains ten As, nine Bs and eleven
missing values. Then an algorithm taking the most frequent value would predict
Missing. But since the opposite of a missing value is an available value, we
would actually have to predict that there will indeed be an observation. This
case happens more frequently, because it encompasses both the observations of
As and Bs.

Therefore, it may be more suitable to choose the following definition:

t = Observed value | Missing
value = A | B

This advises the learning algorithm to treat observed values separately from
missing ones. We can even specify structures that explain in more detail how
to interpret missing values. For example:

t = Relevant observable_value | Irrelevant
observable_value = Observed value | Missing
value = A | B

This allows more precise specification of why some value is actually missing:
because it may be irrelevant8 or because it could not be observed for some
reason, etc. In all these cases the result may indeed be a consequence of the
input data, which is why prediction of missing values does indeed make sense.
E.g., some value may have been unobservable, because of other (observable)
conditions that make collecting data very difficult.

4 Parametric polymorphism for more flexible data
specifications

Even though the presented representation allows expressive specifications, there
are further extensions that make this task even easier. Modern type systems
allow parametric polymorphism, which introduces type parameters for more
reusability.

For example, when many variables can have missing values, it would be
cumbersome to define, for each of these, a type that wraps around the actual
values to tag them as observable as in:

t = Observed value | Missing
value = A | B

Instead we could write down a more generic definition:
8Note that irrelevant values are usually an indicator for redundant information so you

might consider reorganizing your data specification.

9

optional value = Some value | None

Similar to functions this makes it possible to use abstractions for specifica-
tion. E.g.:

v1 = optional government
v2 = optional religion

This results in much more compact and readable data specifications, because
it is not necessary anymore to explicitly write down structures that are isomor-
phic anyway. Legal values in the upper example could be Some Democracy of
type optional government or Some Muslim of type optional religion. None
would be legal in both type contexts.

This extension is currently not yet implemented in our system, but is not par-
ticularly difficult to achieve either, because the theory behind is well-understood.

5 Conclusion

As we have hopefully succeeded to show, algebraic datatypes give designers of
databases for machine learning systems a much broader set of design options,
allowing them to model the problem domain more accurately without sacrificing
efficiency. Future research may attempt to reveal more ways to benefit from
advances in type theory so that even more invariants can be represented in data
specifications while still allowing efficient model generation.

6 Acknowledgements

The author wishes to thank Gerhard Widmer for comments on an earlier draft.
This research is supported by the projects ”A New Modular Architecture

for Data Mining (P12645-INF)”, financed by the Austrian Fonds zur Förderung
der wissenschaftlichen Forschung (FWF), and ”Universities Researching for So-
ciety: Peace and the Avoidance of Violence”, financed by the Austrian Federal
Ministry for Education, Science, and Culture. The Austrian Research Institute
acknowledges basic financial support from the Austrian Federal Ministry for
Education, Science, and Culture.

References

[BL93] J. Bercovitch and J. Langley. The nature of dispute and the effec-
tiveness of international mediation. Journal of Conflict Resolution,
37(4):670–691, December 1993.

[Dom99] Pedro Domingos. Metacost: A general method for making classifiers
cost-sensitive. In Knowledge Discovery and Data Mining, pages
155–164, 1999.

10

[FPT97] Johannes Fürnkranz, Johann Petrak, and Robert Trappl. Knowl-
edge discovery in international conflict databases. Applied Artificial
Intelligence, 11(2):91–118, 1997.

[KWPD01] Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, and
Michael DeGroeve. Prediction of ordinal classes using regression
trees. Fundamenta Informaticae, XXI:1001–1013, 2001.

[Mit96] Tom M. Mitchell. Machine learning. McGraw Hill, New York, US,
1996.

[WH00] Gary M. Weiss and Haym Hirsh. A quantitative study of small
disjuncts. In AAAI/IAAI, pages 665–670, 2000.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages:
An Introduction. Foundations of Computing Series. MIT Press,
February 1993.

11

