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Abstract

We present an algorithm that takes an unannotated corpus as its input, and
returns a ranked list of probable morphologically related pairs as its output. The
algorithm tries to discover morphologically related pairs by looking for pairs that
are both orthographically and semantically similar, where orthographic similar-
ity is measured in terms of minimum edit distance, and semantic similarity is
measured in terms of mutual information. The procedure does not rely on a mor-
pheme concatenation model, nor on distributional properties of word substrings
(such as affix frequency). Experiments with German and English input give en-
couraging results, both in terms of precision (proportion of good pairs found at
various cutoff points of the ranked list), and in terms of a qualitative analysis of
the types of morphological patterns discovered by the algorithm.

1 Introduction

In recent years, there has been much interest in computational models that learn aspects
of the morphology of a natural language from raw or structured data. Such models are
of great practical interest as tools for descriptive linguistic analysis and for minimizing
the expert resources needed to develop morphological analyzers. From a theoretical
point of view, morphological learning algorithms can help answer questions related to
human language acquisition.

In this study, we present a system that, given a corpus of raw text from a language,
returns a ranked list of probable morphologically related word pairs. For example,
when run with the Brown corpus as its input, our system returned a list with pairs such
aspencil/pencilsandstructured/unstructuredt the top.
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Our algorithm is completely knowledge-free, in the sense that it processes raw
corpus data, and it does not require any forra pfiori information about the language
itis applied to. The algorithm performs unsupervised learning, in the sense that it does
not require a correctly-coded standard to (iteratively) compare its output against.

The algorithm is based on the simple idea that a combination of formal and seman-
tic cues should be exploited to identify morphologically related pairs. In particular,
we use minimum edit distance to measure orthographic simifaaing mutual infor-
mation to measure semantic similarity. The algorithm does not rely on the notion of
affix, and it does not depend on global distributional properties of substrings (such as
affix frequency). Thus, at least in principle, the algorithm is well-suited to discover
pairs that are related by rare and/or non-concatenative morphological processes.

The algorithm returns a list of related pairs, but it does not attempt to extract the
patterns that relate the pairs. As such, it can be used as a tool to pre-process corpus
data for an analysis to be performed by a human morphologist, or as the first step of
a fully automated morphological learning program, to be followed, for example, by a
rule induction procedure that extracts correspondence patterns from paired forms. See
the last section of this paper for further discussion of possible applications.

We tested our model with German and English input. Our results indicate that
the algorithm is able to identify a number of pairs related by a variety of derivational
and inflectional processes with a remarkably high precision rate. The algorithm is
also discovering morphological relationships (such as German plural formation with
umlaut) that would probably be harder to discover using affix-based approaches.

The remainder of the paper is organized as follows: In section 2, we shortly review
related work. In section 3, we present our model. In section 4, we discuss the results
of experiments with German and English input. Finally, in section 5 we summarize
our main results, we sketch possible directions that our current work could take, and
we discuss some potential uses for the output of our algorithm.

2 Related work

For space reason, we discuss here only three approaches that are closely related to ours.
See, for example, Goldsmith (2001) for a very different (possibly complementary)
approach, and for a review of other relevant work.

2.1 Jacquemin (1997)

Jacquemin (1997) presents a model that automatically extracts morphologically related
forms from a list of English two-word medical terms and a corpus from the medical
domain.

1Given phonetically transcribed input, our model would compute phonetic similarity instead of or-
thographic similarity.



The algorithm looks for correspondences between two-word terms and orthograph-
ically similar pairs of words that are adjacent in the corpus. For example, the list
contains the ternartificial ventilation and the corpus contains the phrassficially
ventilated Jacquemin’s algorithm thus postulates the (paired) morphological analyses
artificial ventilat-ionandartificial-ly ventilat-ed

Similar words, for the purposes of this pairing procedure, are simply words that
share a common left substring (with constraints that we do not discuss here).

Jacquemin’s procedure then builds upon these early steps by clustering together
sets that follow the same patterns, and using these larger classes to look for spurious
analyses. Finally, the algorithm tries to cluster classes that are related by similar,
rather than identical, suffixation patterns. Again, we will not describe here how this is
accomplished.

Our basic idea is related to that of Jacquemin, but we propose an approach that
is more general both in terms of orthography and in terms of semantics. In terms of
orthography, we do not require that two strings share the left (or right) substring in
order to constitute a candidate pair. Thus, we are not limited to affixal morphological
patterns. Moreover, our algorithm extracts semantic information directly from the
input corpus, and thus it does not require a pre-compiled list of semantically related
pairs.

2.2 Schone and Jurafsky (2000)

Schone and Jurafsky (2000) present a knowledge-free unsupervised model in which
orthography-based distributional cues are combined with semantic information auto-
matically extracted from word co-occurrence patterns in the input corpus.

They first look for potential suffixes by searching for frequent word-final sub-
strings. Then, they look for potentially morphologically related pairs, i.e., pairs that
end in potential suffixes and share the left substring preceding those suffixes. Finally,
they look, among those pairs, for those whose semantic vectors (computed using latent
semantic analysis) are significantly correlated. In short, the idea behind the semantic
component of their model is that words that tend to co-occur with the same set of
words, within a certain window of text, are likely to be semantically correlated words.

While we follow Schone and Jurafsky’s idea of combining orthographic and se-
mantic cues, our algorithm differs from them in both respects. From the point of view
of orthography, we rely on the comparison between individual word pairs, without re-
quiring that the two pairs share a continuous affix, and indeed without requiring that
they share an affix at all.

From the point of view of semantics, we compute scores based on mutual infor-
mation instead of latent semantic analysis. Thus, we only look at the co-occurrence
patterns of target words, rather than at the similarity of their contexts.

Future research should try to assess to what extent these two approaches produce
significantly different results, and/or to what extent they are complementary.



2.3 Yarowsky and Wicentowski (2000)

Yarowsky and Wicentowski (2000) propose an algorithm that extracts morphological
rules relating roots and inflected forms of verbs (but the algorithm can be extended to
other morphological relations).

Their algorithm performs unsupervised, but not completely knowledge-free, learn-
ing. It requires a table of canonical suffixes for the relevant parts of speech of the
target language, a list of the content word roots with their POS (and some information
about the possible POS/inflectional features of other words), a list of the consonants
and vowels of the language, information about some characteristic syntactic patterns
and, if available, a list of function words.

The algorithm uses a combination of different probabilistic models to find pairs that
are likely to be morphologically related. One model matches root + inflected form pairs
that have a similar frequency profile. Another model matches root + inflected form
pairs that tend to co-occur with the same subjects and objects (identified using simple
regular expressions). Yet another model looks for words that are orthographically
similar, in terms of a minimum edit distance score that penalizes consonant changes
more than vowel changes. Finally, the rules relating stems and inflected forms that the
algorithm extracts from the pairs it finds in an iteration are used as a fourth probabilistic
model in the subsequent iterations.

Yarowsky and Wicentowski show that the algorithm is extremely accurate in iden-
tifying English root + past tense form pairs, including those pairs that are related by
non-affixal patterns (e.gthink/thought)

The main issue with this model is, of course, that it cannot be applied to a new
target language without having soragriori knowledge about some of its linguistic
properties. Thus, the algorithm cannot be applied in cases in which the grammar of
the target language has not been properly described yet, or when the relevant infor-
mation is not available for other reasons. Moreover, even when such information is in
principle available, trying to determine to what extent morphology could be learned
without relying on any other knowledge source remains an interesting theoretical pur-
suit, and one whose answer could shed some light on the problem of human language
acquisition.

3 The current approach: Morphological relatedness as
a function of orthographic and semantic similarity

The basic intuition behind the model presented here is extremely simple: Morpholog-
ically related words tend to be both orthographically and semantically similar. Obvi-
ously, there are many words that are orthographically similar, but are not morphologi-
cally related; for exampldylueandglue At the same time, many semantically related
words are not morphologically related (for exampikie andgreer). However, if two
words have a similar shape and a related meaning @agnandgreenish, they are
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very likely to be also morphologically related.

In order to make this idea concrete, we use minimum edit distance to identify words
that are orthographically similar, and mutual information between words to identify
semantically related words.

3.1 Outline of the procedure

Given an unannotated input corpus, the algorithm (after some elementary tokeniza-
tion) extracts a list of candidate content words. This is simply a list of all the alpha-
betic space-or-punctuation-delimited strings in the corpus that have a corpus frequency
below .01% of the total token couft.

Preliminary experiments indicated that our procedure does not perform as well
without this trimming. Notice in any case that function words tend to be of little mor-
phological interest, as they display highly lexicalized, often suppletive morphological
patterns.

The word list extracted as described above and the input corpus are used to compute
two lists of word pairs: Arorthographic similarity list in which the pairs are scored
on the basis of their minimum edit distance, anseanantic similarity listbased on
mutual information. Because of minimum thresholds that are enforced during the
computation of the two measures, neither list contains all the pairs that can in principle
be constructed from the input list.

Before computing the combined score, we get rid of the pairs that do not occur in
both lists (the rationale being that we do not want to guess the morphological status of
a pair on the sole basis of orthographic or semantic evidence).

We then compute a weighted sum of the orthographic and semantic similarity
scores of each remaining pair. In the experiments reported below, the weights are
chosen so that the maximum weighted scores for the two measures are in the same
order of magnitude (we prefer to align maxima rather than means because both lists
are trimmed at the bottom, making means and other measures of central tendency less
meaningful).

The pairs are finally ranked on the basis of the resulting combined scores.

In the next subsections, we describe how the orthographic and semantic similarity
lists are constructed, and some properties of the measures we adopted.

3.2 Scoring the orthographic similarity of word pairs

Like Yarowsky and Wicentowski, we use minimum edit distance to measure ortho-
graphic similarity. The minimum edit distance between two strings is the minimum
number of editing operations (insertion, deletion, substitution) needed to transform

2In future versions of the algorithm, we plan to make this high frequency threshold dependent on the
size of the input corpus.



one string into the other (see section 5.6 of Jurafsky and Martin (2000) and the refer-
ences quoted there).

Unlike Yarowsky and Wicentowski, we do not attempt to define a phonologically
sensible edit distance scoring function, as this would require making assumptions
about how the phonology of the target language maps onto its orthography, thus falling
outside the domain of knowledge-free induction. Instead, we assign a castoof
all editing operations, independently of the nature of the source and target segments.
Thus, in our system, the paid®g/Dog man/menbat/matandday/dryare all assigned
a minimum edit distance df.

Rather than computing absolute minimum edit distance, we normalize this measure
by dividing it by the length of the longest string (this corresponds to the intuition that,
say, two substitutions are less significant if we are comparing two eight-letter words
than if we are comparing two three-letter words). Moreover, since we want to rank
pairs on the basis of orthographic similarity, rather than dissimilarity, we compute the
inverse of normalized minimum edit distance, obtaining a measure that ranges from 1
for identical forms to O for forms that do not share any character.

This measure is computed for all pairs of words in the potential content word list.
However, for reasons of size, only pairs that have a scorg of higher (i.e., where
the two members share at least half of their characters) are recorded in the output list.

Notice that orthographic similarity does not favor concatenative affixal morphol-
ogy over other types of morphological processes. For example, thexmairan/women
andpark/parksboth have an orthographic similarity score.®f

Moreover, orthographic similarity depends only on the two words being compared,
and not on global distributional properties of these words and their substrings. Thus,
words related by a rare morphological patterns will have the same score as words re-
lated by a very frequent pattern, as long as the minimum edit distance is the same. For
example, botmucleus/nucleandbench/benchdsave an orthographic similarity score
of .714, despite the fact that the latter pair reflects a much more common pluralization
pattern.

Of course, this emancipation from edge-anchored concatenation and global distri-
butional salience also implies that orthographic similarity will assign high scores to
many pairs that areot morphologically related — for example, the paiends/trends
also has an orthographic similarity scoreof4.

Furthermore, since in most languages the range of possible word lengths is narrow,
orthographic similarity as a ranking measure tends to suffer of a “massive tying” prob-
lem. For example, when pairs from the German corpus described below are ranked
on the sole basis of orthographic similarity, the resulting list is headed by a block of
19,597 pairs that all have the same score. These are all pairs where one word has 9
characters, the other 9 or 8 characters, and the two differ in only one chdracter.

3Most of the pairs in this block — 78% — are actually morphologically related. However, given that
all pairs contain words of length 9 and 8/9 that differ in one character only, they are bound to reflect
only a very small subset of the morphological processes present in German.



For the above reasons, it is crucial that orthographic similarity is combined with an
independent measure that allows us to distinguish between similarity due to morpho-
logical relatedness vs. similarity due to chance or other reasons.

3.3 Scoring the semantic similarity of word pairs

Measuring the semantic similarity of words on the basis of raw corpus data is obviously
a much harder task than measuring the orthographic similarity of words.

Mutual information(first introduced to computational linguistics by Church and
Hanks (1989)) is one of many measures that seems to be roughly correlated to the
degree of semantic relatedness between words. The mutual information between two
words A and B is given by:

Pr(A, B)
"Pr(APr(B) (”

Intuitively, the larger the deviation between the empirical frequency of co-occurrence
of two words and the expected frequency of co-occurrence if they were independent,
the more likely it is that the occurrence of one of the two wordsdsindependent
from the occurrence of the other.

Brown et al. (1990) observed that when mutual information is computed in a bi-
directional fashion, and by counting co-occurrences of words within a relatively large
window, but excluding “close” co-occurrences (which would tend to capture colloca-
tions and lexicalized phrases), the measure identifies semantically related pairs.

It is particularly interesting for our purposes that most of the examples of English
word clusters constructed on the basis of this interpretation of mutual information
by Brown and colleagues (reported in their table 6) include morphologically related
words. A similar pattern emerges among the examples of German words clustered in a
similar manner by Baroni et al. (2002). Rosenfeld (1996) reports that morphologically
related pairs are common among words with a high (average) mutual information.

We computed mutual information by considering, for each pair, only co-occurrences
within a maximal window of 500 words and outside a minimal window of 3 words.
Given that mutual information is notoriously unreliable at low frequencies (see, for
example, Manning and Satze (1999), section 5.4), we only collected mutual infor-
mation scores for pairs that co-occurred at least three times (within the relevant win-
dow) in the input corpus. Obviously, occurrences across article boundaries were not
counted. Notice however that the version of the Brown corpus we have access to does
not mark article boundaries. Thus, in this case the whole corpus was treated as a single
article.

Our “semantic” similarity measure is based on the notion that related words will
tend to often occur in the nears of each other. This differs from the (more general)
approach of Schone and Jurafsky, who look for words that tend to occur in the same

I(A,B) =lo



context. It remains an open question whether the two approaches produce complemen-
tary or redundant resulfs.

Taken by itself, mutual information is a worse predictor of morphological relat-
edness than minimum edit distance. For example, among the top one hundred pairs
ranked by mutual information in each language, only one German pair and five En-
glish pairs are morphologically motivated. This poor performance is not too surprising,
given that there are plenty of words that often co-occur together without being morpho-
logically related. Consider for example (from our English list) the padgx/operand
andorthodontist/teeth

4 Empirical evaluation

4.1 Materials

We tested our procedure on the German APA coPpaigorpus of newswire contain-

ing over twenty-eight million word tokens, and on the English Brown corpusekal

and Francis (1967), a balanced corpus containing less than one million two hundred
thousand word tokens. Of course, the most important difference between these two
corpora is that they represent different languages. However, observe also that they have
very different sizes, and that they are different in terms of the types of texts constituting
them.

Besides the high frequency trimming procedure described above, for both lan-
guages we removed from the potential content word lists those words that were not
recognized by the XEROX morphological analyzer for the relevant language. The rea-
son for this is that, as we describe below, we use this tool to build the reference sets
for evaluation purposes. Thus, morphologically related pairs composed of words not
recognized by the analyzer would unfairly lower the precision of our algorithm.

Moreover, after some preliminary experimentation, we also decided to remove
words longer than 9 characters from the German list (this corresponds to trimming
words whose length is one standard deviation or more above the average token length).
This actuallylowersthe performance of our system, but makes the results easier to an-
alyze — otherwise, the top of the German list would be cluttered by a high number of
rather uninteresting morphological pairs formed by inflected forms from the paradigm
of very long nominal compounds (such\a&rtschaftsforschungsinstittinstitute for
economic research’).

Unlike high frequency trimming, the two operations we just described are meant
to facilitate empirical evaluation, and they do not constitute necessary steps of the core
algorithm.

“We are currently experimenting with a measure based on semantic context similarity (determined
on the basis of class-based left-to-right and right-to-left bigrams), but the current implementation of this
requiresad hoccorpus-specific settings to produce interesting results with both our test corpora.

SThis corpus was kindly made available to us by the Austria Presse Agentur.



number of pairs 500 | 1000| 1500 | 2000
precision 97% | 96% | 96% | 94%
number of pairg 3000 | 4000 | 5000 all
precision 81% | 65% | 53% | 50%

Table 1: German precision at various cutoff points (all = 5279)

4.2 Precision

In order to evaluate the precision obtained by our procedure, we constructed a list of
all the pairs that, according to the analysis provided by the XEROX analyzer for the
relevant language, are morphologically related (i.e., share one of their $tewis).
refer to the lists constructed in the way we just describe@fesence sets

The XEROX tools we used do not provide derivational analysis for English, and
a limited form of derivational analysis for German. Our algorithm, however, finds
both inflectionally and derivationally related pairs. Thus, basing our evaluation on a
comparison with the XEROX parses leads to an underestimation of the precision of the
algorithm. We found that this problem is particularly evident in English, since English,
unlike German, has a rather poor inflectional morphology, and thus the discrepancies
between our output and the analyzer parses in terms of derivational morphology have
a more visible impact on the results of the comparison. For example, the English
analyzer does not treat pairs related by the adverbial st¥finr by the prefixun-
as morphologically related, whereas our algorithm found pairs susbftsoftlyand
load/unload

In order to obtain a more fair assessment of the algorithm, we went manually
through the first 2,000 English pairs found by our algorithm but not parsed as related
by the analyzer, looking for items to be added to the reference set. We were extremely
conservative, and we added to the reference set only those pairs that are related by a
transparent and synchronically productive morphological pattern. When in doubt, we
did not correct the analyzer-based analysis. Thus, for example, wethtdunt pairs
such agnachine/machineryariables/variesr electric/electronias related.

We did not perform any manual post-processing on the German reference set.

Tables 1 and 2 report percentage precision (i.e., the percentage of pairs that are in
the reference set over the total number of ranked pairs up to the relevant threshold) at
various cutoff points, for German and English respectively.

For both languages we notice a remarkably high precision rat#{;) up to the
1500-pair cutoff point.

After that, there is a sharper drop in the English precision, whereas the decline in
German is more gradual. This is perhaps due in part to the problems with the English
reference set we discussed above, but notice also that English has an overall poorer

5The XEROX morphological analyzers are state-of-the-art, knowledge-driven morphological analy-
sis tools (see for example Karttunen et al. (1997)).



number of pairs 500 | 1000| 1500 | 2000
precision 98% | 95% | 91% | 83%
number of pairg 3000 | 4000 | 5000 all
precision 72% | 58% | 48% | 29%

Table 2: English precision at various cutoff points (all = 8902)

morphological system and that the English corpus is considerably smaller than the
German one. Indeed, our reference set for German contains more than ten times the
forms in the English reference set.

Notice anyway that, even in English the precision is still just below 50% at the
5000-pair cutoff.

Of course, what counts as a “good” precision rate depends on what we want to do
with the output of our procedure. We show below that even a very naive morphologi-
cal rule extraction algorithm can extract sensible rules by taking whole output lists as
its input, since, although the number of false positives is high, they are mostly related
by patterns that are not attested as frequently in the list as the patterns relating true
morphological pairs. In other words, true morphological pairs tend to be related by
patterns that are distributionally more robust than those displayed by false positives.
Thus, rule extractors and other procedures processing the output of our algorithm can
probably tolerate a high false positive rate if they take frequency and other distribu-
tional properties of patterns into account.

Notice that we discussed only precision, and not recall. This is because we believe
that the goal of a morphological discovery procedure is not to find the exhaustive list
of all morphologically related forms in a language (indeed, because of morphological
productivity, such list is infinite), but rather to discover all the possible (synchronically
active and/or common) morphological processes present in a language. It is much
harder to measure how good our algorithm performed in this respect, but the qualitative
analysis we present in the next subsection indicates that, at least, the algorithm is
finding a varied set of morphological processes.

4.3 Morphological patterns discovered by the algorithm

Even if it is clear that the algorithm found a good number of morphologically related
pairs, if it turned out that all of these pairs were examples of the same morphological
pattern (say, nominal plural formation 1ig), the algorithm would not be of much use.

However, a simple experiment shows that the algorithm found pairs related by a
variety of morphological processes.

We wrote a program that extracts “correspondence rules” in the following simple
way: For each pair, the program looks for the longest shared (case-insensitive) left-
and right-edge substrings (i.e., fosem + suffixparse and for arefix + stemparse).

The program then chooses the parse with the longest stem (assuming that one of the
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rule example fq
€S Jelzin—~Jelzins 921
e<n lautete—lauteten 670
e<—en digitak—digitalen 225
€—e rot—roter 201
€<es Papst-Papstes 113
€—er Hamburg—Hamburger| 89
Ner alten—alter 52
eI feste—fester 42
en—ung | Strahler-Strahlung 28
e—s Flugzeuge-Flugzeugs| 25
e—ge stieger—gestiegen 9
e 0l Embarge-Olembargo| 6
€ <>Vvor Mittag« Vormittag 5
aus—ein | ausfuhrer-einfuhren 4
ers—drit | Erstens-Drittens 4

Table 3: The most common German suffixation and prefixation patterns

two parses has a non-zero stem), and extracts the relevant edge-bound correspondence
rule. If there is a tie, thestem + suffixparse is preferred. The program then ranks

the correspondence rules on the basis of their frequency of occurrence in the original
output list/

We want to stress that we are adopting this procedure as a method to explore the
results, and we are by no means proposing it as a serious rule induction algorithm.
One of the most obvious drawbacks of the current rule extraction procedure is that it
is only able to extract linear, concatenative suffixation and prefixation patterns, and
thus it misses or fails to correctly generalize some of the most interesting patterns in
the output. Indeed, looking at the patterns missed by the algorithm (as we do in part
below) is as instructive as looking at the rules it found.

Tables 3 and 4 report the top ten suffixation and top five prefixation patterns found
by the rule extractor by taking the entire German and English output lists as its input.

These tables show that our morphological pair scoring procedure found many in-
stances of various common morphological patterns (with the exception of the German
“prefixation” rule ers—drit, and of the compounding patteen—Ol, all the rules in
these lists correspond to realistic affixation patterns).

Not surprisingly, in both languages many of the most frequent rules (such as, e.g.,
€ —S) are poly-functional, corresponding to a number of different morphological rela-
tions within and across categories.

A rule such ay«iesis of particular interest, as it shows how our algorithm, not re-
lying on a morpheme concatenation model, could find patterns involving orthographic

’Ranking by cumulative score yields analogous results.
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rule example fq

€S allotment-allotments 860
e—ed | accomplisk~accomplished 98
ed—ing | established-establishing 87
e«<ing | experiment-experimenting 85
e—d conjugate~conjugated 58
y«—ies | satisfy—satisfies 50
e—es | Class—Classes 39

e—ly experimentab-experimentally| 38
s—ing | corresponds>corresponding | 36

s—ed represents>represented 36
e<un | structuree-unstructured 17
e—re organizatior-reorganization | 12
€—in organie—inorganic 7
e<—non | specifically~nonspecifically 6
e—dis | satisfied-dissatisfied 5

Table 4: The most common English suffixation and prefixation patterns

changes at the root-suffix boundary.

Other interesting observations emerge from further inspection of the ranked rule
files. For example, among the German rules with a frequency of 5 or higher, we
encounter those in table 5.

The patterns in this table show that our algorithm is capturing the morphological
process involving fronting of the stem vowel plus addition of the su#fixA smarter
rule extractor should be able to generalize from patterns like these to one or more rules
capturing the discontinuous change. Other umlaut-based patterns that do not involve
concomitant suffixation — such as Mutter/Mitter — were also found by our core
algorithm, but they were wrongly parsed as involving prefixes (&1gs-Mu) by the
rule extractor.

Finally, by taking a look at the German forms where the rule extractor could not
posit a rule, we find (together, of course, with many false positives and further in-
stances of non-affixal morphology, suchadigr/alterenandArzt/Arzte) many cases of

rule example fq
ag—age | Anschlag—Anschkhge | 10
ang—ange| Ruckgang-Rickgange| 6
all—alle | Uberfalk—Uberfalle 6
ug—uge | Tiefflug—Tieffluge 5
and—ande| Vorstand-\Vorstande 5

Table 5: Some German rules involving stem vowel changes
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circumfixation:fesseln/gefessekpenden/gespendébrdern/gefordertetc.

5 Conclusion and Future Directions

We presented an algorithm that, taking a raw corpus of a language as its input, pro-
duces a ranked list of morphologically related pairs at its output. The algorithm finds
morphologically related pairs by looking at the degree of orthographic similarity (mea-
sured by minimum edit distance) and semantic similarity (measured by mutual infor-
mation) between words from the input corpus.

Experiments with German and English inputs gave encouraging results, both in
terms of precision (at least for the topmost section of the ranked lists), and in terms of
the variety and nature of the morphological patterns found within the output set.

In work in progress, we are exploring various possible improvements for our basic
algorithm, including the addition of a context-similarity-based measure, and the pos-
sibility of extending the output set iymorphological transitivityi.e. the idea that if
word a is related to word, and wordb is related to word:, then worda and wordc
should also form a morphological pair.

Moreover, we plan to explore ways to relax the requirement that all pairs must
have a certain degree of semantic similarity to be treated as morphologically related
(there is evidence that humans treat certain kinds of semantically opaque forms as
morphologically complex — see Baroni (2000) and the references quoted there). This
will probably involve taking distributional properties of word substrings into account.

We envisage a number of possible uses for the ranked list that constitutes the output
of our model. First, the model could provide the input for a more sophisticated rule
extractor, along the lines of those proposed by Albright and Hayes (1999) and Neuvel
(2002). Such models extract morphological generalizations in terms of correspon-
dence patterns between whole words, rather than in terms of affixation rules, and are
thus well suited to identify patterns involving non-concatenative morphology and/or
morphophonological changes. A list of related words constitutes a more suitable input
for them than a list of words segmented into morphemes.

Our lists, however, lack information about the morphological categories of words,
while such information is typically of great importance to rule extractors. Knowing
just which morphological correspondence rules are common in a language, indepen-
dently of their function, can be useful, for example, for lexicon compression purposes;
however, in general one needs to know which rules correspond to which morpholog-
ical processes, in order to extract true morphological generalizations. Thus, a further
area to explore is whether it is possible to identify which pairs, among those found
by the algorithm, correspond to the same morphological process (for example, on the
basis of a rudimentary, knowledge-free notion of syntactic context similarity).

Our procedure could also be used to replace the first step of algorithms, such as
that of Goldsmith (2001), where heuristic methods are used to assign preliminary mor-
phological parses to words, and then this analysis is improved using an information-
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theoretically/probabilistically motivated evaluation measure. More in general, our al-
gorithm can help reduce the size of the search space that all morphological discovery
procedures must explore.

Last but not least, the ranked output of (an improved version of) our algorithm can
be of use to the linguist analyzing the morphology of a language, who can treat it as a
way to pre-process her/his data, while still relying on her/his analytical skills to extract
the relevant morphological generalizations from the ranked pairs.
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