Transformation-Based Regression

Björn Bringmann Stefan Kramer BBRINGMA@INFORMATIK.UNI-FREIBURG.DE SKRAMER@INFORMATIK.UNI-FREIBURG.DE

Institute for Computer Science, University of Freiburg, Georges-Köhler-Allee Geb. 079, D-79110 Freiburg i.Br., Germany

Friedrich Neubarth Hannes Pirker Gerhard Widmer FRIEDRICH@AI.UNIVIE.AC.AT HANNES@AI.UNIVIE.AC.AT GERHARD@AI.UNIVIE.AC.AT

Austrian Research Institute for Artificial Intelligence, Schotteng. 3, A-1010 Vienna, Austria

Abstract

In this paper, we introduce Transformation-Based Regression (TBR), a novel rule-based, symbolic regression technique based on Transformation-Based Learning (TBL). Although Transformation-Based Learning has been introduced already a couple of years ago, it has not yet been considered for regression-type tasks. The proposed method should be particularly useful for learning from examples with a given neighborhood relation, where the dependent variable of one example also depends on neighboring examples. Thus, the method should have a potential for learning from sequence and spatial data. In the paper, we demonstrate the capabilities and limitations of the approach in two highly complex real-world domains, musicology and speech synthesis.

1. Introduction

This paper introduces a new technique for rule-based, symbolic regression that is based on Transformation-Based Learning (TBL) [Brill 1995]. Transformation-Based Learning has been devised for classification-type tasks such as part-of-speech tagging or spelling correction in natural language processing [Mangu & Brill 1997]. Surprisingly, since the invention of TBL, noone has considered the potential of this technique for regression problems yet [Brill 2002].

Transformation-based learning is particularly appealing in domains with neighborhood relations between

examples, where the dependent variable of one example may depend on the one of neighboring examples. So, it should in general be interesting for learning from sequence or spatial data.

This paper is organized as follows. In the next section, we will briefly review Transformation-Based Learning. Section 3 will introduce Transformation-Based Regression (TBR), a novel regression technique based on TBL. Subsequently, we will present experiments with two complex real-world datasets, where the capabilities and limitations of the TBR algorithm are demonstrated. The final section of this paper touches upon related work and concludes.

2. Transformation-Based Learning

Transformation-Based Learning (TBL) is a technique originating from the field of Natural Language Processing. TBL has been shown to work successfully in wide range of applications, such as part-of-speech tagging and spelling correction [Brill 1995, Mangu & Brill 1997].

Essential to transformation-based learning is that predictions are not performed in a single pass, but in several passes. The algorithm starts off with assigning baseline predictions to all examples in the training set. In each subsequent iteration of the algorithm, the current predictions are transformed. In other words, the algorithm attempts to improve the predictions based on the current predictions. The power of the learned transformation lists stems from intermediate results, which are reflected in the current label of an example and available to be used for the prediction of other examples.

Transformation-Based Learning differs from conventional symbolic Machine Learning techniques in several respects:

- First of all, TBL performs multiple passes of predictions, and not "one-shot" learning. In conventional symbolic Machine Learning, exactly *one* prediction is made *once* for each example, and this prediction is not further refined.
- Secondly, TBL makes use of intermediate prediction results. Intermediate results are stored and can be used subsequently.
- Thirdly, TBL starts off with some plausible initial baseline prediction and then refines it. The nice thing about this approach is that one can input "educated guesses" regarding the class or number to be predicted (or even take the prediction from some other system), and then attempt to get rid of particularly hard cases (by transforming them closer to the correct output). If the input from another system is used, one can find out where it makes the most errors. Many other interesting things may be envisaged: for instance, attempt to learn the difference between two sets of classifications or numbers.

Table 1 shows the pseudo-code of TBL. The input to the algorithm is the training set Examples. In the first step, the algorithm assigns a baseline prediction to each example in the training set. For classification, this could be, e.g., the majority class, the majority class of some subgroup of examples, or some more sophisticated choice. Subsequently, the algorithm sequentially constructs a transformation list Rules consisting of transformation rules. A transformation rule is a rule with conditions on the examples in the lefthand side and a transformation of the class label in the right-hand side (see below). In each iteration, FindBestRule searches for the rule that transforms the current prediction of the covered examples closest to the actual values according to some scoring function. The best transformation rule BestRule is then appended to the transformation list. Finally, the training examples are transformed according to BestRule. In this step, the current prediction of each example covered by the left-hand side of the transformation rule is updated using the transformation in the right-hand side. This process continues until no rule can be found or no improvement can be achieved according to the scoring function.

```
TransformationBasedLearning(Examples)
     for each example e_i \in Examples
     do assign baseline prediction to e_i
 3
     Rules \leftarrow [\ ]
     while true
 4
 5
     do
 6
         BestRule \leftarrow FindBestRule(Examples)
 7
         if (BestRule = none) \lor no improvement
 8
           then return Rules
 9
           else Rules \leftarrow append(BestRule,
10
                                    Rules)
11
                 Examples \leftarrow apply(BestRule,
12
                                      Examples)
```

Table 1. Pseudo-code of transformation-based learning

3. Transformation-Based Regression

In the area of natural language processing, transformation-based learning has predominantly been used for classification-type learning, mainly in the context of part-of-speech tagging. Here, we adapt the general TBL framework and present a new regression rule learning algorithm based on continuous transformations. We call it Transformation-Based Regression (TBR).

In the following, we will explain the basic concepts involved, describe an algorithm for learning regression rules in this setting, and comment briefly on the expressiveness of the corresponding class of models.

3.1 Basic Concepts

In the following, an example e_i is a pair (\mathbf{x}_i, y_i) , where \mathbf{x}_i is a vector of attribute values, and y_i is the numerical value to be predicted. Since we transform the current prediction from iteration to iteration, we need a notation for the prediction of example e_i in iteration t. In the following, $y_i(t)$ denotes the prediction for example e_i in iteration t. The next transformation of value $y_i(t)$ is obviously denoted $y_i(t+1)$.

The representation of transformation rules for regression looks as follows:

if
$$c(e_i)$$
 then $y_i(t+1) \leftarrow a + b * y_i(t)$ (1)

In the left-hand side (LHS) of these rules (also called the rule bodies in the following), $c(e_i)$ denotes some conditions on the examples e_i , and in the right-hand side (RHS, also called head in the following), the new prediction for example e_i , $y_i(t+1)$ is defined as a linear transformation of the current prediction for the example, $y_i(t)$. For all examples e_i covered by $c(e_i)$, the current prediction at step t is transformed linearly into the new prediction at step t + 1, $y_i(t + 1)$.

Example: Figures 1 and 2 illustrate the effect of transformation-based regression. In the toy example in Figure 1, points (a) and (b) are covered by the conditions on the left-hand side, and mapped to the correct values of y by the linear transformation. The other example in Figure 2 shows how points near a steeply ascending line are picked by some rule and mapped to the diagonal, that is, the correct value for y. \square

Parameters a and b obviously should be chosen such that the resulting error after the transformation is minimized. If the chosen error function is the mean squared error, then we would like to find parameters a and b that minimize

$$\sum_{i=1}^{n} (y_i - (a+b*y_i(t)))^2$$
 (2)

where index i runs over the examples covered by the rule body. That is, the task is simply to perform linear regression of the target value y on y(t). Since y(t) takes the role of x in linear regression, parameter b is simply the covariance $s_{y(t)y}$ divided by $s_{y(t)}^2$, the variance of y(t). The optimal value for a can be found analogously.

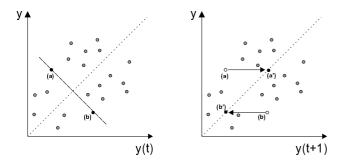


Figure 1. Example of effect of transformation: two erroneous points are swapped

The conditions in the body may contain tests on attributes of the example itself, and even the current prediction of the example. Since we aim at applications where each example has a defined set of neighboring examples (such as in spatial or sequence data), the conditions may also refer to the neighbors' attributes or even their current predictions. Since we only deal with sequence data in this paper, we just have to define $succ.x_j$ as the attribute x_j of the successor example, and $pred.x_j$ as the attribute of the predecessor example. This schema can easily be extended to arbitrary neighborhood relations. If we want to refer to a neighbor's current prediction, we have to use tests

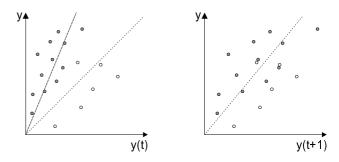


Figure 2. Example of effect of transformation: points near a steeply ascending line are transformed towards the (correct) diagonal

on $succ.y_i(t)$ and $pred.y_i(t)$. In the section on experimental results, we investigate whether the use of $y_i(t)$, succ.y(i) or pred.y(i) in the LHS of transformation rules improves the performance of the learner.

3.2 Algorithm

The top-level algorithm of TBR differs from the general one in Table 1 in minor details. Actually, the only changes concern the stopping criterion and some additional effort for selecting the "right" transformation list based on some validation set.

Since we are using TBL for predictive purposes, and not, for instance, part-of-speech tagging, we need a way to decide when further transformations actually harm the generalization performance of the learner. Our approach to this problem is rather straightforward: We use one third of the training examples for validating the results and two thirds for learning.

The algorithm adds transformation rules to the transformation list for a predefined number of iterations. While the transformation list is built, we record the mean squared error on the validation set. After the construction of the full transformation list, we choose a part of it (actually, the first m rules) based on the error on the validation set. Here, we have two options: either we choose the transformation list with the minimum error on the validation set, or the smallest one within one standard error of the best rule on the validation set.

The algorithm for finding the best transformation rule is described in Table 2. The algorithm starts with the trivial transformation rule (the one that does not change anything), and continually refines it by greedy search. As such, the algorithm is reminiscent of rule building algorithms in regular classification rule learning. One detail deserves special attention: The algo-

```
FINDBESTRULE(Examples)
     BestRule \leftarrow 'if true then 0 + 1 * y_i(t)'
     BestError \leftarrow RMSE(BestRule, Examples)
  3
     while true
  4
     do
  5
         (Rule, Error) \leftarrow
  6
              FindBestRefinement(BestRule,
 7
                                      Examples)
  8
         if Error \leq BestError
 9
            then
10
                  BestRule \leftarrow Rule
11
                  BestError \leftarrow Error
            else return BestRule
12
```

Table 2. Pseudo-code of greedy search for best transformation rule in transformation-based regression

```
FINDBESTREFINEMENT(Rule, Examples)
 1 LHS \leftarrow LHS \ of \ Rule
     BestError \leftarrow +inf
 3
     for Cond \in PossibleConditions
 4
     do NewLHS \leftarrow Refine(LHS, Cond)
 5
         CoveredExamples \leftarrow
 6
             Covered(NewLHS, Examples)
 7
         Calculate optimal a and b
 8
             for\ CoveredExamples
 9
         NewRule \leftarrow NewRule(NewLHS,a,b)
10
         NewError \leftarrow RMSE(NewRule, Examples)
        if NewError < BestError
11
12
           then BestRule \leftarrow NewRule
13
                 BestError \leftarrow NewError
     return (BestRule, BestError)
```

Table 3. Pseudo-code of finding the best refined rule, given some rule, in transformation-based regression

rithm stops growing a rule as soon as the error would increase after the refinement of the LHS. The evaluation function is $1/N\sum(y_i(t+1)-y_i)^2$, the mean squared error of all examples after the transformation. The evaluation of the rule (list) before the refinement is obviously $1/N\sum(y_i(t)-y_i)^2$. If we want to know whether a refinement pays or not, we just have to consider those examples that are covered by the rule so far. The chosen stopping criterion makes sense for transformation rules, because the error on the training set can increase after refining a rule.

Example: As an illustration of this, let us consider that the LHS of a rule at one point covers the four examples e_1 , e_2 , e_3 and e_4 . The best refinement of the rule only covers examples e_1 and e_2 . The pairs (y(t), y) of these examples are as follows: $e_1 = (3, 6)$, $e_2 = (3, 6)$

(9,12), $e_3 = (10,110)$, $e_4 = (15,115)$. In the example, the instances with the biggest discrepancy between the current prediction and the actual value are not transformed after the refinement. In contrast, the two remaining examples covered by the rule after the refinement can be "perfectly" transformed (i.e, without error).¹ Thus, the sum of the squared error is $100^2 + 100^2 + 0^2 + 0^2 = 20,000$.

Performing linear regression for all four points (before the refinement) gives a sum of the squared error of only approximately 3,942. Thus, the refinement does not pay and we choose to stop at this point of the rule growing process. \Box

The pseudo-code for the refinement of a given rule is shown in Table 3. The algorithm simply takes all possible refinements of the rule (in other words, the additional conditions for the LHS), and then determines the optimal parameters a and b for the covered examples. From all candidate refinements, we choose the one with the minimum error on all examples (see above).

3.3 Expressiveness

As for the expressiveness of TBR rules, we have not yet proven any results, but it is easy to see that TBR rules can in principle represent the same functions as regression trees. (This can be constructed in the same way as for the classification variant of transformation-based learning, where all decision trees can in theory be emulated by transformation rules [Brill 1995].) To do this, one has to set value b to zero (that is, the current prediction does not matter), and choose the value of a in the head appropriately. For each split, we obtain two more transformation rules of this kind.

4. Experimental Results

The TBR algorithm was experimentally tested on two large, real-world datasets representing sequential phenomena. TBR's results were compared to the state-of-the-art regression rule learning algorithm CUBIST [RuleQuest Research 2002].

4.1 Expressive Music Performance: Predicting a Concert Pianist

The data used in the first study stems from a large research project that studies the fundamentals of *expressive music performance* with machine learning [Widmer 2001]. Expressive performance is the art of

¹Two points can always be perfectly transformed using linear regression (see also the example above).

shaping a piece of music, by continuously varying parameters like tempo, loudness, etc. while playing a piece (beyond what is prescribed in the written music score). Expressive performance is what makes music sound musical, and what makes certain musicians famous.

Can an 'artistic' behavior like this be predicted at all? Recent studies show that it can, to a surprising extent. This raises a number of interesting questions, which are beyond the scope of this paper. Here, we simply use expressive performance as a source of test data.

The data sets used in the following experiments are based on performances of 13 complete piano sonatas by W.A. Mozart (K.279–284, 330–333, 457, 475, and 533) by a Viennese concert pianist. The pieces were played on a Bösendorfer SE290 computer-monitored concert grand piano, which measures every key and pedal movement with utmost precision. From these recordings, the 'melodies' (mostly the soprano parts) were extracted, which gives an effective training set of 46,378 notes. Each note is described by a number of attributes that represent both intrinsic properties (such as scale degree, duration, metrical position) and some aspects of the local context (e.g., melodic properties like the size and direction of the intervals between the note and its predecessor and successor notes). The total number of attributes per note is 20.

There are three numeric target attributes, corresponding to three different dimensions of expressive variation: timing (the actual time between onsets of successive played notes, versus the time prescribed by the score and the current tempo), dynamics (the relative loudness of individual notes), and articulation (the actual sounding duration of a played note, i.e., whether it is held for the entire time interval dedicated to it (legato) or shortened and followed by a period of silence (staccato)).

As the examples are based on melodies, they naturally form a sequence where it makes perfect sense to speak of successors and predecessors. Moreover, it is intuitively clear that there should be dependencies between neighboring examples: for instance, the loudness with which a particular note is going to be played should depend on musical properties of the note and its neighbors as well as on the loudness of these neighbors.

4.1.1 QUANTITATIVE RESULTS

Due to the size of the datasets (46,378 examples), a one-time evaluation on a randomly generated training (2/3) and testing set (1/3) was considered sufficient.

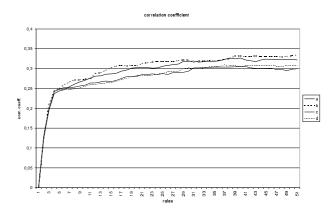


Figure 3. Dynamics: Correlation coefficient

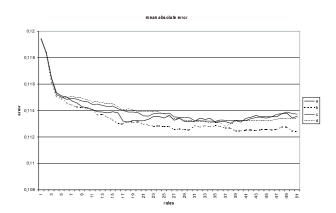


Figure 4. Dynamics: Mean Absolute Error

The training set was further divided randomly into the learning (2/3) and validation set (1/3), where the validation set was used by TBR to pick the "right" transformation list (see above).

For the following plots, TBR was made to learn a fixed number (50) of rules, in order to see how correlation, error, etc. evolve over a fixed range of cumulatively applied rules. From all possible transformation lists, TBR selects either the one with the minimum error on the validation set, or, alternatively, the smallest one within one standard error of the best transformation list.

For graphical illustration, we look at the learning results for one particular target variable (dynamics). Figures 3, 4, and 5 plot the correlation coefficient, mean absolute error, and relative absolute error² on the test set, as the number of applied rules grows

²These are also the measures that CUBIST reports.

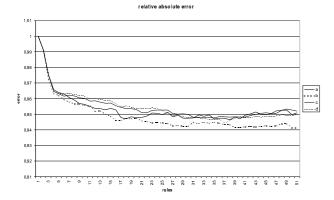


Figure 5. Dynamics: Relative Absolute Error

from 1 to 50. Four variants of TBR with different capabilities are compared: TBR-a has access both to (the attribute values of) an example's neighbors $(succ.x_j, pred.x_j)$ and the currently predicted values $y_i(t)$, $pred.y_i(t)$, and $succ.y_i(t)$. TBR-b has access to the neighbors, but none of the current predictions $y_i(t)$, TBR-c can look at $y_i(t)$, but not the neighbors, and TBR-d has neither.

The plots show the expected types of learning curves, with errors starting to rise again in some cases as too many rules are used — the usual overfitting scenario. Among the four TBR variants, the two that have access to an example's neighbors (TBR-a/b) are usually better than those that do not. Surprisingly, also having access to the current predictions of the target values $(y_i(t))$ seems to hurt rather than help: in all domains but timing, TBR-a seems slightly inferior to TBR-b.

This is also visible from table 4, which gives a comparison, over all three target variables, between CUBIST and TBR, where TBR used the validation set to decide when to stop learning rules, according to the heuristic proposed in [Breiman et al. 1984] (i.e., TBR chooses the smallest rule list within one standard error of the best one on the validation set). In the table, the row following CUBIST-b shows the results of CUBIST with access to the example's attributes as well as the neighbors' attributes. So, in principle, the same conditions may occur in the bodies of TBR and CUBIST rules. The rows for CUBIST-d give the results of CUBIST with only the example's own attributes available.

Note that to be perfectly fair to CUBIST, which does

	correl.	MAE	rel.AE	# rules	
	timing				
TBR-a	.38	0.09	0.94	33	
TBR-b	.22	0.09	0.98	2	
TBR-c	.28	0.09	0.96	7	
TBR-d	.29	0.09	0.96	40	
CUBIST-b	.25	0.09	0.96	44	
CUBIST-d	.28	0.09	0.96	44	
	dynamics				
TBR-a	.30	0.11	0.95	22	
TBR-b	.31	0.11	0.95	15	
TBR-c	.26	0.11	0.96	11	
TBR-d	.25	0.11	0.96	8	
CUBIST-b	.35	0.10	0.93	48	
CUBIST-d	.32	0.11	0.94	48	
	articulation				
TBR-a	.02	0.32	0.81	11	
TBR-b	.02	0.32	0.82	9	
TBR-c	.01	0.33	0.83	11	
TBR-d	.02	0.32	0.82	14	
CUBIST-b	.55	0.21	0.74	49	
CUBIST-d	.03	0.31	0.79	49	

Table 4. TBR vs. CUBIST in musical domain.

not require a validation set, it was given the full training set (learning + validation) for learning, so it had more examples to learn from than TBR.

As table 4 shows, TBR performs slightly better than CUBIST in one and slightly worse in two of the domains. In the fourth domain (see below), TBR again performs slightly better than CUBIST. Obviously, having access to an example's neighbors leads to improved results in this sequential domain: TBR-a/b are consistently better than TBR-c/d (see also the above plots). Why TBR-a is usually (though not drastically) weaker than TBR-b definitely needs some more investigation.

4.1.2 Musical Interpretation

One problem with TBR, at least in its current form, is that the learned rules are not easily interpretable because they have a cumulative effect by referring to, and transforming, the current, intermediate prediction of the example itself. Still, the learning results offer a number of interesting insights. For one thing, the rules close to the top of the rule list operate more or less from the baseline prediction, so their effect can be quite directly interpreted. Here we find a number of rules that are not only musically sensible, but in fact nicely support some hypotheses postulated by other performance researchers in musicology. For instance, one of the top rules in the rule set learned for timing (local tempo) reads

```
IF abstr_dur_context = equal_longer AND
    0.0 <= next_dur_ratio < 0.8 AND
    1 <= int_prev < 20
THEN local_tempo = 0.582*local_tempo + 0.318</pre>
```

which essentially predicts a lengthening of notes that are followed by a longer note and are not preceded by horizontal melodic motion. (We lack the space here to explain the exact meaning of the attributes and the target variable.) This corroborates a recent — and quite surprising — discovery that exactly this simple kind of rhythmic pattern accounts for a large number of observed note lengthenings (or note delays).

It is also interesting to see which neighbor attributes seem most important to the learner; that gives an indication of what aspects of *musical context* are most relevant to a performer's expressive decisions. An initial analysis of the rules suggests that the rhythmic context of a note plays a more important role in the prediction of the pianist's timing than in dynamics and articulation. Again, that confirms experimental results in a recent empirical study. It will be interesting to increase the size of the context the learner can refer to beyond an example's immediate neighbors.

One of the distinguishing features of TBR is the learner's access to the (currently predicted) target values of an example's neighbors (i.e., $pred.y_i(t)$ and $succ.y_i(t)$).³ As the above quantitative results show, this does not necessarily improve the numeric prediction accuracy, but it may improve other qualities. Looking at the learned rules that do explicitly refer to their neighbor's expression values, we observe some musically sensible uses of this device. For instance, in the dynamics (loudness) domain, we find rules that raise a note's loudness value if both the note's predecessor and successor already have a high predicted loudness. That presumably improves the smoothness of the dynamics contour. That is a kind of effect that would be very difficult, if not impossible, to achieve in other learning schemes. We still have to produce a synthesized performance of the test pieces from the predicted expression values and conduct listening tests to verify whether this improved smoothness is indeed perceptible.

4.2 Improving Naturalness of Synthetic Speech: Predicting Durations of Sounds

The speech related data used in this study was collected within a project that is concerned with the modeling of the durational variation of spoken sounds [Neubarth et al. 2000]. From a practical point of view this work is motivated by the fact that the 'proper' prediction of durations is indispensable in order to improve the naturalness and thus acceptability of synthetic speech.

The duration of a given sound within a language is influenced by a number of factors, e.g. its 'intrinsic' length, the identity of neighboring sounds, accentual status, position within a phrase etc. Thus the length of a single sound can well be varying in the range between 40 to 220 ms. Though many of these factors are known to have an influence on the duration, their number and complex interdependencies make a prediction of their joint effects difficult.

The data for the experiment is extracted from a corpus which comprises approx. 50,000 phones (2 hours of speech) of read Standard Austrian German. It was recorded by a single speaker and contains 2 short stories, 22 texts from newspapers, 300 isolated sentences and 250 sentences from question-answer pairs. The speech data was semi-automatically segmented into sounds and annotated with a number of linguistic attributes. As in the musical domain above, these data have a sequential interpretation, and it is also known that there are strong influences of the neighboring sounds.

The feature set employed was taken from [Riedi 1998]. Each sound in the database is labelled with attributes that convey the following information: Segmental properties (e.g. for consonants: place and manner of articulation) of the sound itself as well as for its two neighbors to the left and right, positional information (e.g. its position within a syllable, the syllable's position within a word), information on the size of embedding constituents (e.g. number of syllables in the word) and its accentuation level. The target attribute is simply the sound's measured duration expressed in [ms].

4.2.1 QUANTITATIVE RESULTS

Table 5 compares the four TBR variants to CUBIST on this data set. As before, TBR-b takes the lead, followed by TBR-a, CUBIST-d, and CUBIST-b. TBR-b is clearly better than CUBIST-b, indicating that being able to transform predicted values can be a real advantage in this domain.

Having access to the currently predicted target values $y_i(t)$ can hurt as it can help: TBR-b performs better than TBR-a, but TBR-c performs better than TBR-d.

As in the musical application, a number of interesting

³Another one is that the rules can repeatedly pick subsets of examples and bring them closer to the desired target.

	correl.	MAE	${ m rel.AE}$	# rules
TBR-a	.76	15.89	0.64	103
TBR-b	.79	15.10	0.61	150
TBR-c	.74	16.79	0.68	180
TBR-d	.72	17.12	0.69	84
CUBIST-b	.72	16.50	0.66	57
CUBIST-d	.74	16.10	0.65	60

Table 5. TBR vs. CUBIST on speech data.

qualitative insights could be gleaned from the learned rules. Space limitations prohibit us from discussing these here.

5. Conclusion

This paper has briefly introduced Transformation-based Learning (TBL) as a general learning technique, and has presented a new algorithm called Transformation-based Regression (TBR) for learning regression rules in this paradigm. Experiments with two large, complex data sets have shown that TBR seems competitive with the state-of-the-art regression rule algorithm CUBIST. The results show clearly that the ability to look at an example's neighbors, as implemented in TBR, leads to improved results. Also, in a number of cases, although not always, the transformation approach itself pays in terms of numerical error measures, as can be seen by the comparison with CUBIST.

The transformation approach has other potential advantages. As it starts from a given baseline, which it tries to improve step by step, we can input educated guesses as baseline (or even take predictions from some other system as starting point), and then use TBR to refine these predictions or fix errors in these. One might also try to use TBR to model the difference between one set of predictions and another, by using the former as the starting set of baseline predictions, and the latter as the target values.

Transformation-based regression is related to a large number of Machine Learning techniques. To mention only few of them, we believe there exists a connection between the presented research and meta-learning or ensemble learning schemes, especially methods like Stacking [Wolpert 1992] or Cascading [Gama 1998], where the predictions made by one classifier are fed as new or additional attributes into a meta-learner.

Transformation-based learning originated in the field of natural language processing. With this paper, we hope to have brought this interesting approach to the attention of an even wider machine learning audience, and to have encouraged further research on this methodology.

Acknowledgements

Parts of this work were supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) under grants no. P12645, P13224 and Y99-INF (START Research Prize). The Austrian Research Institute for Artificial Intelligence is supported by the Austrian Federal Ministry of Education, Science and Culture.

References

[Breiman et al. 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classification and Regression Trees, The Wadsworth Statistics/Probability Series. Belmont, CA, Wadsworth International Group, 1984

[Brill 1995] Brill, E. Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging Computational Linguistics 21(4):543–565, 1995.

[Brill 2002] Brill E. Personal communication.

[Gama 1998] Gama, J. Combining Classifiers by Constructive Induction. In Proceedings of the Ninth European Conference on Machine Learning (ECML'98). Berlin: Springer Verlag, 1998.

[Mangu & Brill 1997] Brill, E. and Mangu, L. Automatic Rule Acquisition For Spelling Correction. Proceedings of the Fourteenth International Conference on Machine Learning (ICML-97), 1997.

[Neubarth et al. 2000]

Neubarth, F., Alter, K., Pirker, H., Rieder, E., Trost, H. The Vienna Prosodic Speech Corpus: Purpose, Content and Encoding, in Zuehlke W., Schukat-Talamazzini E.G. (eds.), Konvens 2000 - Sprachkommunikation, VDE Verlag, Berlin, 191–196, 2000.

[Riedi 1998] Riedi, M. Controlling Segmental Duration in Speech Synthesis Systems, Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich, TIK-Schriftenreihe Nr. 26, PhD thesis, No. 12487, 1998.

[RuleQuest Research 2002] RuleQuest Research. Cubist commercial regression tool, 2002. http://www.rulequest.com/cubist-info.html

- [Widmer 2001] Widmer, G. Using AI and Machine Learning to Study Expressive Music Performance: Project Survey and First Report. *AI Communications* 14(3):149–162, 2001.
- [Wolpert 1992] Wolpert, D.H. Stacked Generalization. $Neural\ Networks\ 5(2):241-260,\ 1992.$