ECML'97 Preliminary Program

Fuer alle an Theorie und Praxis des Maschinellen Lernens
Interessierten:


EINLADUNG ZUR TEILNAHME UND VORLAEUFIGES PROGRAMM:


----------------------------------------------------------------------------
        9th EUROPEAN CONFERENCE ON MACHINE LEARNING (ECML-97)
                          23.-26.April 1997, Prag
----------------------------------------------------------------------------


        Vom 23.-26. April 1997 findet in Prag die
        9th European Conference on Machine Learning (ECML-97) statt.
        Es handelt sich dabei um *die* wissenschaftliche Veranstaltung
        zum Themenkreis Maschinelles Lernen in Europa. Alle, die sich
        fuer die neuesten Entwicklungen im Bereich des Maschinellen Lernens
        interessieren, sind herzlich zur Teilnahme eingeladen.

Wissenschaftliches Programm:

        Das wissenschaftliche Programm der ECML-97 von Mittwoch, 23. bis
        Freitag, 25.April besteht aus drei eingeladenen Vortragen
        sowie aus 25 Plenarvortraegen, die aus 74 eingereichten Arbeiten
        ausgewaehlt wurden und einen Einblick in die derzeitige europaeische
        Forschung bieten (und nicht nur die europaeische -- es sind u.a.
        auch Arbeiten aus den USA, Kanada, Singapur und Neuseeland vertreten).

Eingeladene Vortragende:

    STUART RUSSELL (University of California, Berkeley, USA),
        Traeger des IJCAI-95 Computers and Thought Award,
        wird seine aktuellsten Forschungsergebnisse auf dem Gebiet
        des Lernens und Schlussfolgerns unter Unsicherheit praesentieren
        ("Uncertain Learning Agents");

    LUC STEELS (Freie Universitaet Bruessel und Sony Computer
        Science Laboratory, Paris) berichtet ueber den derzeitigen Stand
        seines Modells des interaktiven und sozialen Lernens in Gruppen
        von virtuellen Agenten ("Constructing and Sharing Perceptual
        Distinctions"), und

    PAUL VITANYI (Universitaet Amsterdam) beleuchtet
        grundlegende Fragen des Lernens aus der Sicht der
        Komplexitaetstheorie ("On Prediction by Data Compression").

ECML-97/MLNet Workshops:

        Im Anschluss an die Konferenz (26.April) finden 4 spezialisierte
        Workshops statt (siehe unten), die vom European Network of
        Excellence in Machine Learning (MLNet) organisiert werden.
        Diese stehen nicht nur Mitgliedern des MLNet offen.

Proceedings:

        Die Konferenzproceedings werden in der "Lecture Notes in AI"-Serie
        des Springer Verlags erscheinen:

                Maarten van Someren & Gerhard Widmer (Eds.) (1997).
                Machine Learning: ECML-97.
                Lecture Notes in Artificial Intelligence # 1224.
                Berlin - Heidelberg: Springer Verlag.

Naehere Informationen:

        Univ.-Doz. Dr. Gerhard WIDMER
        Programme Co-Chair, ECML-97
        Oesterreichisches Forschungsinstitut fuer Artificial Intelligence
        Schottengasse 3, 1010 Wien
        Tel. 535 32 81-0
        Fax. 532 06 52
        e-mail: gerhard@ai.univie.ac.at
        WWW: http://www.ai.univie.ac.at/~gerhard



----------------------------------------------------------------------------

         9th EUROPEAN CONFERENCE ON MACHINE LEARNING (ECML-97)

                23-26 April 1997, Prague, Czech Republic


                          PRELIMINARY PROGRAMME 


----------------------------------------------------------------------------

Up-to-date information on the conference (including registration information)
can be found at 
        http://is.vse.cz/ecml97/home.html

This programme with complete abstracts of all talks and links to the
workshops is also available at
        http://www.ai.univie.ac.at/ecml/programme.html

-----------------------------------------------------------------------------


--------------------
WEDNESDAY, APRIL 23:
--------------------

 9.00 -  9.30   Welcome

 9.30 - 10.30   INVITED TALK:
                Uncertain Learning Agents
                Stuart Russell, University of California, Berkeley, USA


10.30 - 11.00   Coffee Break


11.00 - 10.30   Integrated Learning and Planning Based on
                Truncating Temporal Differences 
                Pawel Cichosz

11.30 - 12.00   Finite-Element Methods with Local Triangulation Refinement
                for Continuous Reinforcement Learning Problems
                Remi Munos

12.00 - 12.15   Learning and Exploitation Do Not Conflict
                Under Minimax Optimality
                Csaba Szepesvari

12.15 - 12.30   Exploiting Qualitative Knowledge to Enhance Skill Acquisition
                Cristina Baroglio


12.30 - 14.00   Lunch


14.00 - 15.00   INVITED TALK:
                Constructing and Sharing Perceptual Distinctions
                Luc Steels, Free University of Brussels (VUB) and
                            Sony Computer Science Laboratory, Paris

15.00 - 15.30   Ibots Learn Genuine Team Solutions
                Cristina Versino, Luca Maria Gambardella


15.30 - 16.00   Coffee Break


16.00 - 16.30   NeuroLinear: A System for Extracting Oblique Decision Rules
                from Neural Networks
                Rudy Setiono, Huan Liu

16.30 - 17.00   Learning Different Types of New Attributes by Combining the
                Neural Network and Iterative Attribute Construction
                Yuh-Jyh Hu

17.00 - 17.45   Commenting Session



-------------------
THURSDAY, APRIL 24:
-------------------

 9.00 - 10.00   INVITED TALK:
                On Prediction by Data Compression
                Paul Vitanyi, CWI, Amsterdam

10.00 - 10.30   Conditions for Occam's Razor Applicability and
                Noise Elimination
                Dragan Gamberger, Nada Lavrac


10.30 - 11.00   Coffee Break


11.00 - 11.30   Compression-Based Pruning of Decision Lists
                Bernhard Pfahringer

11.30 - 11.45   Inductive Genetic Programming with Decision Trees
                Nikolay I. Nikolaev, Vanio Slavov

11.45 - 12.00   Probabilistic Incremental Program Evolution:
                Stochastic Search Through Program Space
                Rafal Salustowicz, Juergen Schmidhuber

12.00 - 12.30   Constructing Intermediate Concepts by Decomposition
                of Real Functions
                Janez Demsar, Blaz Zupan, Marko Bohanec, Ivan Bratko


12.30 - 14.00   Lunch


14.00 - 14.30   Global Data Analysis and the Fragmentation Problem in
                Decision Tree Induction
                Ricardo Vilalta, Gunnar Blix, Larry Rendell

14.30 - 15.00   Model Combination in the Multiple-Data-Batches Scenario
                Kai Ming Ting, Boon Toh Low

15.00 - 15.30   Commenting Session


15.30 - 16.00   Coffee Break


16.00 - 17.00   Poster Session

17.00 - open    ECML Community Meeting



-----------------
FRIDAY, APRIL 25:
-----------------

 9.00 -  9.15   A Case Study in Loyalty and Satisfaction Research
                Koen Vanhoof, Josee Bloemer, Koen Pauwels

 9.15 -  9.30   Inducing and Using Decision Rules in the
                GRG Knowledge Discovery System
                Ning Shan, Howard J. Hamilton, Nick Cercone

 9.30 -  9.45   Learning When Negative Examples Abound
                Miroslav Kubat, Robert Holte, Stan Matwin

 9.45 - 10.00   Search-Based Class Discretization
                Luis Torgo, Joao Gama

10.00 - 10.15   Classification by Voting Feature Intervals
                G"ulsen Demir"oz, H. Altay G"uvenir

10.15 - 10.30   A Model for Generalization Based on Confirmatory Induction
                Nicolas Lachiche, Pierre Marquis


10.30 - 11.00   Coffee Break


11.00 - 11.30   Natural Ideal Operators in Inductive Logic Programming
                Fabien Torre, Celine Rouveirol

11.30 - 12.00   Theta-subsumption for Structural Matching
                Luc De Raedt, Peter Idestam-Almquist, Gunther Sablon

12.00 - 12.30   Induction of Feature Terms with INDIE
                Eva Armengol, Enric Plaza

12.30 - 12.45   Metrics on Terms and Clauses
                Alan Hutchinson

12.45 - 13.00   Learning Linear Constraints in Inductive Logic Programming
                Lionel Martin, Christel Vrain



Afternoon off - trip and farewell party (optional; see social programme)



------------------
SATURDAY, APRIL 26:
------------------

ECML/MLNet WORKSHOPS: 

    WS 1: Data-Driven Learning of Natural Language Processing Tasks 
    WS 2: Case-Based Learning: Beyond Classification of Feature Vectors 
    WS 3: Learning in Dynamically Changing Domains:
          Theory Revision and Context Dependence Issues 
    WS 4: Machine Learning and Human-Agent Interaction